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ABSTRACT

The fatty alk(a/e)ne biosynthesis pathway found in
cyanobacteria gained tremendous attention in recent
years as a promising alternative approach for biofuel
production. Cyanobacterial aldehyde-deformylating
oxygenase (cADO), which catalyzes the conversion of
Cn fatty aldehyde to its corresponding Cn-1 alk(a/e)ne,
is a key enzyme in that pathway. Due to its low
activity, alk(a/e)ne production by cADO is an inefficient
process. Previous biochemical and structural investi-
gations of cADO have provided some information on
its catalytic reaction. However, the details of its cata-
lytic processes remain unclear. Here we report five
crystal structures of cADO from the Synechococcus
elongates strain PCC7942 in both its iron-free and
iron-bound forms, representing different states during
its catalytic process. Structural comparisons and
functional enzyme assays indicate that Glu144, one of
the iron-coordinating residues, plays a vital role in the
catalytic reaction of cADO. Moreover, the helix where
Glu144 resides exhibits two distinct conformations
that correlates with the different binding states of the
di-iron center in cADO structures. Therefore, our
results provide a structural explanation for the highly
labile feature of cADO di-iron center, which we pro-
posed to be related to its low enzymatic activity. On
the basis of our structural and biochemical data, a
possible catalytic process of cADO was proposed,
which could aid the design of cADO with improved
activity.
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center, crystal structure, catalytic mechanism, alk(a/e)ne
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INTRODUCTION

Fatty alk(a/e)nes are major components of fuel oil and one of
the ideal alternatives for fossil-based biofuels. Recently,
Schirmer et al. identified two genes from cyanobacteria that
encode an acyl-ACP reductase (AAR) and an aldehyde-
deformylating oxygenase (ADO), both of which are respon-
sible for alkane production in cyanobacteria (Li et al., 2012;
Schirmer et al., 2010). This pathway has drawn considerable
attention, since this route provides a promising approach for
photosynthetic production of alka(e)ne biofuels (Krebs et al.,
2011; Wang et al., 2013). In this two-step pathway, AAR
reduces fatty acyl-ACPs or -CoAs into their corresponding
aldehydes, and subsequently the Cn fatty aldehydes are
converted into their corresponding Cn-1 alk(a/e)nes by ADO
(Schirmer et al., 2010).

Cyanobacterial aldehyde-deformylating oxygenase
(cADO) belongs to the superfamily of ferritin-like di-iron
proteins (Krebs et al., 2011) and contains a di-iron center
(Das et al., 2011). However, metal analysis indicated that
less than one fifth of the purified protein in a typical prepa-
ration contains iron (Das et al., 2011), assuming two iron
atoms per enzyme molecule, the results indicated that the
iron atoms may be loosely bound to cADO. The in vitro
reaction catalyzed by cADO requires both the dioxygen as
co-substrate and the presence of a reducing system, which

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

Protein Cell 2015, 6(1):55–67
DOI 10.1007/s13238-014-0108-2 Protein&Cell

P
ro
te
in

&
C
e
ll



provides four electrons per turnover (Warui et al., 2011) and
can either be biological (ferredoxin, ferredoxin reductase,
and NADPH; Fd/FR/N) (Schirmer et al., 2010; Warui et al.,
2011) or chemical (phenazine methosulfate and NADH; P/N)
(Das et al., 2011). It was proposed that the incorporation of
O2 into the reduced cofactor generates an iron-peroxo spe-
cies that attacks the substrate aldehyde to form a hemiacetal
and followed by the scission of its C1–C2 bond (Li et al.,
2012; Li et al., 2011). The ensuing product of the reaction is a
Cn-1 alkane (Li et al., 2011), and the C1-derived co-product
was demonstrated to be formate (Warui et al., 2011). Iso-
tope-tracer assay revealed that the oxygen atom in the
product formate originates from the co-substrate O2 (Li et al.,
2012). Recent reports suggested that cADO also catalyzes
the incorporation of an oxygen atom from O2 into its alkane
product for C9–10 aldehyde substrates, which yields both Cn-1

alcohol and aldehyde products, implying a function for cADO
in oxygenation, in addition to deformylation (Aukema et al.,
2013; Das et al., 2014). An intriguing feature of cADO is its
low in vitro activity (Das et al., 2011; Eser et al., 2012; Li
et al., 2011), with only 3–5 turnovers (Andre et al., 2013;
Warui et al., 2011). Andre et al. reported that cADO is
reversibly inhibited by the side product H2O2, and its inhibi-
tion can be relieved by adding catalase in enzyme assays
(Andre et al., 2013). Subsequently, it was demonstrated that
the output of H2O2 can be reduced by over 30% in the
presence of a cognate biological reducing system Fd/FR/N
(Zhang et al., 2013). In addition, when cADO was fused with
cognate FR and Fd in a specific order, it displayed a 3-fold
increase in activity relative to native cADO (Wang et al.,
2014).

Crystal structures of ADO from cyanobacterium Prochlo-
rococcus marinus (Pm) MIT9313 (wild-type and two single-
point mutants) were reported (Khara et al., 2013). Structures
showed that PmADO adopted an α-helical folding, with two
iron atoms coordinated by histidines and carboxylate ligands
(Khara et al., 2013; Schirmer et al., 2010). A long-chain
ligand, which was subsequently identified as a mixture of
fatty acid molecules (Khara et al., 2013), was observed in the
vicinity of the di-iron center in these structures (Khara et al.,
2013). This pocket accommodating fatty acid molecules
were suggested to be the substrate channel. However, due
to the structural difference between fatty acid and the real
substrate fatty aldehyde, the interaction between ADO and
the substrate remains elusive. In addition, their structural
resemblance indicated that they may represent one similar
state of the reaction process, thus structures of cADO at
different dynamic stages during its reaction cycle will be of
great help for understanding its detailed catalytic process.

