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(57) ABSTRACT 

Systems and methods are disclosed herein to provide auto
mated testing on infrared image data to detect image quality 
defects. For example, in accordance with an embodiment of 
the present invention, image processing algorithms are dis
closed to generate an image quality metric that may be com
pared to one or more thresholds to perform an automated test 
for image quality defects. For example, the image quality 
metric may be compared to two thresholds to determine ifthe 
corresponding infrared sensor or infrared camera is defective 
or not due to image quality or requires further manual inspec
tion by test personnel. 
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Infrared cameras are well known and increasingly used for 

1 2 
AUTOMATED SYSTEMS AND METHODS if the test statistic is between the first and second thresholds 

FOR TESTING INFRARED CAMERAS for the corresponding infrared image frame. 
In accordance with another embodiment of the present 

TECHNICAL FIELD invention, a machine-readable medium contains information 
to provide a device with the capability to perform a method, 

The present invention relates generally to infrared cameras which includes storing one or more infrared image frames; 
and, more particularly, to teclmiques for testing infrared cam generating one or more image gradient frames based on the 
eras. one or more corresponding infrared image frames; generating 

BACKGROUND 
one or more binary image frames ofoutliers based on the one 
or more corresponding image gradient frames; calculating a 
test statistic for at least one of the binary image frames; and 
determining if there are image quality defects for the at least 

a wide variety of applications. As infrared cameras grow in 
one binary image frame by comparing the test statistic to one 

popularity, the ability to manufacture the infrared cameras at 
15 or more thresholds.high-volume production levels becomes increasingly impor

The scope of the invention is defined by the claims, which tant. 
are incorporated into this section by reference. A more comOne limitation with conventional infrared camera manu
plete understanding ofembodiments of the present invention facturing procedures is that each infrared sensor must be 
will be afforded to those skilled in the art, as well as a real-manually inspected to prevent infrared sensors with qualita

tive visual defects from being sold by the manufacturer. ization ofadditional advantages thereof, by a consideration of 

Manual inspection of each infrared sensor is expensive, time the following detailed description of one or more embodi
consuming, and places a burden on limited production ments. Reference will be made to the appended sheets of 
resources (e.g., dedicated personnel and test equipment to drawings that will first be described briefly. 
sufficiently inspect each infrared sensor). For example, a 
number of infrared sensor images (e.g., twelve) may need to 25 BRIEF DESCRIPTION OF THE DRAWINGS 
be viewed by an inspector to determine if a corresponding 
infrared sensor meets or exceeds the infrared sensor specifi FIG. 1 shows a block diagram illustrating a top level auto
cations and provides images that do not contain unacceptable mated test procedure for an infrared sensor in accordance 
visual defects. with an embodiment of the present invention. 

Consequently, the ability to provide high-volume, high- FIG. 2 shows a block diagram illustrating an exemplary 
quality, and cost-effective infrared camera production is automated test procedure for an infrared sensor in accordance 
restrained due to the manual inspection requirement. As a with an embodiment of the present invention. 
result, there is a need for improved techniques for testing FIG. 3 shows a block diagram illustrating an exemplary
infrared cameras image processing algorithm for the automated test procedure 

35 
of FIG. 2 in accordance with an embodiment of the present 

SUMMARY 
invention. 

FIG.4 shows a chart illustrating an exemplary histogram ofSystems and methods are disclosed herein to provide auto
test statistics for the automated test procedure of FIG. 2 inmated testing of infrared sensors (e.g., infrared cameras) to 
accordance with an embodiment of the present invention. detect image quality defects. For example, in accordance with 

FIGS. Sa and Sb show block diagrams illustrating an exeman embodiment of the present invention, image processing 
algorithms are disclosed to generate an image quality metric, plary high-pass filter implementation for the automated test 

which may be used with one or more thresholds to detect if procedure ofFIG. 2 in accordance with one or more embodi
image quality defects are present in one or more images from ments of the present invention. 
the corresponding infrared sensor. 45 FIGS. 6a-6c show block diagrams illustrating exemplary 

More specifically in accordance with one embodiment of infrared sensor defect patterns in accordance with an embodi
the present invention, a method of testing an infrared sensor ment of the present invention. 
includes receiving one or more image frames from the infra FIGS. 7a-7d show charts illustrating exemplary histo
red sensor; generating one or more image gradient frames grams of image gradient values for various types of infrared 
based on the one or more corresponding image frames; gen sensor blackbody images in accordance with one or more 
erating one or more binary image frames ofoutliers based on embodiments of the present invention. 
the one or more corresponding image gradient frames; calcu FIGS. 8a-8d show exemplary infrared sensor images for 
lating a test statistic for each ofthe binary image frames; and processing by the automated test procedure of FIG. 2 in 
determining if the infrared sensor is defective by comparing accordance with one or more embodiments of the present 
the test statistic to one or more thresholds. 55 invention. 

In accordance with another embodiment of the present FIGS. 9a-9d show an exemplary infrared sensor image and 
invention, a test system includes a processor and a memory exemplary processing by the automated test procedure of 
storing instructions to perform an automated infrared image FIG. 3 in accordance with one or more embodiments of the 
anomaly detection routine, which includes performing image present invention. 
processing on one or more infrared image frames; providing FIGS. lOa-lOd show an exemplary infrared sensor image 
one or more test statistics based on the image processing; and and exemplary processing by the automated test procedure of 
determining if there are image quality defects in the one or FIG. 3 in accordance with one or more embodiments of the 
more infrared image frames by comparing the corresponding present invention. 
test statistic to one or more dual thresholds, wherein there are FIGS. lla-lld show an exemplary infrared sensor image 
not image quality defects if the test statistic is above a first 65 and exemplary processing by the automated test procedure of 
threshold, there are image quality defects ifthe test statistic is FIG. 3 in accordance with one or more embodiments of the 
below a second threshold, and manual inspection is required present invention. 
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FIGS. 12a-12d show an exemplary infrared sensor image 
and exemplary processing by the automated test procedure of 
FIG. 3 in accordance with one or more embodiments of the 
present invention. 

