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Abstract: We demonstrated an in-line micro fiber-optic Fabry-Perot interferometer with an air cavity 
which was created by multi-step fusion splicing a muti-mode photonic crystal fiber (MPCF) to a 
standard single mode fiber (SMF). The fringe visibility of the interference pattern was up to 20 dB by 
reshaping the air cavity. Experimental results showed that such a device could be used as a highly 
sensitive strain sensor with the sensitivity of 4.5 pm/. Moreover, it offered some other outstanding 
advantages, such as the extremely compact structure, easy fabrication, low cost, and high accuracy. 
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1. Introduction 

All fiber in-line Fabry-Perot interferometers 

(FPIs) have advantages of the compact size, high 

resolution, excellent stability, and insensitivity to 

temperatures [1, 2]. So researchers have been 

developing different methods to fabricate the air 

cavity based on different techniques, for example 

wet chemical etching [3, 4], laser micromachining  

[5, 6], and splicing different types of optical fibers 

with the commercialized fusion splicer [7–12]. Most 

of the above-mentioned FPIs can be good choices 

for strain sensing since a minute change in the cavity 

size leads to a detectable shift in the interference 

pattern [4–6, 8, 9, 11, 12]. However, some of these 

fabrication methods are difficult to implement since 

they require a complex manufacturing process or 

expensive equipment. Hence, for its simplicity, the 

fabrication method based on splicing two different 

optical fibers is an attractive option. This method 

has some inherent challenges, for example it is 

necessary to create a fusion arc splicing program 

and design an overall process to guarantee perfect 

reflective mirrors. The highest fringe visibility of the 

FPI is about 38 dB, which is formed by pressuring a 

photonic crystal fiber with a conventional single 

mode fiber during fusion splicing [12]. So the 

complicated air inflation equipment is essential in 

the fabrication process. 

We demonstrated a high-quality micro FPI 

which was fabricated by multi-step fusion splicing a 

multi-mode photonic crystal fiber (MPCF) to a 

standard single mode fiber (SMF). The micro-FPIs 

were entirely embedded in the fiber and exhibited 

excellent fringe visibility of up to 20 dB due to the 

mirror-finish quality of two cavity surfaces, which 
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was superior to that of most FPIs based on the 

fusion splicing method [7–11]. The strain sensitivity 

of the device can be enhanced to 4.5 pm/ by 

reshaping the air cavity created in the fiber. So this 

kind of FPI has the features of the extremely 

compact structure, easy fabrication, low cost, and 

high accuracy. 

2. Sensor fabrication and operation 
principle 

The cross section of the utilized MPCF is shown 
in Fig. 1. It had the core and cladding diameters of 

about 5 m and 114 m, respectively. The diameter 
of the cladding holes in the MPCF was about 11 m. 
A conventional arc fusion splicing machine 

(FurukawaS176) was used. Note that the manual 
operation mode of the fusion splicer was used to 
fabricate the in-line air cavity sample. 

 

 
Fig. 1 Cross section of the MPCF. 

We developed an optimized multi-step 
procedure by attempting several experiments with a 

wide range of splice parameters. The resulting 
parameters were as follows: arc power of 170 units, 
pre-fuse time of 100 ms, arc duration of 700 ms, and 

z-push distance of 5 μm. The cleaved ends of the 
SMF and MPCF were placed in the left and right 
fiber holders, respectively. Under these splicing 

conditions, the temperature achieved during the arc 
discharge would be high enough to exceed the 
MPCF softening point, and therefore the surface 

tension would overcome the viscosity. This not only 
formed a joint, but also collapsed the fine voids of 
the MPCF [13]. As a result, a part of air originally 

inside the voids could be trapped, and the rapidly 
expanding gases could induce a micro-bubble at the 
SMF-MPCF interface, as shown in Fig. 2(a). It could 

be seen that there was a quasi-spherical air cavity 
embedded in the fiber, whose interference pattern 

was observed by use of a 3-dB coupler, a broadband 
light source, and an optical spectrum analyzer (OSA, 
Si720, Micron Optics, USA), as shown in Fig. 2(b). 
The device exhibited a true and stable sinusoidal 

interference fringe with the visibility of about 7 dB, 
which has been used to measure strain at high 
temperatures [9]. However, the optical performance 

and the sensitivity of the device strongly depended 
on the shape of the air cavity embedded in the fiber 
[12], so another two arc discharges were applied to 

change the shape of the air cavity as the fiber was 
not moved in the holders. Figure 2(c) illustrates the 
photo of the device after the second arc discharge. It 

could be seen that the shape of the bubble was still a 
quasi-spherical but the polar and equator diameters 
simultaneously increased due to the thermal 

expansion of air trapped in the cavity. The fringe 
visibility of the interference pattern increased to 
about 10 dB, as shown in Fig. 2(d). We continuously 

applied the third arc discharge to the fiber, and the 
spherical air bubble was reshaped into an elliptical 
one, as shown in Fig. 2(e). The polar diameter of the 

air cavity was greater than those of SMF and MPCF, 
respectively. Moreover, the MPCF has been tapered 
due to the complete collapse of air holes in the 

cladding as enough arc discharge was applied to the 
fiber. The corresponding interference pattern of the 
device is shown in Fig. 2(f). We could see that the 

fringe visibility was up to 20 dB, which was about 
three times of that of the FPI in [9]. The free spectral 
range (FSR) of the interference pattern is given by 