To gain insights into the reaction catalyzed by cADO, we
determined structures of wild type ADO from Synechococ-
cus elongates PCC7942 (Se) with different treatment (WT0,
no treatment; WT1, co-crystallized with iron; WT-HP, soaked
in H2O2), and solved the structures of two SeADO mutants
(Y122F and F86YF87Y). Comparison of all our structures
revealed that their overall conformations are closely

resembling each other, while the conformation of their active
sites are largely different. Analysis of all these structures
indicated that they may represent different states of the
enzyme in the reaction cycle. Except WT-HP structure,
which is similar to that of the PmADO, the other four struc-
tures exhibit different conformations in their active sites that
were not described previously.

RESULTS AND DISCUSSION

Overall structure of SeADO

SeADO belongs to the di-iron protein family, with conserved
sequence of two EX28-29EX2H motifs (Kurtz, 1997; Merkx
et al., 2001), in which six conservative amino acids from four
helices (Glu32 from helix H1, Glu115 from helix H4, Glu60 &
His63 from helix H2, and Glu144 & His147 from helix H5) act
as metal ligands (Fig. 1A). Interestingly, we found that not
every molecule in our five SeADO structures possess a fully
occupied di-iron center, even though the protein was co-
crystalized with 4 mmol/L ferrous ammonium sulfate. Each
asymmetric unit of WT0 crystal contains one SeADO mole-
cule, and its active site appears to have lost both of its iron
atoms. The other four structures all contain two molecules in
an asymmetric unit, with at least one molecule containing a
di-iron center (Table 1).

Eitherwith orwithout di-iron cluster, the overall structures of
all these molecules are similar, with the exception of one
specific helix conformation. In the structures of Y122F and

Figure 1. Sequence and structure of SeADO.

(A) Sequence alignment of cADOs from different species.

The secondary structure elements are indicated. The

residues comprising the conserved iron-binding motifs

are indicated with blue arrow and labelled. The conserved

residues involved in substrate channel formation are

indicated with yellow arrow. (B) Overall structure of SeADO

(molecule A of WT1 structure), secondary structure was

labelled, iron atoms are shown as spheres. (C) Structural

comparison of iron-bound SeADO structures. The black

square marked the H5 region (left panel). The 2Fo – Fc

(1.0σ level) electron density of this segment in WT1

structure (H5) was shown in right panel. (D) Structural

comparison of iron-free SeADO structures. The black

square marked the L5 region (left panel). The 2Fo – Fc

(1.0σ level) electron density of this segment in WT0

structure (L5) was shown in right panel. (E) Structural

comparison of the iron-bound SeADO (molecule A of

Y122F structure) and the iron-free SeADO (WT0 struc-

ture). The right panel shows the different conformation of

H5 and L5. Residues 144–150 are shown as stick and the

two iron-coordinating residues Glu144 and His147 are

indicated. The WT0, Y122F, WT1, F86YF87Y and WT-HP

structures are shown in lime, yellow, cyan, orange and

magenta, respectively in Fig. 1C–E.
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molecule A of other threes (WT1, F86YF87YandWT-HP), the
ADO molecule adopts an all-helical folding, comprising of
eight α-helices (H1–H8) that form a compact structure (Fig. 1A

and 1B). Two iron atoms (Fe1 and Fe2) are surrounded by a
four-helix bundle, which is composed of H1 (S16–M45), H2
(R50–L74), H4 (V103–I126) and H5 (A131–D160).

S.elongatus PCC 7942
P. marinus MIT 9313
Synechocystis PCC 6803
N. punctiforme PCC73102
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Unlike other structural elements in SeADO, helix H5 is
unique in representing two distinct conformations in differ-
ent structures. In the structures mentioned above, H5 exists
as a long helix (Fig. 1C), where two residues (Glu144 and
His147) in the second EX2H motif are coordinated or close
to iron atoms. By contrast, the helix H5 is unwound in the
middle in the structures of WT0 and molecule B of other
three structures (WT1, F86YF87Y and WT-HP), forming two
short helices (H5A and H5B) that are connected by a loop
L5 (Fig. 1D and 1E). The helix to loop transition results in a
different conformation for a number of amino acids (from
residue 144 to 150), thus the two iron-coordinating residues
(Glu144 and His147) move away from the di-iron site

(Fig. 1E). As a result, most of our SeADO structures with
the L5 conformation lose their metal atoms. The only
exception is molecule B in the F86YF87Y structure, which
contains the di-metal cluster while exhibiting the L5 con-
formation. However, the relatively weak electron density
indicates a low occupancy of the two iron atoms in this
molecule.

The fact of the partially bound iron atoms observed in
our ADO structures is in agreement with previous iron
content results for PmADO proteins (Das et al., 2011), as
well as our ICP-OES analysis on SeADO protein samples.
Our analysis showed that the content of iron in ADO is
relatively low when no iron was added during protein

Table 1. Statistics of data processing, structure refinement and summary of different structures of SeADO

PDB ID
WT0
4QUW

Y122F
4RC6

WT1
4RC5

F86YF87Y
4RC7

WT-HP
4RC8

Data collection

Space group P41212 P212121 P212121 P212121 P212121

Cell parameters (Å) a = 61.7 a = 64.73 a = 61.7 a = 62.0 a = 61.7

b = 61.7 b = 64.71 b = 61.8 b = 62.1 b = 61.9

c = 110.5 c = 101.4 c = 124.9 c = 125.0 c = 124.8

Resolution (Å) 50.0–2.26
(2.30–2.26)

50.0–2.9
(2.95–2.9)

50.0–2.3
(2.34–2.3)

50.0–2.2
(2.28–2.2)

50.0–1.71
(1.74–1.71)

No. of unique refls 19017 9504 21848 24713 50505

Rmerge (%overall/outmost shell) 3.9/36.9 6.0/50.9 13.0/49.0 17.0/71.8 7.3/48.3

I/σ(I) (overall/outmost shell) 38.8/4.8 22.5/3.4 15.1/4.0 71.5/25.2 34.7/7.9

Completeness
(% overall/outmost shell)