Embodiments ofthe present invention and their advantages 
are best understood by referring to the detailed description 
that follows. It should be appreciated that like reference 
numerals are used to identify like elements illustrated in one 
or more of the figures. 

DETAILED DESCRIPTION 

FIG. 1 shows a block diagram illustrating a top level auto
mated test procedure (ATP) 100 for an infrared sensor in 
accordance with an embodiment of the present invention. 15 

ATP 100 provides an automated routine for detecting image 
quality defects (e.g., subtle image quality defects) ofan infra
red sensor, with the automated routine incorporated, for 
example, into the infrared sensor (or for example infrared 
camera) manufacturing process to provide a more automated 
and efficient process for high-volume manufacturing of the 
infrared sensors. 

ATP 100 calculates a gradient frame 104 ofan image frame 
102 from an infrared sensor, with image frame 102 acquired 
for example while viewing a uniform blackbody. Image frame 25 

102 may also optionally be processed with various image 
processing algorithms, such as for example with a bad pixel 
replacement algorithm or a high-pass filter algorithm. Gradi
ent frame 104 may also optionally be processed with various 
image processing algorithms (e.g., non-max suppression and/ 
or surround suppression algorithms) to produce the outlier 
frame 106. The spatial randonmess of outliers in an outlier 
frame 106 based on gradient frame 104 is then assessed. 

Image frame 102 would generally be expected to display 
spatial randomness in the distribution of outliers within out 35 

lier frame 106 based on gradient frame 104 if image frame 
102 does not contain qualitative visual defects. For example, 
qualitative visual defects typically manifest themselves as a 
clumped distribution ofoutliers in gradient frame 104. A test 
statistic 108, which for example may be based on a Clark
Evans statistic calculation, is generated to quantifY the spatial 
randonmess ofoutlier distribution in image frame 106 corre
sponding to gradient frame 104. Additional optional calcula
tions and processing may also be performed and/or the Clark
Evans calculation may also optionally be applied to various 45 

regions of interest (ROI) of outlier frame 106. 
For example, test statistic 108 based on the Clark-Evans 

calculation may be normally distributed with a mean of zero 
and a variance ofone. A pattern that displays complete spatial 
randonmess (CSR) would yield a Clark-Evans statistic of 
zero, with uniform distributions producing positive values of 
the Clark-Evans statistic, while increasingly clumped distri
butions producing increasingly negative values. 

As set forth further herein, an automated anomaly detec
tion routine is provided based on a sequence of calculations 55 

performed to provide a quantitative measure ofa given infra
red sensor's performance with respect to image quality and 
compared to one or more performance thresholds. 

In general, automated test procedures may be convention
ally used to ensure that infrared sensors comply with all 
specified requirements, such as for example response unifor
mity, noise-equivalent difference oftemperature (NEdT), and 
operability. However, these conventional test procedures gen
erally would not detect qualitative visual defects (e.g., moun
tain range, blotch, and other types of visually-detectable 65 

defects as discussed further herein) and therefore would pass 
as acceptable an infrared sensor that a manufacturer would 

4 
desire to disqualify as defective (e.g., not usable for imaging 
applications) due to the poor images and image defects pro
vided by the infrared sensor. Consequently, as discussed pre
viously, manual inspection for each infrared sensor is cur
rently performed to prevent infrared sensors with qualitative 
visual defects from reaching the market. 

In contrast in accordance with one or more embodiments of 
the present invention, automated test procedures are provided 
to detect visual defects and determine if the corresponding 
infrared sensor passes or fails the automated inspection or, 
optionally, if further tests or manual inspection is required. 
For example in accordance with an embodiment of the 
present invention, test statistic 108 generally may be a more 
negative number for images with defects than for images 
without defects. Therefore, one or more thresholds may be 
determined (e.g., based on empirical data for one or more 
image types) for differentiating between good and bad (i.e., 
defective) infrared sensors or infrared cameras (if testing at 
the infrared camera level). 

For example, FIG. 2 shows a block diagram illustrating an 
exemplary automated test procedure (ATP) 200 for an infra
red sensor in accordance with an embodiment of the present 
invention. ATP 200 illustrates an automated test system and 
method for detecting defective infrared sensors due, for 
example to subtle image quality defects, and represents an 
exemplary implementation for ATP 100. 

ATP 200 processes one or more image frames 202 (e.g., 
similar to one or more image frames 102 and labeled ATP 
frame data) from an infrared sensor (e.g., an infrared camera) 
with image processing 204 to generate an image quality met
ric 206. Image frames 202 may represent, for example, one or 
more uniformity and/or responsivity image frames. 

Image processing 204 may represent, for example, a com
puter (e.g., a processor-based system or other type of logic 
device) executing image processing software algorithms (or 
other type of instructions), with the computer also optionally 
storing image frames 202 and resulting frames of data from 
the image processing. The computer may also be linked to or 
maintain a database 222 and perform a statistical review 218, 
thresholds 220 determination, and/or perform other opera
tions of ATP 200. Alternatively, image processing 204 may 
represent, for example, a portable machine-readable software 
medium (e.g., optical or magnetic-based media such as a 
compact disc, a hard drive, or a flash memory) containing 
image processing software algorithms for execution by a 
computer or other type ofelectronic device. Image processing 
204 and image quality metric 206 may generate, for example, 
gradient frame 104, outlier frame 106, and test statistic 108 as 
discussed in reference to FIG. 1. 

Based on image quality metric 206 and one or more thresh
olds 220, a determination (208) is made as to whether the 
infrared sensor that generated image frames 202 is defective. 
If the infrared sensor passes the automated inspection, then 
the infrared sensor may be sold, shipped, incorporated into a 
product or system, or otherwise disposed ofas desired by the 
manufacturer (210). Ifthe infrared sensor fails the automated 
inspection, then the infrared sensor is deemed defective 
(212). 

