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Abstract In this study, we attempted to develop a mul-

timodality approach using chemotherapeutic agent mito-

mycin C, biologic agent tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL/Apo-2L), and mild

hyperthermia to treat colon cancer. For this study, human

colon cancer LS174T, LS180, HCT116 and CX-1 cells

were infected with secretory TRAIL-armed adenovirus

(Ad.TRAIL) and treated with chemotherapeutic agent

mitomycin C and hyperthermia. The combinatorial treat-

ment caused a synergistic induction of apoptosis which was

mediated through an increase in caspase activation. The

combinational treatment promoted the JNK-Bcl-xL-Bak

pathway which transmitted the synergistic effect through

the mitochondria-dependent apoptotic pathway. JNK sig-

naling led to Bcl-xL phosphorylation at serine 62, disso-

ciation of Bak from Bcl-xL, oligomerization of Bak,

alteration of mitochondrial membrane potential, and sub-

sequent cytochrome c release. Overexpression of

dominant-negative mutant of Bcl-xL (S62A), but not

dominant-positive mutant of Bcl-xL (S62D), suppressed

the synergistic death effect. Interestingly, Beclin-1 was

dissociated from Bcl-xL and overexpression of dominant-

negative mutant of Bcl-xL (S62A), but not dominant-

positive mutant of Bcl-xL (S62D), suppressed dissociation

of Beclin-1 from Bcl-xL. A combinatorial treatment of

mitomycin C, Ad.TRAIL and hyperthermia induced

Beclin-1 cleavage, but the Beclin-1 cleavage was abolished

in Beclin-1 double mutant (D133A/D146A) knock-in

HCT116 cells, suppressing the apoptosis induced by the

combination therapy. We believe that this study supports

the application of the multimodality approach to colon

cancer therapy.
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Abbreviations

Ad.TRAIL TRAIL-armed adenovirus

APC Allophycocyanin

ATM Ataxia telangiectasia mutated

53BP1 p53-binding protein 1

BAX Bcl-2–associated X protein

Bcl-xL B-cell lymphoma-extra large

BRCA1 Early-onset familial breast and ovarian

cancer

c-FLIPL Long form of cellular FLICE-inhibitory

protein

Chk2 Checkpoint kinase 2

COX Cyclooxygenase

CRE8 Cre-expressing 293 cells

DMEM Dulbecco’s modified eagle medium

DR4 Death receptor 4

DR5 Death receptor 5
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DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic acid

5-FU 5-fluorouracil

FADD Fas-Associated protein with Death Domain

FBS Fetal bovine serum

FLICE FADD-like interleukin-1 beta-converting

enzyme

Flt3 fms-related tyrosine kinase 3

Flt3L Ligand for Flt3

HA Hemagglutinin

HIPEC Hyperthermic intraperitoneal chemotherapy

JNK c-Jun NH2-terminal kinase

KI Knock-in

MDC1 Mediator of DNA damage checkpoint 1

NBS1 Nijmegen breakage syndrome

PARP Poly (ADP-ribose) polymerase

PBS Phosphate-buffered saline solution

PI Propidium iodide

RPMI Roswell Park Memorial Institute medium

SDS Sodium dodecyl sulfate

PAGE Polyacrylamide gel electrophoresis

BH3 Bcl-2 homology domain 3

TNF Tumor necrosis factor

TRAIL Tumor necrosis factor-related apoptosis-

inducing ligand

WT Wild-type

Introduction

Colorectal cancer is the third leading cause of cancer-related

mortality in the world. The main cause of death of patients

with colorectal cancer is metastases [1]. In the last decade,

the medical control of metastatic colorectal cancer has

shown remarkable advances. For example, the addition of

oxaliplatin and irinotecan to previously existing 5-fluoro-

uracil (5-FU) and leucovorin-based therapies improved the

overall median survival of 12 months [2], and with the

addition of biological targeted therapies such as bev-

acizumab and cetuximab, the overall median survival rose to

20 months [3–8]. However, systemic chemotherapeutic

strategies are currently used only as palliatives—they do not

improve long-term survival rates. Therefore, new approa-

ches are necessary to improve the overall median survival

for metastatic colorectal cancers such as hepatic colorectal

metastases and colorectal peritoneal carcinomatosis.