FSR=λ2/2nL, where λ is the wavelength of light, n is 
the refractive index of the medium, i.e. air, trapped 
inside the bubble, L is the cavity length of the air 

bubble created in the spliced joint. Using the 
measured value of FSR=12.65 nm and =1545 nm, 
we calculated the cavity length of the air cavity as 

94 m, which agreed with the measured result of 
about 91 m. In addition, we dipped the taper with 
different NaCl solutions and found that the reflected 

spectrum remained unchanged. So the taper had no 
effect on the interference pattern. As we 
continuously applied the forth arc discharge to the 
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device, both of the air cavity and MPCF would 
crack. Therefore, in this case, three arc discharges 
were the best choice, and over 80% of the samples 
were formed if the fibers were properly cleaved. 
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Fig. 2 Fabricated FPIs and their corresponding interference 
spectra under different arc discharges: (a) microscope image of 
the created air bubble after the first arc discharge, (b) the 
reflected spectrum of the FPI after the first arc discharge,     
(c) microscope image of the created air bubble after the second 
arc discharge, (d) the reflected spectrum of the FPI after the 
second arc discharge, (e) microscope image of the created air 
bubble after the third arc discharge, and (f) the reflected 
spectrum of the FPI after the third arc discharge. 

3. Experimental results and discussion 

To investigate the responses of the air-cavity- 

based FPI samples to the applied tensile strain, a 

pair of translation stages with the resolution of    

10 μm was used. The FPI with a cavity length of 

about 91 μm, as shown in Fig. 2(e), was fixed 

between two translation stages separated by a 

distance of 1 m. The reflected optical spectra 

obtained were functions of the imposed tensile strain 

ranging from 0  to 1570 , as shown in Fig. 3. We 

can see that the wavelength shows a red shift with 

an increment of the strain, which results from the 

fact that a longitudinal strain applied to the FPI 

optical cavity will change the cavity physical length 

and therefore change the FPI cavity reflection 

transfer function. As the phase shift is less than 2, 

the wavelength shift of the interference spectrum as 

a function of the tensile strain applied to the 

air-cavity based FPI can be expressed by m=z. 

This indicates that the applied strain is directly 

proportional to the spectral shift of the interference 

fringe. So the characteristics spectral positions such 

as the interference peak, the central point of the 

interferogam or the interference valley can be 

monitored to measure the external strain. In our 

experiment, the wavelength shift of the interference 

fringe around 1537.5 nm was measured while the 

tensile strain increased from 0  to 1570 , which 

is shown in Fig. 4. It was found that the wavelength 

shift of the FPI had a linear relationship with the 

applied strain without hysteresis. The strain 

sensitivity of 4.5 pm/ could be obtained by linear 

fitting the curve, which was about twice of that FPI 

in [9]. This is mainly due to the fact that the micro 

air cavity exhibits an ellipsoid shape, and its strain 

sensitivity is dependent on the cavity volume [12]. 

Since the sensors cross thermo response is relevant 

for strain measurement applications, the thermal 

sensitivity for such a sensor was investigated with a 

high-temperature oven (Lenton 1200) for a 

temperature range between 0 and 500 ℃ with a step 
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of 50℃ . Experimental results showed that the 

interference spectrum hardly shifted in the whole 

process, that is to say, the interference fringe was 

insensitive to temperature, which was the same as 

that in [9]. Therefore, such a sensor can also be used 

to accurately measure the strain at high temperatures, 

and what’s the most important is that the 

temperature compensation may not be required for 

most of strain sensing applications. 
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Fig. 3 Reflected spectra of the air-cavity-based FPI sample 
as the tensile strain increases from 0 με to 1570 με. 
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Fig. 4 Wavelength shift of the interference spectrum around 
1537 nm as a function of the tensile strain applied to the 
air-cavity based FPI sample. 

4. Conclusions 

An in-line micro air-cavity based FPI was 

demonstrated which was fabricated by multi-step 

fusion splicing an MPCF to a standard SMF. The 

air-based FPI was embedded at the splicing point, 

and it had high-reflectance internal mirrors. So such 

an FPI exhibited a true and stable sinusoidal 

interference fringe with relatively high fringe 

visibility of up to 20 dB. Experimental results 

showed that such a device could be used as a highly 

sensitive strain sensor with the sensitivity of 4.5 

pm/. Moreover, the temperature compensation 

may not be required for most of strain sensing 

applications due to the low thermal coefficient of air 

trapped in the cavity. Therefore, this kind of FPI will 

find wide applications due to its advantages of the 

extremely compact structure, easy fabrication, 

insensitivity to temperatures, low cost, and high 

accuracy. 
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