For determination 208, a single threshold may be used to 
determine if an infrared sensor is defective. However, using a 
single cutoff threshold results in the risk ofmaking both type 
I (i.e., false positive or erroneous good classification) and type 
II (i.e., false negative or erroneous defective classification) 
test errors. In general for automated testing, both types of 
errors should be minimized. 

In accordance with an embodiment of the present inven
tion, a single threshold may be used with a specified margin. 
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For example, infrared sensors with corresponding image 
quality metrics 206 above the single threshold plus specified 
margin are deemed not defective, while infrared sensors with 
corresponding image quality metrics 206 below the single 
threshold minus specified margin are deemed defective. For 
infrared sensors with corresponding image quality metrics 
206 that fall within the specified margin around the single 
threshold may be further tested manually by test personnel 
(214). 

Alternatively in accordance with an embodiment of the 
present invention, image-specific dual thresholds may be 
employed, which may minimize type I and type II errors. For 
example, infrared sensors (or infrared cameras) having image 
quality metrics 206 below the first threshold are designated as 
bad (i.e., defective) and no visual inspection is required (212), 15 

while infrared sensors having image quality metrics 206 
above the second threshold are passed (i.e., as good or not 
defective) without requiring a manual visual inspection (214) 
image review. 

However, infrared sensors in the overlap area (determined 
to be between the thresholds) may be further tested manually 
by test personnel (214). With dual thresholds (or single 
threshold plus specified margin), the number ofcameras that 
may need to be inspected manually may be drastically 
reduced as compared to conventional test techniques, with 25 

resulting cost savings and increased manufacturing efficien
cies. Manual inspection (214) by trained personnel may be 
performed to determine whether the infrared sensor, which is 
not clearly defective and not clearly passable, meets the mini
mum desired level ofimage quality (210) or does not meet the 
minimum desired level of image quality (212). Note that the 
dual thresholds example may be viewed as corresponding to 
the single threshold with margin example if one of the dual 
thresholds is equal to the single threshold plus a specified 
margin and the other dual threshold is equal to the single 35 

threshold minus a specified margin. 
One or more thresholds 220 (single, single with specified 

margins, or dual thresholds) may be generated by statistical 
review 218 based on information provided by subjective feed
back 216 from manual inspection 214 and/or based on image 
quality metric 206. One or more image quality metrics 206 
may be stored in database 222 for access by statistical review 
218. For example, thresholds 220 may represent one thresh
old (with or without specified margins) or more than one 
threshold (e.g., dual thresholds) for each image frame 202 or 45 

for two or more image frames 202. 
Referring briefly to FIG. 4, a chart illustrates an exemplary 

histogram oftest statistics for ATP 200 in accordance with an 
embodiment ofthe present invention. The chart shows exem
plary test results for a number of infrared sensors, with ATP 
200 using dual thresholds (220) for determination (208). As 
can be seen, the majority ofinfrared sensors were classified as 
either obviously good or obviously bad (defective), while 
only a small number of infrared sensors where deemed to 
require further image review by manual inspection. Conse- 55 

quently, the implementation of dual thresholds greatly 
reduced the number of infrared sensors requiring manual 
inspection. 

During the manufacturing process of infrared sensors, sta
tistical review 218 may be periodically performed or continu
ally performed to provide the most accurate thresholds based 
on subjective feedback 216 and image quality metrics 206 
stored in database 222. Statistical review 218 may monitor 
and adjust thresholds 220 to minimize the occurrence oftype 
I errors (i.e., false positive or erroneous good classification) 65 

and type II errors (i.e., false negative or erroneous defective 
classification). Furthermore, statistical review 218 may 

adjust thresholds 220 to optimize the level ofmanual inspec
tion against the occurrence oftype I and type II errors from a 
business or cost analysis or based on infrared sensor specifi
cations and requirements. 

FIG. 3 shows a block diagram illustrating an exemplary 
image processing algorithm (IPA) 300 for image processing 
204 to generate image quality metric 206 of FIG. 2 in accor
dance with an embodiment of the present invention. In gen
eral, IPA 300 provides a gradient calculation, with optional 
high-pass filtering and/or bad-pixel replacement, anon-maxi
mum suppression calculation, with optional edge-detection 
enhancements, and a Clark-Evans statistic calculation, 
optionally within a region ofinterest to provide image quality 
metric 206. 

Specifically, IPA 300 may optionally apply a high-pass 
filter 304 (e.g., median X high-pass filter with radius 30 and 2 
smoothing passes) to one or more image frames 302 (e.g., 
image frames 202 generated for response uniformity from a 
blackbody view) to provide a flattened image frame 306. A 
median square filter (e.g., with radius 2 and 1smoothing pass) 
308 may optionally be applied along with a bad pixel map 310 
to replace bad pixels and provide a flattened and replaced 
image frame 312. An image gradient (e.g., with radius 2.75) 
314 is then generated to provide a gradient magnitude and 
direction frame 316 as shown. 

Non-maximum suppression 318, with optional edge detec
tion and surround suppression, is applied to gradient magni
tude and direction frame 316 to provide a binary image frame 
320. A Clark-Evans test 322 (optionally within a region of 
interest) is then applied to binary image frame 320 to generate 
image quality metric 206, which is used as described for ATP 
200. 

As noted above, high-pass filter304 may be applied prior to 
the gradient calculation (e.g., gradient 314 and gradient mag
nitude and direction frame 316). High-pass filter 304 may 
optionally be implemented and represent any type of high-
pass filter technique, including for example a Median X ker
nel, a Gaussian kernel mean smoothing, a Gaussian kernel 
median smoothing, a square kernel mean smoothing, a square 
kernel median smoothing, a Median 'Cross' kernel smooth
ing, a FFT-based high-pass spatial filtering, and a smoothing 
spline subtraction. 

As an example in accordance with an embodiment of the 
present invention, high-pass filter 304 may use a median 
calculation, with an 'X' pattern for the kernel around each 
pixel of the infrared sensor instead of all the pixels in a 
surrounding square as would be understood by one skilled in 
the art. 