Current standard of care for hepatic colorectal metas-

tases and colorectal peritoneal carcinomatosis is hyper-

thermic isolated hepatic perfusion (HIHP) therapy and

hyperthermic intraperitoneal chemotherapy (HIPEC),

respectively [9, 10]. These therapies are combinatorial

treatments of chemotherapeutic agents and mild hyper-

thermia. We hypothesize that a multimodality [chemo-

therapeutic agent mitomycin C, biologic agent tumor

necrosis factor-related apoptosis-inducing ligand (TRAIL/

Apo-2L), and mild hyperthermia] approach effectively

enhances apoptotic death and improves the current stan-

dard of care to treat advanced colorectal metastases. To test

the hypothesis, in this study, we focus on the effect of

multimodality treatment on cell death in in vitro system.

Chemotherapy is the standard clinical treatment for

human cancers. Chemotherapeutics can interact with DNA

and activate several intracellular signal pathways including

apoptosis [11]. Mitomycin C is an antibiotic which has been

used as a chemotherapeutic agent in a variety of carcinogenic

solid tumors including colon [12], breast [13], lung [14] and

bladder [15]. Mitomycin C causes cross-links in the DNA

molecules of the cells, leading to the formation of DNA

interstrands and inhibiting DNA replication and transcrip-

tion [16, 17]. Previous reports suggest that mitomycin C

produces a consistent response when used as a single agent

[18–21]. However, like many other chemotherapeutic

agents, mitomycin C may induce resistance to chemotherapy

and may target normal cells, thus causing unexpected side

effects at therapeutic doses. On the other hand, since mito-

mycin C offers a suitably low toxicity and can be easily

delivered to an outpatient, it seems a reasonable, cost-

effective candidate for combinational therapy of colorectal

cancer, like irinotecan [22], capecitabine [23] or 5-FU [24].

TRAIL, a highly promising anticancer agent, is a cytokine

of the TNF family which binds to the death receptors DR4

[25–27] and DR5 [28–30]. It has the unique ability to induce

apoptosis in many transformed cancer cell lines, but not in

normal tissue [31, 32]. Previous studies suggest that TRAIL-

induced apoptosis can be enhanced by combinational therapy

with several chemotherapeutic agents at non-toxic doses in

cancer cells [33–38]. Nonetheless, the translation of TRAIL

into the clinic has been confounded by its short half-life,

inadequate delivery methods, and TRAIL-resistant cancer cell

populations [39]. To solve these limitations, we attempt to

develop a secretory TRAIL-armed adenoviral vector.

Hyperthermia has been explored as an anticancer agent

for many decades and is often used with HIPEC. We pre-

viously reported that hyperthermia has a synergistic effect

with TRAIL in causing cytotoxicity through the mito-

chondria-dependent pathway [40–43]. Several researchers

also reported that hyperthermia acts synergistically with

ionizing radiation [44–46], and with a number of chemo-

therapeutic agents [47–49]. We previously reported that

hyperthermia triggered down-regulation of c-FLIPL (long

form of cellular FLICE-inhibitory protein), an anti-apop-

totic molecule, in several colon cancer cells [50]. c-FLIP

splice variants (long and short form) bind to FADD and/or

caspase 8/10 and inhibit their activation [51–53].
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In this study, we observed that a combinatorial treatment

of mitomycin C, adenoviral TRAIL and hyperthermia

effectively activates the mitochondrial-dependent apoptotic

pathway by activating the JNK-Bcl-xL-Bak pathway,

increasing Bak oligomerization, facilitating cytochrome

c release, promoting dissociation of Beclin-1 from Bcl-xL,

and increasing Beclin-1 cleavage.

Materials and methods

Cell culture

The human colon adenocarcinoma line LS174T was kindly

provided by Dr. HA Choudry (University of Pittsburgh

Medical Center, Pittsburgh, PA, USA) and LS180 was pur-

chased from the American Type Culture Collection (ATCC,

Manassas, VA, USA). The human colorectal carcinoma

HCT116 wild type was obtained from Dr. B Vogelstein

(Johns Hopkins University) and CX-1 cell line was obtained

from Dr. JM Jessup (National Cancer Institute). Cell lines

were maintained in Dulbecco’s Modified Eagle Medium

(DMEM, Gibco, Gaithersburg, MD, USA), McCoy’s 5A or

RPMI 1640 supplemented with 10 % fetal bovine serum

(FBS, Atlanta Biological, Flowery Branch, GA, USA),

100 U/mL penicillin and 100 lg/mL streptomycin (Gibco)

in a 5 % CO2 incubator. These adherent cells, except for

LS180, were subcultured every 3–4 days by treatment with a

trypsin–EDTA solution (Gibco). The LS180 cell line was

cultured by following a procedure of ATCC subculturing.