99.8/99.8 84.9/99.3 99.8/100.0 98.5/99.1 99.8/100

Refinement

Rfactor (%) 20.4 25.6 20.9 20.4 18.9

Rfree (%) 24.6 29.5 24.2 24.1 21.2

RMS deviations

Bond lengths (Å) 0.011 0.011 0.012 0.009 0.007

Bond angles (º) 1.207 1.462 1.382 1.128 0.934

Mean B value (Å2) 35.3 46.8 26.2 26.7 16.3

Structure summary

Iron incorporation before
crystallization

No Yes Yes Yes Yes

Treatment of crystals – – – – H2O2 soaked

No. of molecules in a.u. 1 2 2 2 2

No. of di-iron center in a.u. 0 2 1 1 + 0.5 1

Location of di-iron center – Molecules A
and B

Molecule A Molecules A
and B

Molecule A

Ligand Lred (Fatty
alcohol)

– Lred (Fatty
alcohol)

Lred (Fatty
alcohol)

Lox (Fatty acid)

Oxo-bridge – No No No Yes

Ligated water – No No Yes Yes
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expression. Even after adding higher concentrations of
iron to the culture medium, we were unable to obtain
proteins with fully occupied di-iron centers (Table 2). Our

results suggest that the lability of iron atoms at ADO
active site is possibly related to the flexible conformation
of helix H5.

Table 2. Iron content of wild type and mutants of SeADO measured by ICP-OES assay

Protein Expression conditions Number of iron atom
per ADO molecule

Percentage of iron content
compared with wild type 3

LB medium TB medium LB medium + Fe

Wild type 1 √ 0.28 ± 0.004 17.7% ± 0.25%

Wild type 2 √ 0.67 ± 0.02 42.4% ± 1.27%

Wild type 3 √ 1.58 ± 0.09 100% ± 5.7%

E144A √ 1.58 ± 0.06 99.9% ± 3.81%

Y122F √ 1.69 ± 0.12 107.38% ± 7.7%

F86YF87Y √ 1.30 ± 0.26 82.29% ± 16.78%

A129insI √ 1.60 ± 0.29 101.32% ± 18.17%

A129insIF √ 1.58 ± 0.03 100.25% ± 1.63%

L146S √ 1.48 ± 0.01 93.96% ± 0.76%

R148A √ 1.53 ± 0.08 96.64% ± 5.17%

N149A √ 1.35 ± 0.23 85.50% ± 14.71%
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Figure 2. Analysis of the ligands bound in SeADO. (A–C) The 2Fo – Fc (1.0σ level) electron density of the ligand, iron atoms and

the conserved iron-coordinating residues in WT-HP (A), WT1 (B), and WT0 (C) structures. Iron atoms are shown in spheres, the

ligands are shown in sticks and the residues are shown in lines. The WT-HP, WT1, and WT0 structures are shown in magenta, cyan,

and lime, respectively. (D) GC-QqQ-MS/MS analysis and verification of the unknown ligands. The sample after extraction was

trimethylsilylated for analysis on GC-QqQ-MS/MS. 1-(Trimethylsilyloxy)octadecane (CAS No.18748-98-6), the derivative of

1-hydroxyoctadecane, was identified to the peak of acquisition time 18.34 min (indicated by the black arrow).
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Substrate channel in SeADO

In four of our five structures (except the Y122F structure), a
continuous tube-shaped non-protein electron density,
resembling a lipid molecule, was observed close to the di-
iron center (Fig. 2). A similar ligand was also found in earlier
PmADO structures (Khara et al., 2013; Schirmer et al.,
2010). Using GC-MS analysis, Khara, et al. identified the
ligand to be a mixture of long-chain fatty acids, with two
components of the ligand extracts yet awaiting identification
(Khara et al., 2013). In our WT-HP structure, a long-chain
fatty acid molecule with a bifurcated head-group configura-
tion fits the electron density well (Fig. 2A). However, in the
WT1 and WT0 structures, the electron density is consistent
with a ligand with one single-head-group configuration,
which is unlikely to be a fatty acid (Fig. 2B and 2C). The
differing electron densities observed in F86YF87Y structure
suggest the presence of a mixture of ligands with different
head groups.

To identify the precise nature of these ligands, the ligands
extracted from SeADO protein samples were analyzed by
GC-QqQ-MS/MS. The results showed that the majority of the
ligands examined were a mixture of long-chain fatty acids,
and the dominant of the remaining components was identi-
fied as a C18 fatty alcohol (Fig. 2D). Following the analysis
of the extracts together with the observed electron densities,
we built a long-chain fatty acid (Lox) into the structure of WT-
HP, and a long-chain fatty alcohol (Lred) into three other
structures. On the basis of these observations, we propose
that the Lred ligand may represent the real substrate, namely
fatty aldehyde, because of the similarity in their chemical
structures.

In our different structures, the ligand is buried inside ADO
molecule at the same location, with its hydrophobic tail
pointing towards the N-terminal region. A number of aromatic
and hydrophobic residues, which are highly conserved
among diverse species of cADOs (Fig. 1A), form a hydro-
phobic channel to accommodate the non-polar ligand
(Fig. 3A). Notably, whilst all these residues are provided by
helices 1, 2, 3, 4 and 6, helix H5 is contributing little to the
formation of the hydrophobic channel. This peculiar struc-
tural feature might explain why the ligands remain in the
channel even in the absence of the di-iron cluster (Fig. 2C),
despite the fact that the conformation of helix H5 is vastly
different among our structures. We proposed that the
hydrophobic channel is the actual substrate channel of
cADO.