For example, FIGS. Sa and Sb show block diagrams illus
trating an exemplary Median 'X' kernel pattern and an exem
plary 'Median X' algorithm (summarized below) accepts 
parameters for kernel radius and number ofsmoothing passes 
over the image (MED_X_KERN_RAD, MED_X_N_ 
PASSES). The kernel radius is the number of pixels in each 
branch of the 'X' pattern, i.e., if the radius is 3, then the 'X' 
pattern (in the image interior) will consist of 13 pixels. The 
number of passes indicates the number of times to apply the 
'Median X' algorithm to the image, with the output from one 
iteration on the image being the input to the algorithm on the 
subsequent pass. Thus, for each pixel in an image, the corre
sponding pixel in the 'smoothed' image is calculated as the 
median of the pixels in an 'X' pattern in the original image 
(including the center pixel). Near the edges of the image, the 
number ofpixels in the kernel may be reduced, as illustrated 
in FIG. Sb. 

The infrared sensor may be any type of infrared radiation 
detecting device, including a complete infrared camera or 
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system. For example, the infrared sensor may be based on a 
microbolometer structure, which is typically fabricated on a 
monolithic silicon substrate to form an array ofmicrobolom
eters, with each microbolometer functioning as a pixel to 
produce a two-dimensional image. The change in resistance 
ofeach microbolometer is translated into a time-multiplexed 
electrical signal by circuitry known as the read out integrated 
circuit (ROIC). The combination of the ROIC and the 
microbolometer array are commonly known as a microbo
lometer focal plane array (FPA). 

As an example, optimization of images from a microbo
lometer-based infrared sensor indicates that a Median 'X' 
kernel radius oBO, with 2 passes, may produce the best filter 
for anomaly detection. The median frame is calculated and 
then subtracted from the original image frame to produce a 
type of high-pass filtered image. Exemplary model param
eters for the high-pass filter 304 are shown below. 

MED_X_KERN_RAD 
Default Value: 30 
Description: median X kernel radius in pixels 
Limits: 1~MED_X_KERN_RAD~-30 (upper limit 

determined by image size) 
MED_X_N_PASSES 
Default Value: 2 
Description: median X filter number of passes 
Limits: 1~MED_X_KERN_PASS~-5 (no real upper 

limit) 
An exemplary median square filter algorithm for median 

square filter 308 may be used to replace any pixels previously 
identified as bad by conventional methods (e.g., bad pixel 
map 310). As an example, a square pattern around the central 
pixel may be used as the kernel. The Median Square filter 
algorithm also accepts parameters for kernel radius and num
ber of passes (MED_SQ_KERN_RAD, MED_SQ_N_ 
PASSES), with exemplary values ofthese parameters being a 
kernel radius of 2 pixels with 1 pass. Exemplary model 
parameters for median square filter 308 are shown below. 

MED_SQ_KERN_RAD 
Default Value: 2 
Description: median square kernel radius in pixels (used 

for bad-pixel replacement) 
Limits: l~MED_SQ_KERN_RAD~-lO (upper limit 

determined by image size) 
MED_SQ_N_PASSES 
Default Value: 1 
Description: median square filter number of passes (used 

for bad-pixel replacement) 
Limits: l~MED_SQ_KERN_PASS~-lO (no real upper 

limit) 
The resulting image (flattened and replaced frame 312), 

which has been filtered and pixel-replaced, is then provided 
for the gradient calculation (image gradient 314). Various 
algorithms exist for calculating the gradient ofan image, such 
as algorithms based on finite-difference calculations between 
adjacent pixels (e.g., Sobel). However, these algorithms are 
sensitive to image noise and discretization errors, and may not 
be optimal. In accordance with an embodiment ofthe present 
invention, a Gaussian smoothing function may be applied to 
the image when the gradient is calculated in order to mitigate 
the effects ofnoise and discretization. The standard method of 
convolution may be used, the image 'partial derivative' along 
each row and down each column may be calculated, and the 
image gradient estimated from the partial derivatives. 

For example, consider the image frame to be a function of 
two spatial variables f(x, y). Then the gradient of f can be 
calculated by convolving f with the gradient of a Gaussian 
smoothing function. The Gaussian smoothing function is 

parameterized with an extinction coefficient (a) which deter
mines the effective width of the kernel. 

1 (x2+l)V f(x, y) = f *V g<T(X' y) where g<T(x, y) = m(T2 exp -~ 

In the current context, it is difficult to apply the convolution 
efficiently in two dimensions, so the gradient may be esti
mated by using 'partial derivatives' along the rows and col
unms. 

( a~) ( a~)Vxf(x,y)= f*----;;;- (x,y) and Vyf(x,y)= f*ay (x,y) 

In the current application, the convolution of f with the 
Gaussian smoothing function g is calculated using the Fourier 
Transform Convolution Theorem as would be understood by 
one skilled in the art. As an example, the one-dimensional 
Gaussian function, and its derivative are as follows. 

Because the convolution is calculated with an FFT, some 
manipulation of the input data for each row and colunm is 
required. A detrending step is applied first. A best-fit line 
(linear least squares) is determined for the (I-d) input row- or 
column-data. The input data is then replaced by its residual 
from the best-fit line. Additionally, some 'padding' is typi
cally required. For example, the number of input data values 
to the FFT routine must be a (positive) integer power of2 and, 
if the number of data values is not an integer power of 2, the 
data may be padded with zeros at each end to fill out the data 
set to the nearest integer power of 2. The convolution is 
calculated with the power-of-2 number ofdata values, and the 
'partial derivative' row or colunm is extracted from the 
middle of the convolution output array. 

The gradient magnitude and direction are estimated from 
the 'partial derivatives' by the following. 