Reagents and antibodies

Mitomycin C and anti-TRAIL antibody were obtained

from Santa Cruz Biotechnology (Dallas, TX, USA). Anti-

PARP, anti-caspase 8/9/3, anti-cleaved caspase 9/3, anti-

phosphorylated (Thr183/Tyr185) JNK, anti-JNK, anti-Bcl-

xL, anti-COX-IV and anti-human influenza hemagglutinin

(HA) antibody were purchased from Cell Signaling (Dan-

vers, MA, USA). Anti-phosphorylated Bcl-xL (S62) anti-

body was purchased from Millipore (Billerica, MA, USA)

and anti-cytochrome c antibody and anti-Beclin-1 were

from BD Pharmigen (San Jose, CA, USA). Anti-actin

antibody and other chemicals were purchased from Sigma

(St. Louis, MO, USA).

Shuttle vector construction

pFETZ was kindly provided by Dr. Y He (Immunotherapy

Center, Medical College of Georgia, GA, USA) [54]. This

vector contains cDNA for the extracellular domain of

Flt3L, a ligand for Flt3 tyrosine kinase receptor (a.a. 1–81),

fused to a leucine zipper domain and the extracellular

domain of TRAIL (a.a. 95–281) and expresses a secretable

form of TRAIL fusion protein [55]. pAdlox-FETZ was

made by inserting the SalI/BamHI fragment from pFETZ

into SalI/BamHI-cut pAdlox shuttle vector. The complete

shuttle vector was co-transfected into CRE8 cells with w5

viral genomic DNA for homologous recombination as

described below.

Adenoviral vector construction

Recombinant adenovirus was constructed by employing the

Cre-lox recombination system [56]. The selective cell line

CRE8 has a b-actin-based expression cassette driving a Cre

recombinase gene with an N-terminal nuclear localization

signal stably integrated into 293 cells. Transfections were

done by using Lipofectamine reagent (Invitrogen, Carls-

bad, CA, USA). Cells were split into T25-flasks 1 day

before transfection. For the production of recombinant

adenovirus, 2 lg of Adlox/FETZ and 2 lg of w5 viral

genomic DNA were co-transfected into CRE8 cells in the

presence of caspase inhibitor z-VAD-fmk (20 lM). The

recombinant adenoviruses were generated by intramole-

cular homologous recombination between the shuttle vec-

tor and w5 viral DNA. The new virus had an intact

packaging site and carried a recombinant gene. Plaques

were harvested, analyzed and purified.

Drug treatment

Drug treatments were accomplished by aspirating the

medium and replacing it with new medium containing

drugs.

Hyperthermia treatment

Cells cultured in 35 mm or 100 mm dishes were sealed

with parafilm and were placed a circulating water bath

(Heto, Thomas Scientific, Denmark), which was main-

tained within 0.02 �C of the desired temperature.

Survival assay

One or 2 days prior to the experiment, human colorectal

carcinoma LS174T cells were plated into six well plates.

For trypan blue exclusion assay, trypsinized cells were

pelleted and resuspended in 0.2 mL of medium, 0.5 mL of

0.4 % trypan blue solution, and 0.3 mL of phosphate-buf-

fered saline solution (PBS). The samples were mixed

thoroughly, incubated at room temperature for 15 min, and

examined by automated cell counter (LUNA, Logos Bio-

systems, Annandale, VA, USA). At least 300 cells were

counted for each survival determination.
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Protein extracts and polyacrylamide gel electrophoresis

(PAGE)

Cells were scraped with 1 9 Laemmli lysis buffer

[including 2.4 M glycerol, 0.14 M Tris (pH 6.8), 0.21 M

SDS, and 0.3 mM bromophenol blue] and boiled for 3 min.

Protein concentrations were measured with BCA protein

assay reagent (Pierce, Rockford, IL, USA). The samples

were diluted with 1 9 lysis buffer containing 20 mM

dithiothreitol (DTT), and an equal amount of protein was

loaded on 10–15 % SDS-polyacrylamide gels. SDS-PAGE

analysis was performed using a Hoefer gel apparatus.