The analysis of our structures showed that the substrate
channel is in an occluded mode. Many interactions exist
between residues from several loops covering the entrance
of the substrate channel in the shape of a lid (Fig. 3B). We
constructed two mutants with one or two non-polar bulky
residues (I or IF) inserted after A129 (A129insI and
A129insIF) to lengthen the loop between H4 and H5. The
enzymatic assay showed that both mutants exhibited only up
to half of the activity of that observed for wild type (Fig. 4).
We propose that a longer loop may lead to the steric hin-
drance at the entrance of substrate channel, which could
result in the reduction of ADO activity. In addition, two Tyr
(Y125 and Y21) form a hydrogen bond at the entrance of the
substrate channel, sealing the ligand inside the protein
molecule (Fig. 3). The above-mentioned structural features
might be one of the reasons that cADO appears inactive

A B
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I27

V28

F86

F87

Y125

F67

Y122

A121

A118
F117

V128-A129-D130

Y125

L191
Y17

Y21

L74

Figure 3. The substrate channel of SeADO. (A) The conserved residues involved in the formation of the substrate channel are

labelled. (B) The substrate channel is sealed by the hydrogen bond (shown as black dashed line) formed by two Tyr residues (Y21

and Y125) and a shell-like cover comprises of V128-D130 together with Y17, L74, and L191. The iron atoms are shown in spheres,

and the substrate channel is shown as grey mesh.
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when longer-chain aldehydes like C24 are used as substrate
(Andre et al., 2013).

SeADO structures that represent the different states
during catalytic reaction

In order to test the effects of residues surrounding the di-iron
center and substrate channel on cADO’s catalytic activity, we
constructed several mutant forms by site-directed muta-
genesis, and then determined the iron content and

enzymatic activity of these mutants relative to the wild type
(Fig. 4 and Table 2). In addition, the crystal structures of
specific mutants were solved. Intriguingly, two mutant
structures (Y122F and F86YF87Y) and three wild type
structures exhibit different conformations at their active site
(Fig. 5) which may represent different states of the enzyme
in the reaction cycle. Based on the character of the ligand
molecules and the coordination mode of the iron atoms, we
assign our five structures in a different states in ADO cata-
lytic reaction below.
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Figure 4. Enzymatic activity and iron-binding capacity of cADO mutants relative to those of wild type proteins.
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Figure 5. The coordination of di-iron center in the structures of Y122F (A), WT1 (B), F86YF87Y (C), and WT-HP (D). Iron atoms

are shown in spheres, the coordinating residues and ligand are shown in sticks. The structures of Y122F, WT1, F86YF87Y, and

WT-HP are shown in yellow, cyan, orange, and magenta, respectively.
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The substrate-free structure of Y122F represents the initial
state of the reaction

In the Y122F structure, very little electron density was
observed in the substrate channel, which is in contrast to all
other four structures. However, there is still a little electron
density remaining in the vicinity of the di-iron site, which we
assigned to a water molecule forming a hydrogen-bond
interactions with the carboxylic oxygen atoms of Glu144 and
Glu115. This water molecule is not coordinated to either iron
ions, with a distance of 3.28 Å and 3.15 Å, respectively.
Apart from harboring the vacant substrate channel, the
Y122F mutant shows comparable enzymatic activity with
wild type. This result is consistent with that of the equivalent
Y135F mutant in PmADO (Schirmer et al., 2010). In the
Y122F structure, the di-iron site is surrounded by the four-
helix bundle, each iron ion is penta-coordinated by two
bridging carboxylates ligands (Glu60 and Glu144), one
bidentate carboxylates and one histidine ligand (Glu32 and
His63 for Fe1, Glu115 and His147 for Fe2) (Fig. 5A and
Table 3). The coordination geometry of the two iron atoms is
similar to that of other di-iron proteins in their rest state of

reduced forms (Du Bois et al., 2000; Eriksson et al., 1998;
Hogbom et al., 2002; Lindqvist et al., 1996; Logan et al.,
1998; Logan et al., 1996; Strand et al., 2004; Yang et al.,
2000) which is consistent with the initial state of cADO in the
reaction cycle. We assumed that this structure with a vacant
substrate channel represents the initial and substrate-free
status during the reaction cycle.

The WT1 structure represents the state of ADO bound
with substrate

In the WT1 structure, a Lred ligand, which was proposed to
mimic the substrate aldehyde, was modeled in the substrate
channel according to the electron density (Fig. 2B). The
ligand approaches the di-iron cluster from the opposite side
of His147, with its head-group binding directly to the Fe2
atom. This coordination mode suggests that Fe2 is the pre-
ferred iron for substrate binding. The water molecule, located
near the di-iron site in the Y122F structure, is displaced by
the head group of the Lred ligand. The residue Glu144, which
is located in helix H5, changes its rotamer and is not coor-
dinated with either iron atoms. In addition, E115 alters its
mode of Fe2 coordination, from bidentate to monodentate,
while other four iron-coordinating residues stay unchanged,
resulting in a distorted tetrahedral coordination of both Fe1
and Fe2 (Fig. 5B and Table 3). The structure of WT1 is likely
to represent the state where the enzyme is bound with
substrate. The structural comparison between WT1 and
Y122F implied that the swing of Glu144 might be induced by
ligand binding, thus enabled us to visualize the conforma-
tional change coupled with substrate binding in cADO active
site for the first time.

The F86YF87Y structure represents the state of ADO
where the oxygen path is formed

In the molecule B of F86YF87Y structure, a segment (from
residue 144–150) in helix H5 changes its conformation from
helix to loop, which might be induced by the swing of Glu144
observed in WT1 structure. As a consequence, His147
moves away from the active site with a 9Å distance to Fe2. In
addition, H63 is located more distantly from the active site,
and the ligand bond between Fe1 atom and H63 is broken.
The iron ions at the active site are bridged by the residue
Glu60 together with a water molecule. However, the water
molecule is in a different location from the one observed in
the Y122F structure. The two iron atoms are maintaining
their tetrahedral coordinations (Fig. 5C and Table 3). The
relatively low coordination number in this structure indicates
that the active site is in a reduced state, and should be highly
sensitive to dioxygen (Nordlund and Eklund, 1995). In
addition, a hole is formed at the protein surface as a result of
helix H5 distortion, which exposes the di-iron cluster and the
bridging water molecule to solvent (Fig. 6A and 6B). We
assumed that the hole formed in the F86YF87Y structure
serves as the access channel for the co-substrate dioxygen.

