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Abstract This article suggests a procedure to derive stochastic population forecasts
adopting an expert-based approach. As in previous work by Billari et al. (2012),
experts are required to provide evaluations, in the form of conditional and uncon-
ditional scenarios, on summary indicators of the demographic components deter-
mining the population evolution: that is, fertility, mortality, and migration. Here,
two main purposes are pursued. First, the demographic components are allowed to
have some kind of dependence. Second, as a result of the existence of a body of
shared information, possible correlations among experts are taken into account. In
both cases, the dependence structure is not imposed by the researcher but rather is
indirectly derived through the scenarios elicited from the experts. To address these
issues, the method is based on a mixture model, within the so-called Supra-
Bayesian approach, according to which expert evaluations are treated as data. The
derived posterior distribution for the demographic indicators of interest is used as
forecasting distribution, and a Markov chain Monte Carlo algorithm is designed to
approximate this posterior. This article provides the questionnaire designed by the
authors to collect expert opinions. Finally, an application to the forecast of the
Italian population from 2010 to 2065 is proposed.
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Introduction

Population forecasts are in strong demand by both public and private institu-
tions as crucial ingredients for long-range planning. Official national and
international agencies have traditionally derived population projections in a
deterministic way, specifying multiple scenarios (almost always three) based
on combinations of assumptions on the future behavior of demographic com-
ponents. These scenarios—usually referred to as low, medium, and high sce-
narios—yield separate forecasts of the population by age and sex after the
cohort-component method is applied. Indeed, virtually all population forecasts
are based on this method so that the forecast of the population reduces to the
forecasts of the three main components of the demographic change: fertility,
mortality, and migration. When a deterministic approach is adopted, uncertainty
is not explicitly incorporated in the model, and thus the expected accuracy of
the forecasts cannot be assessed: prediction intervals for any indicator depend-
ing on the future population structure cannot be computed. Nevertheless, it is
common practice to consider high/low scenario intervals as containing the likely
future values of population levels and/or other demographic indicators.

More recently, stochastic (or probabilistic) population forecasting has received
growing attention by researchers and, to a lesser extent, by forecasting agencies (see
Land 1986). Three main approaches to stochastic population forecasting can be
roughly distinguished in the literature (Keilman et al. 2002). The first approach
adopts standard procedures in time series analysis: for each indicator, a model is
fitted to past series of data, and forecasts are obtained by extrapolation. Forecasting
models are developed both within the classic (frequentist) and the Bayesian
approach. The pioneering demographic forecasting model that uses times series
analysis in a classical framework is the one attributed to Lee and Carter (1992),
which was originally proposed to forecast mortality and was later modified to
address fertility forecasting (see Lee 1993; Lee and Tuljapurkar 1994). Several
extensions, generalizations, and modifications of Lee-Carter approach have been
proposed more recently (Booth et al. 2002; Cairns et al. 2006, 2011; Hyndman
and Booth 2008; Hyndman and Ullah 2007; Hyndman et al. 2013). Booth and
Tickle (2008) reviewed methods based on generalizations of the Lee-Carter
procedure. Some of these generalizations are based on ideas from functional data
analysis. Within this approach, Hyndman and Ullah (2007) provided robust forecasts
of age-specific mortality and fertility rates, while Hyndman et al. (2013) discussed
coherent mortality forecasts for more subpopulations, using functional principal compo-
nents models of simple functions of the rates. Booth et al. (2006) and Shang et al. (2011)
discussed interesting comparisons and evaluations of some of thesemethods formortality
forecasting. Also, Bayesian hierarchical time series models have been proposed to derive
fertility (Alkema et al. 2011) and mortality (Raftery et al. 2013) forecasts. As a sign that
these approaches are entering the mainstream of demographic forecasting, the 2012
Revision of United Nations World Population Prospects (United Nations, Department
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of Economic and Social Affairs, Population Division 2013) complements traditional
deterministic scenarios with stochastic forecasts that are obtained by applying Bayesian
time series models (see also Raftery et al. 2012, 2013, 2014).