Immunoblot analysis

Proteins were separated by SDS-PAGE, electrophoretically

transferred to nitrocellulose membranes and blocked with

5 % skim milk in TBS-Tween 20 (0.05 %, v/v) for 30 min.

The membrane was incubated with primary antibodies for

2 h at room temperature or overnight at 4 �C. Horseradish

peroxidase-conjugated anti-rabbit or anti-mouse IgG was

used as the secondary antibody. Immunoreactive protein

was visualized by the enhanced chemi-luminescence pro-

tocol (ECL, Amersham, Arlington Heights, IL, USA).

Annexin V binding

The translocation of phosphatidylserine, one of the markers

of apoptosis, from the inner to the outer plasma membrane

was detected by binding of allophycocyanin (APC)-con-

jugated Annexin V. LS174T cells were plated into plates,

treated with drugs for 24 h and stained with mouse anti-

human Annexin V antibody and propidium iodide (PI). The

staining was terminated and cells were immediately ana-

lyzed by flow cytometry.

JC-1 mitochondrial membrane potential assay

After drug treatment, cells were stained using JC-1 mito-

chondrial membrane potential detection kit (Invitrogen) for

10 min and analyzed by flow cytometry. Fluorescence

intensity was measured with the Accuri C6 flow cytometer

(Accuri Cytometers, Inc., San Jose, CA, USA). Results

were analyzed with VenturiOne software (Applied

Cytometry, Inc., Plano, TX, USA).

Cytochrome c release assay

To determine the release of cytochrome c from the mito-

chondria, LS174T cells growing in 100 mm dishes were

used. After drug treatment, mitochondria and cytosolic

fractions were prepared from treated cells by using a

Mitochondrial Fractionation Kit (Active Motif, Carlsbad,

CA, USA) following company instructions and reagents

included in the kit. Cytosolic fractions were subjected to

SDS-PAGE and analyzed by immunoblotting using anti-

cytochrome c antibody. Equal loading of the mitochondrial

pellets was confirmed with anti-COX IV antibody.

Bak oligomerization

After drug treatment, cells were collected and resuspended

in homogenization buffer. The cell suspension was

homogenized several times and centrifuged at 1,0009g for

10 min at 4 �C to obtain nuclear pellets. Supernatant was

transferred to a new 1.5 mL tube and spun at 10,0009g for

15 min at 4 �C to pellet the mitochondria. Isolated mito-

chondrial fractions and cytosolic fractions were cross-

linked with 1 mmol/L dithiobis (Pierce) for 1 h at room

temperature. After cross-linking, the mitochondria were

pelleted and samples were subjected to SDS-PAGE under

nondenaturing conditions followed by immunoblotting for

Bak.

Stable transfection

Cells stably overexpressing HA-Bcl-xL wild-type (WT) or

mutant types were prepared by transfecting CX-1 cells with

human Bcl-xL tagged with HA epitope in pCDNA3.1

vector: HA-Bcl-xL WT, HA-Bcl-xL S62A (mutation of

serine 62 to alanine), and HA-Bcl-xL S62D (mutation of

serine 62 to aspartate; a kind gift from Dr. TC Chambers,

University of Arkansas). Cells were maintained in 500 lg/

mL G418.

Immunoprecipitation

Briefly, cells were pelleted and lysed by CHAPS buffer

with protease inhibitor cocktail. Cell lysates were com-

pletely disrupted by repeated aspiration through a 27 gauge

needle. Cell debris was removed and protein concentration

was determined by BCA Protein Assay Reagent. For

immunoprecipitation, 500 lg of lysate was incubated with

1 lg of rabbit anti-Bcl-xL/anti-HA antibody or rabbit IgG

at 4 �C overnight, followed by the addition of protein

G-agarose beads and rotation at 4 �C for 4 h. Immuno-

precipitates were collected by centrifugation and the pellet

was dissolved in electrophoresis sample buffer for heat

denaturation. The immune complexes were subjected to

SDS-PAGE followed by immunoblot analysis.

Statistical analysis

Statistical analysis was carried out using GraphPad InStat 3

software (GraphPad Software, Inc., San Diego, CA, USA).
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Significance was set at values of *(p \ 0.05), **(p \
0.01), or ***(p \ 0.001).