Table 3. Coordinating ligands and distances of two iron atoms
in SeADO structures

Y122F
(A)

WT1
(A)

F86YF87Y
(B)

WT-HP
(A)*

Fe1

E32 (OE1) 2.07 2 2.25 2.05

E32 (OE2) 2.29 2.44 2.22

H63 2.38 2.35 2.25

E60 (OE1) 1.91 1.99 2.17 2.0

E144 (OE2) 2.10 – –

Water2
(only in
F86YF87Y)

– 2.46

Water1 – 1.94

OXO – 1.81

LIGAND – 2.08

Fe2

E115 (OE1) 2.33 2.38

E115 (OE2) 2.43 2.05 2.11 2.14

H147 2.13 2.3 2.25

E60 (OE2) 2.13 2.06 1.73 2.04

E144 (OE1) 1.91 – –

Water2
(only in
F86YF87Y)

2.2

OXO – 1.92

Ligand 2.29 2.16 2.31

* Molecule A of Y122F, WT1 and WT-HP structures, and molecule B of
F86YF87Y structure were used to measure the distances.
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Recent research revealed that the substrate-free ADO is
relatively unreactive towards O2, and its O2 reactivity is
triggered by substrate binding, which is referred to as a
“substrate triggering” mechanism (Pandelia et al., 2013).
Based on our structural analysis, we proposed that the
substrate triggering is due to the conformational changes of
Glu144 and helix H5 induced by substrate binding to create
a path for O2. Therefore, we presumed that this structure
represents the transient state at which ADO is awaiting the
arrival of the co-substrate dioxygen.

The WT-HP structure represents an intermediate state
of ADO where oxygen reacts with the substrate

To explore the effects of H2O2 on ADO activity, a crystal of
wild type SeADO was soaked in H2O2, and its structure (WT-
HP) was solved. No electron density was visible for the
H2O2, probably due to its unstable nature. A Lox ligand clo-
sely resembling a fatty acid molecule was built according to
the electron density observed within this structure (Fig. 2A),
which is nearly identical to the previously solved structure of
PmADO (PDB code 2OC5). In the WT-HP structure, the helix

conformation of H5 was restored, and the two coordinating
residues His63 and His147 approach the active site and
ligate the Fe1 and Fe2 atoms, respectively. The water mol-
ecule that bridges the two iron atoms in the F86YF87Y
structure moves towards Fe1 and is not coordinated with
Fe2 in the WT-HP structure. The two iron ions are bridged by
one carboxylate ligand E60, the Lox ligand and an oxo group.
Both iron atoms show saturated coordination with an octa-
hedral geometry (Fig. 5D and Table 3). The higher coordi-
nation numbers of di-iron center, together with the fact that
the crystal was obtained after being treated with strong oxi-
dizer H2O2, lead to the speculation that the WT-HP structure
represents an oxidized form of ADO. Furthermore, the
coordination mode of two iron atoms in WT-HP structure
shows a similar pattern to that observed for the R2 protein of
ribonucleotide reductase (RNR-R2), in which the oxo bridge
and the coordinated water exist at the di-iron site in the
oxidized structure, while both are absent in the reduced
structure (Logan et al., 1996). The superimposition of the
F86YF87Y and WT-HP structures revealed that the hole at
the protein surface, which is caused by the distortion of helix
H5, exposes the di-iron sites and the oxo bridge (Fig. 6C and
6D). This observation supports our hypothesis that the
identified hole serves as dioxygen channel. We proposed
that the Lox ligand is likely to be the analog of the possible
intermediate product hemiacetal, thus the WT-HP structure
may represent the intermediate state in reaction of cADO,
following the entering of dioxygen and its reaction with the
substrate.

The WT0 structure represents the inactive state of ADO

The WT0 structure is characterized by losing the di-iron
cluster and by exhibiting a distorted conformation of helix H5.
This structure is likely to represent the inactive state of
SeADO, as it has lost its cofactor iron. We assume that if the
loop conformation of helix H5, as revealed in the F86YF87Y
structure, was not restored into a helical structure at the
appropriate time, the solvent-accessible di-iron center may
become unstable. Whereas the instability of the di-iron
cluster further promotes the loop conformation, and thus
results in a complete loss of the di-iron cluster, as shown in
the WT0 structure (Fig. 1D and 1E). The structural flexibility
of SeADO provides an explanation for its low iron occu-
pancy, and may be in part responsible for the low enzymatic
activity observed for cADO. To the best of our knowledge,
the observation that the conformational change of one spe-
cific helix towards the loop correlates with the loss of the di-
iron cluster is the first case described for this superfamily.

The proposed process of the catalytic reaction by cADO

Among all the iron-coordinating residues, Glu144 remarkably
alters its conformation among structures. A similar case was
observed in other members of the di-iron protein family, such
as RNR-R2 and the hydroxylase component of soluble

Fe1

Fe2
H2O

Fe1

Fe2

oxo

A B

C D

Figure 6. Electrostatic surface interpretation of SeADO

structures. (A) Surface representation of F86YF87Y structure

showed that a hole was formed in its surface due to the

conformational change of helix H5. (B) The partial enlarged

detail of surface interpretation of F86YF87Y structure, two iron

atoms (shown as yellow spheres) and the water molecule

(shown as red sphere) in the active center can be observed from

the hole. (C) Surface representation of WT-HP structure. (D) The

partial enlarged detail of surface representation of F86YF87Y

structure with the di-iron cluster of WT-HP structure superim-

posed. The oxo bridge and the two iron atoms (shown as yellow

spheres), which are hidden inside the ADO molecule in WT-HP

structure (C), are accessible in F86YF87Y structure (D).
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methane monooxygenase. Both possess an essential iron-
coordinating glutamic acid, which exhibits distinct confor-
mations during their respective reactions (Kolberg et al.,
2004; Sazinsky and Lippard, 2006; Whittington and Lippard,
2001). Apart from the structural information, our biochemical
analysis showed that the E144A mutant has only 5% activity
remaining, with similar iron content as measured for the wild
type (Fig. 4 and Table 2). We therefore suggest that Glu144
plays an important role in catalysis.