DIR[V f(x, y)] = a tojVyf(x, y))

=\ Vxf(x, y) 


The radius ofthe gradient kernel is one ofthe model param
eters (GRAD_KERN_RAD) and the exemplary default value 
is 2.75 pixels. As an example, only the gradient magnitude 
may be considered or additional edge-detection or feature 
enhancement algorithms may be employed to utilize the gra
dient direction. Exemplary model parameters for image gra
dient 314 and gradient magnitude and direction frame 316 are 
shown below. 
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GRAD_KERN_RAD 
Default Value: 2.75 
Description: gradient smoothing kernel radius in pixels 
Limits: 1.0~GRAD_KERN_RAD~-1O (upper limit 

determined by image size) 
For non-maximum suppression 318 in accordance with an 

embodiment ofthe present invention, an exemplary approach 
for anomaly detection employs a modified Canny edge detec
tion algorithm. In a blackbody view, for example, a defect
free image would have a homogenous gradient function, 
where the gradient vector is pointing directly upward at every 
point in the image. An image with defects, however, would 
not produce a homogenous gradient. At any point where an 
anomaly exists, the gradient at that point in the image would 
diverge from vertical. Thus, large-scale anomalies (e.g., 15 

mountain range or blotch) typically manifest themselves as a 
clumped spatial distribution ofoutliers in the gradient frame. 

Non-maximum suppression 318 may be used to identify 
points in the image where the gradient diverges from vertical, 
and in particular where the divergent points lie in some sort of 
pattern such as an edge and, thus, edge detection routines may 
provide the desired result. For example, non-maximum sup
pression 318 takes the gradient magnitude frame as input and 
produces a binary output frame, where gradient outliers are 
identified and all other pixels are suppressed. 25 

The Canny edge detection algorithm provides a two-level 
approach with (1) non-maximum suppression, where gradi
ent values below a low threshold are suppressed and values 
above a high threshold are maintained, and then (2) hysteresis 
thresholding, where gradient values between the low and high 
thresholds are subjected to additional criteria. For example, 
the additional criteria would maintain gradient values only if 
they represent a local maximum with respect to surrounding 
pixels (which would make them part of an edge). 

In accordance with an embodiment of the present inven- 35 

tion, the threshold limits may be different for every image. 
For example, this permits the analysis of images from differ
ent ATP tests on the same infrared sensor (or infrared camera) 
and also permits the analysis of images from many different 
infrared sensors. The thresholds for example may be deter
mined, as would be understood by one skilled in the art, from 
a histogram of gradient magnitude values. 

As an example, a histogram of gradient magnitude values 
may be generated from the gradient frame. The lower limit of 
the histogram is always zero, since gradient magnitude is 45 

always non-zero. The upper limit of the histogram may be 
determined from the maximum gradient value in the image. 
The number of bins in the histogram is a model parameter 
(N_BINS), and the default value is 50 bins. Exemplary model 
parameters are shown below. 

N_BINS 
Default Value: 50 
Description: number of bins in the gradient histogram 
Limits: 25~N_BINS~-100 (upper limit determined by 

image size) 55 

LO_HIST 
Default Value: 2.75 
Description: lower histogram threshold factor 
Limits: 0~LO_HIST~-3.0 (upper limit determined by 

gradient histogram) 
HCHIST 
Default Value: 3.50 
Description: upper histogram threshold factor 
Limits: LO_HIST<HCHIST~-5.0 (upper limit deter

mined by gradient histogram) 65 

To determine cutoff thresholds, a continuous model for 
example may be fitted to the discrete histogram data, with 

10 
threshold limits determined from the continuous curve. For 
example, referring briefly to FIGS. 7a-7d, exemplary histo
grams of gradient magnitude values, along with the corre
sponding continuous models, are illustrated for various 
exemplary types of image defects or image test responses 
(blotch, mountain range, uniformity, and responsivity, 
respectively). A histogram of image gradient magnitude val
ues is useful for non-maximum suppression with hysteresis 
thresholding. As illustrated in FIGS. 7a-7d, a continuous 
curve is fitted to the histogram data, which may then be used 
to determine thresholds. 

For example, the continuous model for a gradient magni
tude histogram is determined by non-linear least squares 
curve fit with the following function. 

f(x)~A'x'exp(-B'x') 

Values for the coefficients A and B may be determined 
numerically, as would be understood by one skilled in the art. 
The continuous curve may then be used to establish threshold 
values by using the curve peak and point of inflection as 
reference points (e.g., as in a standard normal curve). The 
curve peak and inflection point may be determined from the 
following. 

peak: x = 	_1_ infection point: x = _3_ 

{'iii {6ii 


The distance from the peak to the inflection point may be 
used in the same sense as in a standard normal distribution 
(i.e., the distance from the peak to the inflection point is 
exactly one standard deviation). For example, the low and 
high cutoff thresholds may be calculated from the continuous 
curve peak and inflection point as follows, where 
O~LO_HIST<HCHIST are factors that determine the dis
tances away from the peak where each threshold lies. 

1 ({2
2{6-{6)

low: x = {'iii + LO_HIST * 

I
high: x = {'iii + HLHIST* 

({22rs-{6) 

Values of the gradient magnitude below the low cutoff are 
immediately suppressed, while values above the high cutoff 
are always retained. Values between the two cutoffs, for 
example, may only be maintained if they represent a local 
maximum with respect to the surrounding pixels. For 
example, a default value for LO_HIST and HCHIST may 
each be 3.50. 

The Clark-Evans statistic, from Clark-Evan test 322 (FIG. 
3), provides a numerical measure ofthe spatial randomness of 
a distribution of points within a specified domain. This sta
tistic is normally distributed with mean zero and variance one 
(standard normal distribution). A pattern that displays com
plete spatial randonmess (CSR) would yield a Clark-Evans 
statistic of zero. 

For example, FIGS. 6a and 6b generally depict spatial 
patterns that do not display CSR. Distributions that are more 
uniform than random (e.g., as illustrated in FIG. 6a) would 
tend to produce positive values of the Clark-Evans statistic, 
while more clumped distributions (e.g., as illustrated in FIG. 
6b) would tend to produce increasingly negative values. 