Results

Characterization of a secretory TRAIL-armed

adenoviral vector

We constructed pAdlox-FETZ shuttle vector which has a

CMV promoter-driven secretory human Flt3 ligand-iso-

leucine zipper-human TRAIL fusion protein gene. This

plasmid encoded the secretable form of chimeric TRAIL

proteins which were detected in Fig. 1a. Next, we con-

structed a secretory TRAIL-armed adenoviral vector

(Ad.TRAIL) and characterized the vector. Data from

Fig. 1b shows an expression of TRAIL in Ad.TRAIL

infected 293 cells in the absence/presence of caspase

inhibitor z-VAD-fmk, which was added to prevent TRAIL-

induced apoptosis. Unlike most cancer cell lines, immor-

talized normal human embryonic kidney 293 cells were

resistant to TRAIL. To examine an apoptotic capacity of

Ad.TRAIL, human colon adenocarcinoma LS174T cells

were infected with various multiplicity of infection (MOI)

of Ad.TRAIL and its control adenoviral construct encoding

green fluorescent protein (Ad.GFP). As shown in Fig. 1c,

Ad.TRAIL induced PARP cleavage, the hallmark feature

of apoptosis. TRAIL-induced PARP cleavage was depen-

dent upon MOI. Unlike Ad.TRAIL, Ad.GFP induced

minimal apoptosis only at MOI of 100. Next, we investi-

gated the kinetics of apoptosis after Ad.TRAIL infection in

human colorectal carcinoma HCT116 and LS174T cells.

Figure 1d shows that PARP cleavage occurred 24 h after

infection in both cell lines.

Synergistic induction of apoptosis by Ad.TRAIL

in combination with mitomycin C and hyperthermia

To investigate the effect on cell viability of the application

of Ad.TRAIL in combination with mitomycin C and

hyperthermia, LS174T cells were infected with Ad.TRAIL

(MOI 25) and treated with 5 lg/mL mitomycin C for 24 h.

After treatment, the cells were heated at 42 �C for 1 h and

incubated at 37 �C for 3 h and then cell viability was

determined by trypan blue dye exclusion assay. As shown

in Fig. 2a, synergistic cytotoxic effect was observed in

Ad.TRAIL ? mitomycin C or Ad.TRAIL ? mitomycin

C ? hyperthermia compared with any single treatment

(p \ 0.05). We further investigated whether the combina-

torial treatment-induced cytotoxicity was associated with

Fig. 1 Production of secretory TRAIL and its cytotoxicity. a 293

cells were non-transfected (lane 1), or transfected with 4 lg pAdlox

empty vector (lane 2) or pAdlox-FETZ vector (lane 3, 4) and then

incubated for 48 h. After incubation, 30 lg of cell lysate protein (lane

1, 2, 3, and 4) or 30 lL of cell culture medium (lane 5, 6) were

immunoblotted with anti-TRAIL antibody. b 293 cells were infected

with Ad.TRAIL (MOI 10) in the presence/absence of caspase

inhibitor (20 lM). Cell lysates were prepared in lysis buffer and

immunoblotted with anti-TRAIL. c LS174T cells were infected by

various MOI of Ad.TRAIL or Ad.GFP for 24 h and harvested. Cell

lysates were immunoblotted with anti-PARP antibody. d HCT116 and

LS174T cells were infected with Ad.TRAIL (MOI 50) and harvested

at various time points. Cell lysates were immunoblotted with anti-

PARP antibody. Actin was used as an internal standard
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apoptosis. Data from the flow cytometry assay demonstrate

that the combinatorial treatment-induced cytotoxicity was

associated with apoptosis (Figs. 2b, c); apoptotic death

cells were observed in the lower right quadrant (early

apoptotic death) and the upper right quadrant (late apop-

totic death) of the plots. The results from Figs. 2b, c clearly

demonstrate that apoptosis was time-dependent during

combined treatment. Figures 2b, c clearly show that treat-

ment with Ad.TRAIL in combination with mitomycin C

and hyperthermia enhanced synergistic induction of apop-

totic death. These synergistic effects were due to an

increased activation (cleavage) of caspase 8/9/3 and thus,

the hallmark feature of apoptosis, PARP cleavage

(Fig. 3a). Similar results were observed in LS180, CX-1

and HCT116 cell lines (Figs. 3b, c, d). These results

indicate that synergistic induction of apoptosis by combi-

natorial treatment with mitomycin C/Ad.TRAIL/hyper-

thermia is mediated through an increase in caspase

activation.