Based on our structural and biochemical analysis, together
with the previous report on ADO (Li et al., 2012; Li et al., 2011;
Pandelia et al., 2013; Paul et al., 2013; Warui et al., 2011), we
proposed a potential process of catalytic reaction for cADO
(Fig. 7). Initially, the substrate ligates to the Fe2 and induces
the swing of Glu144 away from the di-iron site and the con-
formational change of helix H5. The swing of Glu144 is
essential for both inducing the distortion of H5 that facilitates
the formation of the O2-entering path, and makes room for
subsequent dioxygen coordination. Following the entering of
O2 into the active site, the helical conformation of H5 is
restored. Meanwhile, one oxygen atom forms the oxo bridge
that ligatesboth ironatoms, and theother oxygenatomattacks
the substrate aldehyde to form the intermediate product of
hemiacetal. Then the scission of its C1–C2 bond occurs, with
the bond likely to be under the attack of the Fe1-coordinating
water, and this attack results in the release of the product
alkane. Finally, Glu144 shifts back to the active site, bridging
two iron atoms. The oxo-bridge is broken, and the product
formate is released, together with one water molecule.

In summary, we determined five crystal structures of
SeADO and revealed novel structural features around their
active site. Snapshots of these consecutive states allow us to
visualize the morphing of the active site during the reaction.
Analysis of our structural and biochemical data highlights a
number of important structural features that can influence the
catalytic process and activity of cADO, including the confor-
mational switch of the central part of helixH5, and the flexibility
of residue Glu144. Together, these results provide new
structural insights into the catalyticmechanism and allow us to
propose a possible catalytic process of cADO, thus provides
crucial information required for developing new strategies to
improve its enzymatic activity, with the ultimate goal of pro-
ducing fuel-grade alk(a/e)nes in a renewable and sustainable
manner.

MATERIALS AND METHODS

Protein expression and purification

The codon-optimized gene encoding cADO from Synechococcus

elongates PCC7942 was synthetized and cloned into the

expression vector pET-28a(+) (Novagen). The constructs for

mutant of SeADO were generated using the QuikChange site-

directed mutagenesis kit (Stratagene). The constructs were con-

firmed by DNA sequencing and transformed into E. coli BL21

(DE3). Protein expression was induced by adding isopropyl β-D-

thiogalactoside (IPTG) to a final concentration of 1 mmol/L. After

being shaken at 37°C for approximately additional 4 h, cultures

were harvested by centrifugation at 6000 ×g at 4°C for 15 min. To
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Figure 7. Proposed catalytic process of cADO based on the structures presented in this work.
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obtain the iron-bound cADO proteins, 2 mmol/L (NH4)2SO4Fe-

SO4·6H2O was added in medium.

Thecell pelletwashomogenized inbuffer containing20mmol/LTris-

HCl pH 7.8 and 300mmol/L NaCl (buffer A), and sonicated. Cell debris

was removedbycentrifugationat40,000×g for 30min.Thesupernatant

was collected and loaded onto Ni-IDA resin (Chelating sepharose FF,

GE Healthcare) and rinsed with buffer A 20 mmol/L imidazole. The

protein was eluted from the affinity resin with buffer A containing

250mmol/L imidazole.Theeluted fractionwasconcentratedand further

purified by gel filtration on Superdex 75 (GE Healthcare) with elution

buffer 50mmol/L Hepes pH 7.2, 150mmol/L NaCl. The purified protein

was concentrated to 10 mg/mL for crystallization.

Ferredoxin reductase and ferredoxin derived from Synechococ-

cus elongates PCC7942 were constructed and purified as previously

described (Zhang et al., 2013).

Crystallization and X-ray data collection

Crystallization trials were carried out at 18°C bymixing equal volume of

protein and reservoir solution using the sitting-drop vapor diffusion

method. Crystals of WT0 structure was harvested in condition of res-

ervoir solution of 0.2mol/LMagnesium chloride hexahydrate, 0.1mol/L

Tris hydrochloride pH 8.5, 30% (w/v) PEG 4,000. To obtain the iron-

bound crystals, 4 mmol/L ferrous ammonium sulfate was added to

SeADO protein solutions right before crystallization. The crystals of

WT1 structurewere harvested in reservoir solution containing0.2mol/L

L-proline, 0.1mol/LHepes pH7.1, 25% (w/v) PEG1500. The crystals of

Y122F and F86YF87Ywere grown in the samesolutionwith 0.02mol/L

adenosine-5’-triphosphate disodium salt hydrate added. The crystal of

WT1 was soaked in 10 mmol/L H2O2 for 30 min before being flash

frozen to obtain the crystal of WT-HP.

Crystalswereflash-cooled inanitrogen-gasstreamat100K for data

collection. Diffraction data of Y122F and F86YF87Y were collected on

beamlineBL17UatShanghaiSynchrotronRadiationFacility.Diffraction

data of WT0 and WT1 were collected utilizing Rigaku RAXIS IV image

plate detector at Institute of Biophysics (Chinese Academy of Sci-

ences). Diffraction data of WT-HP were collected on BL17A at Photo

Factory, Japan. Diffraction data were processed and scaled with HKL-

2000 package (Otwinowski and Minor, 1997).

Structure determination and refinement

The WT0 model, which subsequently make a searching model for

molecular replacement of other four structures, was solved by

molecular replacement with Phaser_MR (Mccoy et al., 2007) using

the PmADO structure (PDB code 2OC5) as a searching model. The

model were rebuilded by AutoBuild in PHENIX package (Adams

et al., 2010), following subjected to refinement by Phenix.refine

(Adams et al., 2010) and COOT (Emsley et al., 2010). Figures of the

structures were prepared by Pymol (DeLano Scientific, LLC). A

summary of data collection and structure refinement statistics is

given in Table 1.

Metal content determination and enzyme activity assay

The metal contents of the wild-type enzyme and mutants were

determined by inductively coupled plasma optical emission spec-

trometer (ICP-OES), PerkinElmer 5300DV.