As an example, defect-free images should be expected to 
produce random or uniform patterns from the spatial distri
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bution of gradient magnitude outliers. Images with defects 
should produce more clustered or clumped patterns. Conse
quently, the Clark-Evans statistic will effectively separate 
images with defects from images without defects, with any 
overlap for example resolved with manual inspection. 

Clark-Evans test 322 may be based on nearest-neighbor 
distances. For each point in a binary image pattern, there is a 
unique straight-line distance that denotes the minimum dis
tance to the closest point (or points) in the pattern. For a set of 
points within the image frame domain, let the complete set of 
nearest-neighbor distances be denoted as follows. 

15 

The average point density within the image frame domain 
is just the total number of points divided by the area of the 
frame as in the following. 

n 

A = -nR-=-o-w-s-'n-'C=-o-'-/s 


The point density becomes a reference point for determin
25 

ing what the average nearest neighbor distance should be if 
the spatial distribution of points are randomly dispersed 
within the image. The calculated 'average' ofnearest-neigh
bor distances in the binary image should be comparable to the 
expected value for a given point density, as set forth for the 
Clark-Evans test for spatial randonmess. However, it may not 
be sufficient to just calculate the average nearest neighbor 
distance from the complete set of distances, because the dis
tance values in the complete set are not independent as the two 
points that are close together will likely have the same near- 35 

est-neighbor distance. Thus, in order to make a valid com
parison between the expected value and the measured value, 
the central limit theorem may be used. Random samples of 
size m, where m<n, are taken from the set D of nearest 
neighbor distances, and the sample set is averaged as shown 
below. 

45 

This produces a random variable am that is normally dis
tributed according to the central limit theorem. A series of 
random samples are made, as illustrated in FIG. 6e, and the 
mean ofthe sample averages is used for comparison with the 
expected value. Thus, as shown for FIG. 6e, the Clark-Evans 
statistic is based on a characterization of nearest-neighbor 

55 
distances, where random samples from the complete set of 
nearest-neighbor distances are made, with the distribution of 
sample means being normal according to the central limit 
theorem. 

The following conversion below creates a standard normal 
variate from the mean ofsample averages, which is the Clark
Evans statistic. The number of random sub-samples is a 
model parameter (N_RAND_ITER), with for example a cur
rent default value of 50 iterations. For each of the sampling 
iterations, for example, ten percent ofthe points in the binary 65 

image frame are sampled. Thus for this example, the value of 
m is ten percent of the number of (non-suppressed) points in 

the binary image. In other words, ten percent ofthe points are 
sampled, with this sampling repeated N_RAND _ITER times. 

_ 1 
d ---

Zm = m 2{}: -N(O, 1) 

~ 

\j~ 


Because the smoothing function is susceptible to edge 
effects, an additional parameter may be employed (N_BOR
D ER) to allow a border frame around the region ofinterest for 
Clark-Evans calculations. This parameter is the width of the 
border, in number ofpixels, with for example a current default 
value of30. Points in the border area of the binary image are 
ignored for purposes ofcalculating the Clark-Evans statistic. 

The final model parameter (DIST_TABLE_SIZE) is the 
number of elements in the distance table used for nearest
neighbor calculations. The distance table is used to speed 
calculation time of nearest neighbor and may be used as a 
spiral-outward search for the nearest neighbor, storing the 
distances ofpixels in every location in the outward path. This 
distance table may slow compilation time, but may provide 
run-time efficiency. Exemplary model parameters for Clark-
Evans Test 322 are shown below. 

N_RAND_ITER 
Default Value: 50 
Description: number ofrandom iterations for Clark-Evans 
Limits: 25~N_RAND_ITER~-250 (no real upper limit) 
N_BORDER 
Default Value: 30 
Description: number ofpixels to ignore around the border 

in Clark-Evans 
Limits: 0~N_BORDER~-30 (upper limit determined by 

image size) 
DIST_TABLE_SIZE 
Default Value: 5525 
Description: the number of elements in the distance table 

for nearest-neighbor (Clark-Evans) 
Limits: this is determined by pre-set size of distance table, 

which may be hard-coded 
In accordance with one or more embodiments of the 

present invention, automated test procedures as set forth 
herein were applied to various exemplary infrared sensor 
images with and without defects (e.g., defects that may not be 
detected by conventional automated procedures that provide 
infrared sensor test metrics such as uniformity). For example, 
FIGS. 8a-8d show exemplary infrared sensor images for pro
cessing by ATP 200 ofFIG. 2 in accordance with one or more 
embodiments of the present invention. 

Specifically, FIG. 8a shows a responsivity map from infra
red sensor-level testing, which illustrates a defect caused by 
debris on the infrared sensor window (this type ofdefect also 
referred to herein as a blotch). FIG. 8b shows an offset uni
formity map from an infrared camera-level ATP illustrating a 
'mountain range' defect. This defect is difficult to detect with 
uniformity tests, because the signal difference across the 
demarcation defect is only a few counts. This type of defect 
may arise from thermal non-uniformities in the chamber dur
ing the calibration process. 

FIG. 8e shows a responsivity uniformity map'from infra
red sensor-level testing illustrating no apparent defects. The 
cluster in the upper-left portion of the image is smaller than 
what may generally be considered an image quality defect for 
the infrared sensor. FIG. 8d shows a high-scene corrected 
uniformity map from infrared camera-level ATP illustrating 
no apparent visual defects. Generally defect-free images, 
such as shown in FIGS. 8e and 8dwere used as controls to test 
ATP 200. 
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FIGS. 9a-9d show exemplary ATP processing (e.g., ATP 
200) of the infrared sensor image of FIG. Sa in accordance 
with one or more embodiments of the present invention. For 
example, FIG. 9a shows the raw responsivity map, which 
typically would pass quantitative tests for uniformity and 
would require manual inspection to detect the infrared sensor 
defect. FIG. 9b shows a flattened image frame produced by 
applying a high-pass filter to the raw responsivity map, with 
the image produced using a median-X kernel low-pass filter 
with a radius oBO pixels and 2 passes. The low-pass frame is 
subtracted from the original image to produce a high-pass 
frame. A bad pixel map was also used, with bad pixels 
replaced with median-square kernel values having a radius of 
4 pixels and 1 pass. 