Role of the JNK-Bcl-xL-Bak pathway

in the combinatorial treatment-induced apoptosis

We previously reported that the JNK-Bcl-xL pathway plays

an important role in the synergistic effect on apoptosis of

treatment with multiple cytotoxic agents [43, 57]. This

possibility was examined during treatment with mitomycin

C/Ad.TRAIL/hyperthermia. Phosphorylation of JNK and

Bcl-xL was observed during treatment with mitomycin

C/Ad.TRAIL/hyperthermia in LS174T cells (Fig. 4a).

Even with treatment with only mitomycin C, phosphory-

lation of JNK and Bcl-xL was detected. Moreover, an

increase in phosphorylation was observed during combi-

natorial therapy. Data from immunoprecipitation assay

show that the combinatorial treatment induced the disso-

ciation of Bak from Bcl-xL (Fig. 4b). We previously

reported that phosphorylation of Bcl-xL alters the interac-

tions between Bcl-xL and Bax and then leads to Bax

oligomerization [43]. Since the presence of Bax was not

Fig. 2 Synergistic induction of cytotoxicity by treatment with

Ad.TRAIL in combination with mitomycin C and hyperthermia in

LS174T cells. LS174T cells were treated with Ad.TRAIL (MOI 25)

or/and mitomycin C (5 lg/mL) for 24 h and exposed to normothermia

(37 �C) or hyperthermia (42 �C) for 1 h, and then incubated for 3 h at

37 �C. a Cell survival was analyzed by the trypan blue dye exclusion

assay. b Cells were stained with fluorescein isothiocyanate (FITC)-

Annexin V and propidium iodide (PI). c Cells were treated with

Ad.TRAIL (MOI 25) and mitomycin C (5 lg/mL) for 4, 8, and 16 h

and exposed to hyperthermia (42 �C) for 1 h, and then incubated for

3 h at 37 �C. Apoptosis was detected by the flow-cytometric assay
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detected in LS174T cells (data not shown), we examined

Bak oligomerization. Bak oligomerization occurred during

treatment with Ad.TRAIL in combination with mitomycin

C with/without hyperthermia (Fig. 4c). Oligomerized Bak

may bind to the mitochondria, altering mitochondrial

membrane potential (Fig. 4d) and causing a cytochrome c

release (Fig. 4e).

Alteration of interactions between Bcl-xL and Beclin-1

and cleavage of Beclin-1 during the combinatorial

treatment

To examine whether phosphorylation of the S62 residue on

Bcl-xL is important for apoptosis, CX-1 cells were stably

transfected with plasmid containing HA-Bcl-xL WT,

phosphor-defective HA-Bcl-xL S62A or phosphor-mimic

HA-Bcl-xL S62D. Figure 5a shows that HA-Bcl-xL S62A,

but not HA-Bcl-xL WT and HA-Bcl-xL S62D, inhibited

apoptosis. These results suggest that the phosphorylation of

Bcl-xL plays an important role in the combinatorial treat-

ment-induced apoptosis. We previously reported that

phosphorylation of Bcl-xL affects interaction between Bcl-

xL and Beclin-1, causing dissociation of Beclin-1 from

Bcl-xL [57]. Data from immunoprecipitation assay show

that overexpression of dominant-negative mutant type of

Bcl-xL S62A, but not wild type Bcl-xL WT or dominant-

positive mutant type of Bcl-xL S62D, suppressed the dis-

sociation of Beclin-1 from Bcl-xL (Fig. 5b). Several

researchers reported that Beclin-1 has two cleavage sites at

D133 and D146 residues [58] and that Beclin-1 is cleaved

by caspase 8, and C-terminal fragment of Beclin-1 local-

izes at the mitochondria and then induces cytochrome

c release [58, 59]. Figure 6a shows that the combinatorial

treatment enhanced Beclin-1 cleavage. On Fig. 6b, data

from Beclin-1 double mutant (D133A/D146A) knock-in

HCT116 cells show suppression of cleavage of PARP and

caspase 8/9/3 (apoptosis). Beclin-1, a mammalian homolog

of yeast autophagy-related protein 6 (Atg6), functions in

autophagy by initiating autophagosome formation [60].