N-heptanal was selected as the substrate to measure the activity

of cADO proteins. Assays were performed in 1.5 mL gastight vials

with a total volume of 500 μL, and reactions were conducted in

100 mmol/L HEPES buffer pH 7.2 containing 100 mmol/L KCl and

10% glycerol, with 15 μmol/L protein samples, 2 mmol/L of n-hep-

tanal in final 4% DMSO, 30 μg/mL ferredoxin, 0.04 U/mL ferredoxin

reductase, 800 μmol/L NADPH, 60 μmol/L ferrous ammonium sul-

phate. After being enrolled of all the components, reactions were

shaken at 220 rpm at 37°C for 30 min. To determine the amount of

n-hexane produced, a sample of the headspace was collected using

a gastight sample lock Hamilton syringe and analysed by Shimadzu

GC-2010 with DB-5 column. The amount of n-hexane produced was

quantified by a standard curve of known concentrations of n-hexane.

For GC analysis the flow rate of the nitrogen carrier gas was

1.1 mL/min and the inlet temperature was maintained at 220°C.

Injections were made in split mode with a split ratio of 2:1 and a total

flow of 2 mL/min. The oven temperature was held at 40°C for 3 min

and then increased to 120°C at 10°C/min, and finally maintained at

120°C for 2 min. The FID detector was at 250°C with a continuous

flow of H2 at 40 mL/min and air at 400 mL/min. Chromatographic

data were analyzed using the associated software.

Determination of ligand(s) using GC-QqQ-MS/MS.

2 g of purified SeADO protein was acidified using 1 mol/L HCl to

pH 3.0 and extracted with ethyl acetate. The organic layer was

collected and dried by passing through MgSO4. The solvent was

evaporated by rotary evaporator and nitrogen (N-EVAP) to 100 μL. The

sample was trimethylsilylated for analysis using BSTFA + 1% TMCS

(Sigma). All spectra were recorded on an Agilent 7890A GC system

connected to an Agilent 7000B triple quadrupole MSD with electron

impact ionization mode. A 1-μL portion of the derivatized extract was

injected in splitless mode onto the column. The column used was a

DB-5ms (30 m × 250 μm × 0.25 μm film thickness, Agilent J&W

ScientiWc, USA) fused silica capillary column. Injector temperature

was 280°C and the oven program was as follows: oven temperature

was held at 60°C for 2 min and then increased to 240°C at 10°C/min

and then increased to 300°C at 20°C/min finally maintained at 300°C

for 5 min. Helium was used as the carrier gas for GC at a flow rate of

1.0 mL/min, and the inlet temperature was maintained at 280°C with

splitless. Chromatographic data were acquired and processed using

MassHunter Workstation Quantitative Software.
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MIT9313; RNR-R2, the R2 protein of ribonucleotide reductase;

Se, Synechococcus elongates PCC7942.

COMPLIANCE WITH ETHICS GUIDELINES

Chenjun Jia, Mei Li, Jianjun Li, Jingjing Zhang, Hongmei Zhang,

Peng Cao, Xiaowei Pan, Xuefeng Lu, and Wenrui Chang declare

that they have no conflict of interest.

This article does not contain any studies with human or animal

subjects performed by the any of the authors.

OPEN ACCESS

This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution, and

reproduction in any medium, provided the original author(s) and

the source are credited.

REFERENCES

Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N,

Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW et al

(2010) PHENIX: a comprehensive Python-based system for

macromolecular structure solution. Acta Crystallogr D 66:213–

221

Andre C, Kim SW, Yu XH, Shanklin J (2013) Fusing catalase to an

alkane-producing enzyme maintains enzymatic activity by con-

verting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc

Natl Acad Sci USA 110:3191–3196

Aukema KG, Makris TM, Stoian SA, Richman JE, Munck E,

Lipscomb JD, Wackett LP (2013) Cyanobacterial aldehyde

deformylase oxygenation of aldehydes yields n-1 aldehydes

and alcohols in addition to alkanes. ACS Catal 3:2228–2238

Das D, Eser BE, Han J, Sciore A, Marsh EN (2011) Oxygen-

independent decarbonylation of aldehydes by cyanobacterial

aldehyde decarbonylase: a new reaction of diiron enzymes.