The second main way to address stochastic population forecasting is based on the
extrapolation of empirical errors, with observed errors from historical forecasts used in
the assessment of uncertainty (see, e.g., Stoto 1983). Alho and Spencer (1997) pro-
posed in this framework the so-called scaled model of error, which was used to derive
stochastic population forecasts within the UPE (Uncertainty Population of Europe)
project (Alders et al. 2007).

Here, we follow the third approach, also known as “random scenario.” In this
approach, the forecast distribution of demographic components is derived by starting
from suitably elicited expert opinions. Usually, a summary indicator for each of the
three basic components of the population evolution is considered during the elicitation
stage. Indicators have to be particularly meaningful to experts: that is, they have to be
related to the measures they use to describe and study a demographic phenomenon. In
Lutz et al. (1998), the forecast of a demographic indicator at a given future time T is
assumed to be the realization of a random variable having a Gaussian distribution with
parameters specified on the basis of expert opinions. For each time t of the forecasting
interval [t0, T], the forecast is obtained through interpolation between the starting
known and the final random values. In Billari et al. (2012), the probability distribution
of each indicator over the interval [t0, T] is specified using expert opinions at time T on
the indicator, conditional on its value at an intermediate point. More precisely, after
having fixed a point t1 in (t0, T), the expert is required to elicit the mean and a specific
upper quantile for each indicator at time t1; in a second step, the mean and a specific
upper quantile of the same indicator at time T, given its value at time t1. Assuming that
the pair of values of the indicator at times t1 and T follows a bivariate normal
distribution and interpolating the intermediate values, the whole distribution of each
indicator over the interval [t0, T] is determined. In this way, correlations across
time for each indicator are obtained indirectly through marginal and conditional
evaluations. Finally, the joint probability distribution for all indicators is obtained
assuming independence among indicators. In this approach, one can rely for
elicitations on a single expert or on several experts; in the latter case, inputs for
the projections can be obtained by simply averaging all the elicitations.

In this article, we suggest a new method, through which we derive expert-
based stochastic population forecasts that explicitly take into account the rela-
tionships both between demographic components and between experts. We
build on the conditional expert-based approach of Billari et al. (2012). Our
contribution addresses two main issues.

First, we define for each expert a joint distribution for the demographic indicators
that allows for both across-time correlation for each indicator and for the dependence
between different indicators at the same time and across time. Whether it is essential to
allow for dependence between different demographic components is questionable. In
many contexts, it might be better to ignore possible weak correlations than to try to
estimate them (as in the case of multivariate time series forecasting compared with
independent univariate time series). For these reasons, it is common practice in
population forecasting to assume independence among fertility, mortality, and migra-
tion. Nevertheless, we believe that the most sensible approach is to be neutral in some
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respect—that is, to allow for dependence without imposing it. In our proposal, the
presence, degree, and type of relationship among demographic components stem from
the evaluations of the experts on their joint development through time. The indepen-
dence among demographic components is therefore not excluded because it might be
the result of expert opinions. As we will see in the application of our method to the
forecast of the Italian population, correlations among demographic components are
indeed quite low.

Second, we propose a suitable way to combine opinions elicited from several
experts to be used as the basis for the forecasts. A wide literature is available
on the problem of the aggregation of expert opinions. For a very good and
comprehensive (albeit dated) review on this topic, see Genest and Zidek (1986).
Generally speaking, pooling expert opinions means to merge many individuals’
probability distributions on unknown objects into a single collective assignment;
in our context, these objects are the demographic indicators of interest.
Classical pooling methods proceed by averaging expert opinions; for instance,
the linear rule derives the collective assignment through the (possibly weighted)
average. Similarly, one can define geometric or logarithmic pooling rules.
McConway (1981) discussed some theoretical features and properties of this
class of combination methods. As observed by Genest and Zidek (1986) and
Dietrich (2010), pooling methods based on averaging are affected by the lack
of a normative basis for choosing weights: generally, no specific indications can
be given concerning the choice and interpretation of weights. If the same experts
have provided forecasts before and the accuracy of those forecasts can be
evaluated against actual values, then the forecast variance associated with each
expert can be computed. Hence, in this case, it is possible to weight experts’
evaluations through their inverse forecast variances. This could be a feasible
strategy in the case of past forecasts released by official agencies—considering
a forecasting agency as a single expert. An alternative approach could be to
weight experts on the basis of evaluations of their actual expertise in the field,
measured by means of their publication rate or in the production of projections
within official agencies.