However, it has been suggested that crosstalk between

apoptosis and autophagy is associated with caspase-medi-

ated cleavage of Beclin-1 which destroys its pro-autopha-

gic activity and can then amplify mitrochondrion-mediated

apoptosis through the cleaved C-terminal fragment [58].

Fig. 3 Synergistic induction of apoptosis by treatment with

Ad.TRAIL in combination with mitomycin C and hyperthermia in

colon cancer cells. LS174T (a), LS180 (b), CX-1 (c) and HCT116

(d) cells were treated with Ad.TRAIL (MOI 25 or 50) or/and

mitomycin C (3.5 or 5 lg/mL) for 24 h and exposed to normothermia

(37 �C) or hyperthermia (42 �C) for 1 h, and then incubated for 3 h at

37 �C. After treatment, the cleavage of caspase 8/9/3 or PARP was

detected by immunoblotting. Actin was used to confirm the equal

amount of proteins loaded in each lane
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Our data suggest that the combinatorial treatment-induced

synergistic apoptotic death is mediated through Beclin-1

cleavage.

Discussion

Several conclusions can be drawn upon consideration of

the data presented here. First, a combinatorial treatment of

Ad.TRAIL, mitomycin C and hyperthermia synergistically

induces apoptosis. Second, the JNK-Bcl-xL-Bak pathway

plays an important role in the apoptosis through activating

the mitochondria-dependent pathway. Third, a combinato-

rial treatment of Ad.TRAIL, mitomycin C and hyperther-

mia induces dissociation of Beclin-1 from Bcl-xL and

promotes Beclin-1 cleavage which results in enhancement

of apoptosis.

The DNA damage surveillance network may orchestrate

cellular responses to mitomycin C-induced DNA damage

through the recruitment of DNA damage sensing mole-

cules, transducer and effector proteins [61]. Ataxia telan-

giectasia mutated (ATM) and Nijmegen breakage

syndrome (NBS1) cooperatively sense DNA damage and

post-translationally modify transducers such as BRCA1

(early-onset familial breast and ovarian cancer), MDC1

(mediator of DNA damage checkpoint 1), 53BP1 (p53-

binding protein 1), and c-Abl [62, 63]. These modified

transducer proteins amplify and transduce the signals to

downstream effectors such as H2AX, p53, Chk2 and JNK

[64–72]. It is possible that mitomycin C-activated JNK is

mediated through the ATM-c-Abl signal transduction

pathway. This possibility needs to be further investigated.

We previously reported that Bcl-xL undergoes phos-

phorylation in response to treatment with oxaliplatin,

TRAIL/mapatumumab and hyperthermia [42, 43, 57, 73–

75]. Bcl-xL phosphorylation requires activated JNK, which

can recognize a proline residue on the carboxyl side of the

phospho-acceptor [76]. Some studies reported Bcl-xL

phosphorylation to occur on serine 62, while others

reported it to occur on threonines 47 and 115 [77, 78]. This

study with site-directed mutagenesis at Ser-62 showed that

cells expressing a validated phospho-defective Bcl-xL

mutant are resistant to the combinatorial treatment of

Ad.TRAIL, mitomycin C and hyperthermia-induced

apoptosis, whereas cells expressing a phospho-mimic Bcl-

xL are sensitive to the combinatorial treatment-induced

apoptosis, indicating that phosphorylation at Ser-62 is a

key regulatory mechanism for antagonizing anti-apoptotic

function in the combinatorial treatment.

Previous studies have shown that JNK1-mediated

phosphorylation of Bcl-2 at residues T69, S70, and S87 is

b Fig. 4 Ad.TRAIL in combination with mitomycin C and hyperther-

mia-induced activation of the JNK-Bcl-xL pathway, Bak oligomer-

ization, mitochondrial membrane potential change and cytochrome

c release. LS174T cells were treated with Ad.TRAIL (MOI 25) or/and

mitomycin C (5 lg/mL) for 24 h and exposed to normothermia

(37 �C) or hyperthermia (42 �C) for 1 h, and then incubated for 3 h at

37 �C. a After treatment, cell lysates containing equal amounts of

protein were separated by SDS-PAGE and immunoblotted with anti-

phospho-JNK, anti-JNK, anti-phospho Bcl-xL or anti-Bcl-xL anti-

body. b Cell lysates were immunoprecipitated with anti-Bcl-xL

antibody or IgG and immunoblotted with anti-Bak antibody. The

presence of Bcl-xL and Bak in the lysates was examined. Asterisk (*)

is IgG light chain (LC). c Mitochondrial and cytosolic fractions were

isolated and were cross-linked with 1 M DSP (dithiobis, succinimidyl

propionate) for 30 min and then subjected to immunoblotting with

anti-Bak antibody. Bak monomer (91) and multimer (92, 93) are

indicated. COX IV and actin were shown as an internal standard of

mitochondrial fraction and cytosolic fraction, respectively. d Cells

were stained with JC-1 and then analyzed by flow cytometry.