Angew Chem 50:7148–7152

Das D, Ellington B, Paul B, Marsh EN (2014) Mechanistic insights

from reaction of alpha-oxiranyl-aldehydes with cyanobacterial

aldehyde deformylating oxygenase. ACS Chem Biol 9:570–577

Du Bois J, Mizoguchi TJ, Lippard SJ (2000) Understanding the

dioxygen reaction chemistry of diiron proteins through synthetic

modeling studies. Coord Chem Rev 200:443–485

Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and

development of Coot. Acta Crystallogr D 66:486–501

Eriksson M, Jordan A, Eklund H (1998) Structure of Salmonella

typhimurium nrdF ribonucleotide reductase in its oxidized and

reduced forms. Biochemistry 37:13359–13369

Eser BE, Das D, Han J, Jones PR, Marsh EN (2012) Correction to

oxygen-independent alkane formation by non-heme iron-depen-

dent cyanobacterial aldehyde decarbonylase: investigation of

kinetics and requirement for an external electron donor. Bio-

chemistry 51:5703

Hogbom M, Huque Y, Sjoberg BM, Nordlund P (2002) Crystal

structure of the di-iron/radical protein of ribonucleotide reductase

from corynebacterium ammoniagenes. Biochemistry 41:1381–

1389

Khara B, Menon N, Levy C, Mansell D, Das D, Marsh EN, Leys D,

Scrutton NS (2013) Production of propane and other short-chain

alkanes by structure-based engineering of ligand specificity in

aldehyde-deformylating oxygenase. ChemBioChem 14:1204–

1208

Kolberg M, Strand KR, Graff P, Andersson KK (2004) Structure,

function, and mechanism of ribonucleotide reductases. Biochim

Biophys Acta 1699:1–34

Krebs C, Bollinger JM, Booker SJ (2011) Cyanobacterial alkane

biosynthesis further expands the catalytic repertoire of the ferritin-

like ‘di-iron-carboxylate’ proteins. Curr Opin Chem Biol 15:291–

303

Kurtz DM (1997) Structural similarity and functional diversity in

diiron-oxo proteins. J Biol Inorg Chem 2:159–167

Li N, Norgaard H, Warui DM, Booker SJ, Krebs C, Bollinger JM Jr

(2011) Conversion of fatty aldehydes to alka(e)nes and formate

by a cyanobacterial aldehyde decarbonylase: cryptic redox by an

unusual dimetal oxygenase. J Am Chem Soc 133:6158–6161

Li N, Chang WC, Warui DM, Booker SJ, Krebs C, Bollinger JM Jr

(2012) Evidence for only oxygenative cleavage of aldehydes to

alk(a/e)nes and formate by cyanobacterial aldehyde decarbon-

ylases. Biochemistry 51:7908–7916

Lindqvist Y, Huang W, Schneider G, Shanklin J (1996) Crystal

structure of delta9 stearoyl-acyl carrier protein desaturase from

castor seed and its relationship to other di-iron proteins. EMBO J

15:4081–4092

Logan DT, Su XD, Aberg A, Regnstrom K, Hajdu J, Eklund H,

Nordlund P (1996) Crystal structure of reduced protein R2 of

ribonucleotide reductase: the structural basis for oxygen activa-

tion at a dinuclear iron site. Structure 4:1053–1064

Logan DT, deMare F, Persson BO, Slaby A, Sjoberg BM, Nordlund P

(1998) Crystal structures of two self-hydroxylating ribonucleotide

reductase protein R2 mutants: structural basis for the oxygen-

insertion step of hydroxylation reactions catalyzed by diiron

proteins. Biochemistry 37:10798–10807

Mccoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC,

Read RJ (2007) Phaser crystallographic software. J Appl Crys-

tallogr 40:658–674

Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ

(2001) Dioxygen activation and methane hydroxylation by soluble

methane monooxygenase: a tale of two irons and three proteins.

Angew Chem Int Ed 40:2782–2807

Nordlund P, Eklund H (1995) Di-iron-carboxylate proteins. Curr Opin

Struct Biol 5:758–766

Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data

collected in oscillation mode. Methods Enzymol 276:307–326

Pandelia ME, Li N, Norgaard H, Warui DM, Rajakovich LJ, Chang

WC, Booker SJ, Krebs C, Bollinger JM (2013) Substrate-

RESEARCH ARTICLE Chenjun Jia et al.

66 © The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



triggered addition of dioxygen to the diferrous cofactor of

aldehyde-deformylating oxygenase to form a diferric-peroxide

intermediate. J Am Chem Soc 135(42):15801–15812

Paul B, Das D, Ellington B, Marsh EN (2013) Probing the

mechanism of cyanobacterial aldehyde decarbonylase using a

cyclopropyl aldehyde. J Am Chem Soc 135:5234–5237

Sazinsky MH, Lippard SJ (2006) Correlating structure with function

in bacterial multicomponent monooxygenases and related diiron

proteins. Acc Chem Res 39:558–566

Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010)

Microbial biosynthesis of alkanes. Science 329:559–562

Strand KR, Karlsen S, Kolberg M, Rohr AK, Gorbitz CH, Andersson

KK (2004) Crystal structural studies of changes in the native

dinuclear iron center of ribonucleotide reductase protein R2 from

mouse. J Biol Chem 279:46794–46801

Wang W, Liu X, Lu X (2013) Engineering cyanobacteria to improve

photosynthetic production of alka(e)nes. Biotechnol Biofuels 6:69

Wang Q, Huang X, Zhang J, Lu X, Li S, Li JJ (2014) Engineering

self-sufficient aldehyde deformylating oxygenases fused to alter-

native electron transfer systems for efficient conversion of

aldehydes into alkanes. Chem Commun 50:4299–4301

Warui DM, Li N, Norgaard H, Krebs C, Bollinger JM Jr, Booker SJ

(2011) Detection of formate, rather than carbon monoxide, as the

stoichiometric coproduct in conversion of fatty aldehydes to

alkanes by a cyanobacterial aldehyde decarbonylase. J Am

Chem Soc 133:3316–3319

Whittington DA, Lippard SJ (2001) Crystal structures of the soluble

methane monooxygenase hydroxylase from methylococcus cap-

sulatus (Bath) demonstrating geometrical variability at the dinu-

clear iron active site. J Am Chem Soc 123:827–838

Yang YS, Baldwin J, Ley BA, Bollinger JM, Solomon EI (2000)

Spectroscopic and electronic structure description of the reduced

binuclear non-heme iron active site in ribonucleotide reductase

from E. coli: comparison to reduced delta(9) desaturase and

electronic structure contributions to differences in O-2 reactivity.

J Am Chem Soc 122:8495–8510

Zhang J, Lu X, Li JJ (2013) Conversion of fatty aldehydes into alk

(a/e)nes by in vitro reconstituted cyanobacterial aldehyde-de-

formylating oxygenase with the cognate electron transfer system.

Biotechnol Biofuels 6:86

Crystal structures of aldehyde-deformylating oxygenases RESEARCH ARTICLE

© The Author(s) 2014. This article is published with open access at Springerlink.com and journal.hep.com.cn 67

P
ro
te
in

&
C
e
ll


	Structural insights into the catalytic mechanism of aldehyde-deformylating
oxygenases
	ABSTRACT
	INTRODUCTION
	RESULTS AND DISCUSSION
	Overall structure of SeADO
	SeADO structures that represent the different states
during catalytic reaction
	The substrate-free structure of Y122F represents the initial
state of the reaction
	The WT1 structure represents the state of ADO bound
with substrate
	The F86YF87Y structure represents the state of ADO
where the oxygen path is formed
	The WT-HP structure represents an intermediate state
of ADO where oxygen reacts with the substrat
	The WT0 structure represents the inactive state of ADO
	The proposed process of the catalytic reaction by cADO

	MATERIALS AND METHODS
	Protein expression and purification
	Crystallization and X-ray data collection
	Structure determination and refinement
	Metal content determination and enzyme activity assay
	Determination of ligand(s) using GC-QqQ-MS/MS.

	ACKNOWLEDGMENTS
	ABBREVIATIONS
	COMPLIANCE WITH ETHICS GUIDELINES
	OPEN ACCESS
	REFERENCES