An expert’s opinion is the expression of the person’s beliefs. Nevertheless, it
can be seen as based on the experience that the individual has had with the
issue at hand. Experts who have undergone similar training and who have
shared the same knowledge environment will typically share quite a large
amount of information. The actual opinions of experts may therefore differ
for two main reasons. First, experts may not share exactly the same
information. Second, they may not interpret shared information in the same
way. Linear and classical pooling methods do not explicitly consider this
difference. In this regard, Dietrich (2010) distinguished the information aggre-
gation problem from the opinion pooling one; he suggested a method for
combining opinions within a Bayesian approach using all information spread
asymmetrically over the individuals. In this article, we address the same issue,
but we make use of a different approach: the Supra-Bayesian method of
pooling, introduced by Morris (1974) and then developed by others, such
as French (1980, 1981), Winkler (1981), Lindley (1983, 1985), and Gelfand
et al. (1995). Roback and Givens (2001) applied the Supra-Bayesian approach
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to deterministic simulation models. By assuming that expert opinions are data,
the Supra-Bayesian approach makes it possible to combine expert opinions on
unknown quantities within the formal framework provided by Bayesian infer-
ence. The analyst is therefore asked to specify a likelihood function, to be
parameterized in terms of the unknown objects, and a prior distribution for the
parameters. The posterior distribution, obtained by applying Bayes’ theorem,
updates the analyst’s prior opinion on the basis of the evaluations provided by
the experts and can then be used as a collective distribution for the unknown
quantities of interest. This approach takes into account and exploits the vari-
ability of the expert evaluations. In this sense, the higher the number of
experts, the more informative the procedure is.

Through the choice of the likelihood function, the Supra-Bayesian approach
makes it possible to model different kinds of dependence structure. A standard
choice (see, e.g., Lindley 1983, 1985) is a multivariate normal distribution.
When opinions are elicited on several objects and at different time points (as in
our case), the choice of a multivariate normal distribution requires the specifi-
cation of a large number of parameters: marginal means and variances, and
correlations between objects and between experts. Albert et al. (2012) suggested
a hierarchical random-effects model as a more parsimonious approach, in the
sense of the number of parameters to be specified, especially when the number
of experts is large. Here, we suggest implicitly deriving the dependence struc-
ture of the expert evaluations by using a mixture model. We assume that
experts can be grouped into a given number of clusters according to informa-
tion they share. In its simplest version, the model assumes that the number J of
clusters is fixed by the analyst, but a quite straightforward generalization can
treat J as a random parameter. In any case, we let expert evaluations determine
cluster memberships. We assume that within each cluster, expert evaluations are
generated by the same distribution. This makes it possible to account for the
variability of the evaluations of experts exposed to the same information. The
centers of the clusters’ distributions are then assumed to be independently
generated from the same distribution, centered on the unknown vector of future
values of the indicators. In this way, we can account for the heterogeneity of
the expert evaluations that results from their holding different pieces of infor-
mation. At the same time, we achieve the goal of allowing for dependence
between experts without explicitly imposing it.

A fundamental step in any expert-based forecasting procedure is the actual elicita-
tion of expert opinions. To this aim, we designed a questionnaire in collaboration with
researchers of the Italian National Statistical Institute (ISTAT), an official forecasting
agency; we then submitted the questionnaire online to a panel of Italian demographers.
The questionnaire is an enhanced version of the elicitation procedure introduced by
Billari et al. (2012).