15 
FIG. ge shows the gradient magnitude calculated from the 

flattened image frame, with outliers in this frame identified 
using a modified Canny edge detection algorithm to produce 
a binary frame. FIG. 9d shows the final binary image after 
non-maximum suppression with hysteresis thresholding. The 
value ofthe Clark-Evans statistic for this binary image may be 
-9.0 (border frame of30 pixels). 

FIGS. 10a-lOd show exemplary ATP processing (e.g., ATP 
200) of the infrared sensor image of FIG. Sb in accordance 
with one or more embodiments of the present invention. For 
example, FIG. lOa shows a raw offset nniformity map with 25 

the mountain range defect, which has obvious quality defects 
but typically would pass conventional quantitative tests for 
uniformity. FIG. lOb shows a flattened image frame produced 
by applying a high-pass filter to the raw offset uniformity 
map, with the image produced using a median-X kernel low-
pass filter with a radius of 30 pixels and 2 passes. The low
pass frame is subtracted from the original image to produce a 
high-pass frame. A bad pixel map was also used, with bad 
pixels replaced with median-square kernel values having a 
radius of 4 pixels and 1 pass. 35 

FI G. 1 Oe shows the gradient magnitude calculated from the 
flattened image frame, with outliers in this frame identified 
using a modified Canny edge detection algorithm to produce 
a binary frame. FIG. 10d shows the final binary image after 
non-maximum suppression with hysteresis thresholding. The 
value ofthe Clark-Evans statistic for this binary image may be 
-5.5 (border frame of30 pixels). 

FIGS. 11a-11d show exemplary ATP processing (e.g., ATP 
200) of the infrared sensor image of FIG. Se in accordance 
with one or more embodiments of the present invention. For 
example, FIG. 11a shows an offset uniformity map with no 45 

apparent quality defects (e.g., generally the clusters in the 
image are too small to be detected). FIG. 11b shows a flat
tened image frame produced by applying a high-pass filter to 
the responsivity map of FIG. 11a, with the image produced 
using a median-X kernel low-pass filter with a radius of 30 
pixels and 2 passes. The low -pass frame is subtracted from the 
original image to produce a high-pass frame. A bad pixel map 
was also used, with bad pixels replaced with median-square 
kernel values having a radius of 4 pixels and 1 pass. 

FIG.11e shows the gradient magnitude calculated from the 55 

flattened image frame, with outliers in this frame identified 
using a modified Canny edge detection algorithm to produce 
a binary frame. FIG. 11d shows the final binary image after 
non-maximum suppression with hysteresis thresholding. The 
value ofthe Clark-Evans statistic for this binary image may be 
-2.0 (border frame oBO pixels) and may be subject to manual 
inspection (e. g., per the exemplary chart in FIG. 4). 

FIGS. l2a-12d show exemplary ATP processing (e.g., ATP 
200) of the infrared sensor image of FIG. Sd in accordance 
with one or more embodiments of the present invention. For 
example, FIG. l2a shows a raw offset nniformity map (FIG. 65 

Sd) with no apparent quality defects and may be used as a 
control to determine whether the algorithms and image qual

14 
ity metric flag this image as suspect or defective. FIG. l2b 
shows a flattened image frame produced by applying a high
pass filter to the raw offset uniformity map, with the image 
produced using a median-X kernel low-pass filter with a 
radius of30 pixels and 2 passes. The low-pass frame is sub
tracted from the original image to produce a high-pass frame. 
A bad pixel map was also used, with bad pixels replaced with 
median-square kernel values having a radius of4 pixels and 1 
pass. 

FIG.12e shows the gradient magnitude calculated from the 
flattened image frame, with outliers in this frame identified 
using a modified Canny edge detection algorithm to produce 
a binary frame. FIG. l2d shows the final binary image after 
non-maximum suppression with hysteresis thresholding. The 
value ofthe Clark-Evans statistic for this binary image may be 
0.0 (border frame of30 pixels) and would pass as obviously 
good (e.g., per the exemplary chart in FIG. 4). 

Systems and methods are disclosed herein to provide auto
mated testing of infrared sensors to detect image quality 
defects. For example, in accordance with an embodiment of 
the present invention, image processing algorithms are dis
closed to generate an image quality metric (e.g., a Clark
Evans statistic). The image quality metric may be used, in 
conjunction with pre-determined thresholds, to detect the 
presence of image quality defects (or lack thereof). 

As an example in accordance with an embodiment of the 
present invention, the thresholds for the image quality metric 
may be established from production data to minimize type I 
(False Positive) and type II (False Negative) errors. The pro
duction data may be coupled with subjective feedback regard
ing image quality to establish or adjust the thresholds (e.g., 
production threshold determination with iterative improve
ment scheme based on production statistics and subjective 
image quality feedback). 

For example in accordance with an embodiment of the 
present invention, dual thresholds may be employed to clearly 
indicate based on the image quality metric whether the infra
red sensor for the corresponding image is either clearly defec
tive or clearly defect free. If clearly defect free, the infrared 
camera can be shipped without manual inspection. Ifclearly 
defective, the infrared camera can be prevented from being 
shipped (e.g., sold) and no manual inspection is required. 

As some overlap ofthe image quality metric between good 
and bad images is expected, the image processing-algorithms 
may be used to reduce the number ofinfrared cameras that are 
subject to manual inspection. If the image quality metric 
value falls between the thresholds, then the infrared camera 
may be manually inspected. 

Embodiments described above illustrate but do not limit 
the invention. It should also be understood that numerous 
modifications and variations are possible in accordance with 
the principles ofthe present invention. Accordingly, the scope 
of the invention is defined only by the following claims. 