e Cytochrome c release into cytosol was determined by immunoblot-

ting for cytochrome c in the cytosolic fraction. Actin was used to

confirm the equal amount of proteins loaded

Fig. 5 Role of Bcl-xL in apoptosis. CX-1 cells were stably transfec-

ted with HA-Bcl-xL WT, HA-Bcl-xL S62A or HA-Bcl-xL S62D

plasmid and then treated with Ad.TRAIL (MOI 25) and/or mitomycin

C (5 lg/mL) for 24 h and exposed to normothermia (37 �C) or

hyperthermia (42 �C) for 1 h, and then incubated for 3 h at 37 �C.

a After treatment, lysates containing equal amounts of protein were

separated by SDS-PAGE and PARP cleavage was detected by

immunoblotting. Actin was used as an internal standard. b Cell

lysates were immunoprecipitated with anti-HA antibody or mock

antibody (IgG) and immunoblotted with anti-Beclin-1 or anti-HA

antibody (upper panels). The presence of Beclin-1 and actin in the

lysates was examined (lower panels)
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required for dissociation of Bcl-2 from Beclin-1 and

autophagy activation [79]. Unlike Bcl-2, data from Fig. 5b

suggests that for Bcl-xL, phosphorylation only at residue

S62 may be sufficient for Bcl-xL dissociation from Beclin-

1. It was reported that D133 and D146 of Beclin-1 are

cleaved by caspase 8 during apoptosis [58, 59]. Caspase

8-mediated cleavage of Beclin-1 inactivates Beclin-1-

induced autophagy and enhances apoptosis by promoting

the release of proapoptotic factors from mitochondria [58,

59]. Studies with the caspase 8-resistant Beclin-1 knockin

cell line clearly demonstrate that the combinatorial treat-

ment-induced Beclin-1 cleavage and apoptosis were

reduced (Fig. 6b), and Beclin-1’s autophagy-promoting

function was restored (data not shown) in Beclin-1 KI

HCT116 cells.

We reported that hyperthermia has a synergistic effect

with TRAIL in causing apoptosis [40–42]. We also

reported that hyperthermia triggers down-regulation of

c-FLIPL (long form of cellular FLICE-inhibitory protein),

an anti-apoptotic molecule, through ubquitination in

several colon cancer cell lines [50]. It has been found that

c-FLIP splice variants (long and short form) bind to FADD

and/or caspase 8/10 and inhibit their activation [51–53].

Thus, down-regulation of c-FLIPL is probably responsible

for hyperthermia-enhanced TRAIL cytotoxicity. Interest-

ingly, long-term pretreatment with TRAIL by expressing

TRAIL from Ad.TRAIL showed a minimal synergistic

effect with hyperthermia, even though down-regulation of

c-FLIPL was observed (data not shown). This may be due

to the activation of TRAIL-associated death signals prior to

hyperthermia. This possibility needs to be further studied.

Our data illustrate that a combinatorial treatment of

Ad.TRAIL, mitomycin C and mild hyperthermia syner-

gistically induces apoptosis and effectively activates the

mitochondria-dependent apoptotic pathway by activating

the JNK-Bcl-xL-Bak pathway. Moreover, our data suggest

that Beclin-1 is dissociated from phosphorylated Bcl-xL

and cleaved during treatment with Ad.TRAIL, mitomycin

C and hyperthermia. The cleavage of Beclin-1 promoted

the combinatorial treatment-induced apoptotic death. The

studies presented here further elucidate a crosstalk between

the JNK-Bcl-xL-Bak pathway and the Bcl-xL/Beclin-1-

mediated pathway during treatment with Ad.TRAIL,

mitomycin C and hyperthermia. A greater understanding of

these interactions may be critical for enhancing the com-

binatorial treatment.
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