The Proposed Approach

Following common practice in demographic forecasting, we derive the forecast of the
population by age and sex through a cohort-component model (Cannan 1895). The
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inputs are age schedules of fertility and mortality, the distribution of migrants by age,
and a starting population by age and sex. Age schedules and distributions are, in turn,
derived by a series of summary indicators. In what follows, we view summary
indicators as the lens through which experts derive information on population. From
among the many available options, we use the following indicators: total fertility rate
(complemented by a timing indicator), male and female life expectancies at birth, and
male and female number of immigrants and emigrants.

As anticipated, our method derives the joint forecast distribution of all summary
indicators on the basis of the evaluations provided by several experts, and it allows for
both dependence between indicators (across time for a single indicator, and at the same
time and across time between any two indicators) and dependence between expert
opinions. Nevertheless, to reduce the dimensionality of the problem, we make some
assumptions on the dependence structure across components. We consider two pairs of
indicators, one made up by the total fertility rate and the total number of immigrants
and the second made up by the male and female life expectancies at birth; this way, the
possible association within each of the two pairs is taken in account. Conversely, the
two pairs are assumed mutually independent, and both pairs are independent on the
total number of emigrants. In fact, dependence is quite obvious for some pairs of
demographic components—for instance, for male and female life expectancies at birth.
In other cases, dependence is more questionable. We allow for a correlation between
fertility and immigration because the literature shows that with fertility decline, the
rising importance of migrants for childbearing becomes an important issue (Sobotka
2008). In this context, the assimilation of immigrants to the fertility patterns of their
countries of destination (see, e.g., Parrado 2011; Parrado and Morgan 2008) will lead to
very weak correlations. Recent evidence has documented the existence of lagged
correlations between migration and population reproduction in contemporary world
population trends (Billari and Dalla Zuanna 2013). Finally, the total numbers of
immigrants and emigrants are then split by sex on the basis of a deterministic rule.
Age schedules for mortality, fertility, and migration are then derived by means of
standard nonstochastic models (which we discuss in more detail later).

Expert evaluations are elicited according to the conditional procedure suggested by
Billari et al. (2012). For all indicators, experts are asked to provide both marginal and
conditional, central and high, scenarios. In this way, information on the means, the
variability, and the across-time and across-indicators correlations can be derived.

We describe how our method works referring to two generic indicators, R1 and R2, to
be forecasted over the interval [t0, T]. We split the forecast interval into two subintervals
by considering an inner point t1. We begin by deriving the distribution of the vectorR =
(R11, R12, R21, R22), where Rij is the random variable associated with the value of Ri at
time tj; i = 1, 2 and j = 1, 2, where t2 = T. The joint distribution of the two indicators
over the entire forecast interval can then be obtained resorting to interpolation tech-
niques. Several methods, from the simplest linear interpolation to more complex
methods based on splines or on wavelets, can be chosen on the basis of both
computational issues and/or demographic considerations. The selected method
clearly may affect the final forecasts. A minimum requirement, here, is that the
variance of each rate increases with time. This can be achieved by choosing a
linear interpolation even if it is known that such choice could underestimate the
uncertainty at intermediate points.
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Consider K experts, and denote by xi the four-dimensional vector of central scenar-
ios provided by expert i on the pair of indicators at times t1 and t2. As mentioned earlier,
we use the Supra-Bayesian approach to derive the joint forecast distribution of the
indicators. Accordingly, x1, x2, . . . , xK are treated as data. Under a Bayesian
framework, the analyst has to specify the likelihood f (x1, . . . , xK | R11, R12, R21,
R22)—that is, the joint distribution of the scenarios parameterized by the unknown
future values of the indicators, and a prior on such parameters. For the likelihood,
following Lindley (1983), a possible choice is a Gaussian distribution centered onR, so
as to assume that experts are not systematically biased. Indeed, the choice of the
Gaussian distribution can be primarily motivated by mathematical convenience because
under such an assumption, the computation of the posterior distribution of the vector of
the indicators is greatly simplified. Nevertheless, the construction of a likelihood of this
kind is cumbersome because of the number of terms of the covariance matrix to be
specified. The covariance matrix is a square matrix of dimension 4K, made up by the
covariance matrices of the evaluations on the components of R for each expert and by
the covariances between the evaluations provided by any two experts on any two
components of R. The elements of the first set of covariances (the covariance matrices
for each expert) can be specified on the basis of the elicitations obtained through a
questionnaire. Simplifying assumptions can be introduced to reduce the number of the
remaining entries. However, the square matrix obtained in this way needs to satisfy the
constraints of a covariance matrix. Moreover, with this choice of the likelihood, the
analyst is asked to fix the correlations between the evaluations of any two experts—
correlations that are one of the foci of the current work.