What is claimed is: 
1. A method of testing an infrared sensor, the method 

comprising: 
receiving one or more image frames from the infrared 

sensor; 
generating one or more image gradient frames based on the 

one or more corresponding image frames; 
generating one or more binary image frames of outliers 

based on the one or more corresponding image gradient 
frames; 

calculating a test statistic for each 	of the binary image 
frames, wherein the calculating the test statistic com
prises calculating a Clark-Evans statistic based on a 
characterization ofnearest-neighbor distances, wherein 
random samples from a complete set of nearest-neigh
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bor distances are made and with a distribution of a 
sample being nonnal according to a central limit theo
rem; and 

detennining if the infrared sensor is defective by compar
ing the test statistic to one or more thresholds. 

2. The method of claim 1, wherein the one or more thresh
olds comprise dual thresholds, and wherein the infrared sen
sor passes based on the test statistic relative to a first thresh
old, fails based on the test statistic relative to a second 
threshold, and requires manual inspection ifbetween the first 
and second thresholds. 
. 3. The method of claim 2, wherein for each of the binary 
Image frames there are corresponding dual thresholds, and 
wherein the image frames are based on responsivity or uni
formity data. 

4. The method of claim 1, wherein the generating one or 15 

more image gradient frames further comprises: 
applying a Gaussian smoothing function; 
applying a high-pass filter to the image frames; and 
applying a median square filter to replace bad pixel data. 
5. The method of claim 4, wherein the high-pass filter 

comprises a median-x high-pass filter. 
6. The method of claim 1, wherein the generating one or 

more binary image frames of outliers further comprises 
applying a Canny edge detection algorithm having non-maxi
mum suppression and hysteresis thresholding, wherein hys- 25 

teresis thresholds are detennined from one or more histo
grams of gradient magnitude values. 

7. The method ofclaim 1, wherein the testing is automated 
and determines whether the infrared sensor has image quality 
defects. 

8. The method of claim 1, wherein the one or more thresh
olds are based on an iterative statistical review based on a 
database of the test statistics and manual inspection subjec
tive feedback. 

9. A test system comprising: 
a processor; 35 

a memory storing instructions to perfonn an automated 
infrared image anomaly detection routine comprising: 
perfonning image processing on one or more infrared 

image frames; 
storing the one or more infrared image frames; 
providing one or more test statistics based on the image 

processing, wherein the providing comprises: 
generating one or more image gradient frames based 

on the one or more corresponding infrared image 
frames; 

generating one or more binary image frames ofoutli
45 

ers based on the one or more corresponding image 
gradient frames; and 

calculating the one or more test statistics for the one or 
more binary image frames, wherein the calculating 
the test statistic comprises calculating a Clark-
Evans statistic based on a characterization ofnear
est-neighbor distances, wherein random samples 
from a complete set of nearest-neighbor distances 
are made and with a distribution of a sample being 
normal according to a central limit theorem; 55 

determining ifthere are image quality defects in the one 
or more infrared image frames by comparing the cor
responding test statistic to one or more dual thresh
olds, wherein there are not image quality defects ifthe 
test statistic is above a first threshold, there are image 
quality defects if the test statistic is below a second 
threshold, and manual inspection is required ifthe test 
statistic is between the first and second thresholds for 
the corresponding infrared image frame. 
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10. The test system of claim 9, wherein the generating one 

or more image gradient frames further comprises: 
applying a Gaussian smoothing function; 
applying a high-pass filter to the image frames; and 
applying a median square filter to replace bad pixel data. 
11. The test system ofclaim 10, wherein the generating one 

or more binary image frames of outliers further comprises 
applying a Carmy edge detection algorithm having non-maxi
mum suppression and hysteresis thresholding, wherein hys
teresis thresholds are determined from one or more histo
grams of gradient magnitude values. 

12. The test system of claim 9, wherein the automated 
infrared image anomaly detection routine further comprises 
perfonning a statistical review based on a database ofthe test 
statistics and manual inspection subjective feedback of the 
infrared image frames to determine the one or more dual 
thresholds. 

13. A non-transitory computer-readable medium contain
ing non-transitory information to provide to a device with the 
capability to perfonn, based on the information, a method 
comprising: 

storing one or more infrared image frames; 
generating one or more image gradient frames based on the 

one or more corresponding infrared image frames; 
generating one or more binary image frames of outliers 

based on the one or more corresponding image gradient 
frames; 

calculating a test statistic for at least one of the binary 
image frames, wherein the calculating the test statistic 
comprises calculating a Clark-Evans statistic based on a 
characterization ofnearest-neighbor distances, wherein 
random samples from a complete set of nearest-neigh
bor distances are made and with a distribution of a 
sample being nonnal according to a central limit theo
rem; and 

detennining if there are image quality defects for the at 
least one binary image frame by comparing the test 
statistic to one or more thresholds. 

14. The computer-readable medium of claim 13, wherein 
the one or more thresholds comprise dual thresholds, and 
wherein there are not image quality defects if the test statistic 
is above a first threshold, there are image quality defects ifthe 
t~st s!atistic .is be.low a second threshold, and manual inspec
tIOn IS reqUIred If the test statistic is between the first and 
second thresholds. 

15. The computer-readable medium of claim 14, wherein 
the generating one or more image gradient frames further 
comprises: 

applying a Gaussian smoothing function; 

applying a high-pass filter to the image frames; and 

applying a median square filter to replace bad pixel data. 

16. The computer-readable medium of claim 14, wherein 

the generating one or more binary image frames of outliers 
further comprises applying a Carmy edge detection algorithm 
having non-maximum suppression and hysteresis threshold
ing, wherein hysteresis thresholds are determined from one or 
more histograms of gradient magnitude values. 

17. The computer-readable medium of claim 14, wherein 
the method comprises an automated infrared image anomaly 
detection routine which further comprises perfonning a sta
tistical review based on a database of the test statistics and 
manual inspection subjective feedback of the infrared image 
frames to detennine the one or more thresholds. 

* * * * * 
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