To overcome the difficulties implied by a Gaussian distribution, we suggest using a
mixture model. As we shall show, in this way, we achieve a greater parsimony—and, at
the same time, we let the expert evaluations shape the structure of the dependence
among future values of the demographic components, thus reducing the number of
specifications by the analyst. The proposed model assumes the existence of J groups of
experts. The number J is fixed by the analyst. However, the model can be modified by
taking a random J—that is, with the number of groups endowed with a prior distribu-
tion. The mixture turns out to be a useful and efficient technical device that allows us to
reduce the dimensionality of the problem while accounting for dependence of expert
evaluations. For each expert, group membership is determined on the basis of the
elicited scenarios. Indeed, the assignment of each expert to a specific group might be
rather difficult and somewhat arbitrary. This is why we prefer a mixture model to a
hierarchical random-effect model, as used by Albert et al. (2012). Within each group j,
the members’ opinions are sampled from a multivariate Gaussian distribution, centered
on μj and having covariance matrixΣj, with j = 1, . . . , J. The group means, μ1, . . . , μJ,
are independently distributed according to a multivariate Gaussian distribution centered
on the vector R of the unknown future values of the indicators. In this way, we
explicitly account for the two possible sources of lack of agreement between the
experts mentioned in the Introduction: experts can be exposed to different information,
or they can interpret the same shared body of information in different ways. For each j,
the covariance matrix of the vector μj is set equal to Σj divided by a fixed constant k0.
The matrices Σ1, . . . , ΣJ are then sampled from an inverse-Wishart distribution with
centerΣ0 and n0 degrees of freedom. Finally, the weights p1, . . . , pJ of the mixture are
distributed according to a Dirichlet distribution with parameters α1, . . . , αJ.
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Schematically, the hierarchical multivariate mixture model we are assuming can be
described as follows:

In the preceding description, Nq(μ,Σ) denotes the q-variate normal distribution with
a mean of μ and a covariance matrix Σ; IW(Σ, n) is the inverse-Wishart distribution
with scale matrix Σ and n degrees of freedom; and Dir(α1, . . . , αJ) is the Dirichlet
distribution with parameters (α1, . . . , αJ). It is worth emphasizing that under the
suggested hierarchical model, the analyst is asked to specify 10J + 4 parameters;
however, in the case of a multivariate normal likelihood, the parameters to be specified
are 10+ (K(K−1) / 2). In this sense, if the number of experts is large enough—that is, if
it is greater than four—we have a gain in parsimony.

Notice that for computational convenience, conjugate prior distributions are
assigned to the parameters involved in the model. The analyst must fix the following
hyperparameters: k0, Σ0, n0, α1, . . . , αJ, μR, ΣR. The general idea is to specify these
hyperparameters to produce noninformative (i.e., highly spread) prior distributions such
that the resulting posteriors are mainly determined by data (in this case, by expert
evaluations). Moreover, assuming (as usually done within the Supra-Bayesian ap-
proach) that the analyst is not an expert, the center μR of the distribution of R,
representing the prior guess on the future behavior of the rates, can be specified relying
on the projections given by some official agencies.

The number k0 is the ratio of the within-group variance to the variance of the group
means (i.e., a measure of the between groups variance). The choice of a small value for
k0 implies a prior confidence in the existence of the groups. The value of n0 affects the
spread of the prior on the groups’ covariances: the smaller n0, the higher such a
spread will be. The smallest admissible value is the order of the covariance
matrix Σj—in this case, n0 = 4.

The matrixΣ0 is the center of the prior on the covariance matricesΣjs of the groups’
distributions. A reasonable choice is to specify it on the basis of the values elicited from
the experts. Indeed, for each expert, we can work out a covariance matrix based on her/
his marginal and conditional scenarios (as discussed in the next section) and relying on
standard results of a multivariate Gaussian distribution (see Billari et al. (2012:
appendix) for detailed computations). We suggest setting Σ0 equal to the arithmetic
mean of such matrices, multiplied by a given constant in order to increase the elicited
variances of the indicators and therefore to take into account the fact that experts often
tend to underestimate the variability of their forecasts.
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For α1, . . . , αJ, according to the properties of the Dirichlet distribution,
the lower the value of sum of the αj, the higher the variability will be.
Moreover, for each j, αj describes the prior probability for an expert to belong
to the jth group. Hence, a standard choice representing prior ignorance can be
to set αj = 1 / J for each j = 1, 2, . . . , J.

As for ΣR, according to our noninformative setting, high values should be chosen
for the variances. The covariances could be fixed equal to 0 in order to ensure a priori
independence among the indicators.

The posterior distribution of the summary indicators at the future time points,
derived according to the Bayesian paradigm, is then used as the forecast distribution.
Such a distribution cannot be derived in closed form, but it can be approximated by
means of a Gibbs sampler worked out on the basis of well-known results in the
literature on mixture models (see, e.g., Lavine and West 1992).

Implementation

The implementation of our proposal requires both expert opinions as inputs and an
algorithm to perform the necessary computations to derive the forecast distribution. In
this section, we describe the questionnaire used to elicit the expert opinions and the
algorithm developed for the implementation of the method.

Elicitation of Expert Opinions Through a Questionnaire

To elicit expert opinions, we designed a questionnaire in collaboration with researchers
of the Population Division of the Italian National Statistical Institute (ISTAT), the
official forecasting agency in Italy. The elicited evaluations are then used to derive
the forecast of the Italian population during 2010–2065, the interval used by ISTAT in
the latest release of Italian deterministic population projections. Following the
procedure described in the previous section, the forecasting interval is divided into
two subintervals, with 2030 as the intermediate point. Experts are asked to provide
scenarios of the indicators of interest at the two time points of 2030 and 2065, with a
mean scenario and a high scenario.

The questionnaire is divided in two sections. In the first section, experts are
asked to discuss the drivers that might affect the development of the fertility,
mortality, and migration. This information is qualitative, and it can help the
analyst in the specification of the priors on the model parameters as well as set
the stage for quantitative elicitations. In the second section, on which we focus
here, the quantitative elicitations of experts are elicited using the conditional
procedure developed in Billari et al. (2012). For the forecasting distribution of
a single indicator (e.g., the total number of emigrants), each expert is asked for
the mean of one indicator given the (real or hypothetical) value of the same
indicator at the previous time. In the case of the joint forecast distribution of a
pair of indicators, such as total fertility rate and total number of immigrants,
each expert is asked for the mean of one indicator conditional on the values
taken by the same indicator and the other indicator at the same time or at the
previous time. In the same way, conditional quantiles are elicited, focusing on
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the high scenario: experts are instructed to consider a high scenario as one with
a .1 probability of being exceeded by the future actual value. After the
conditional means and quantile are given, and assuming a normal distribution,
it is possible to derive each expert’s evaluations on both the central scenarios
and on the marginal variability and on the required correlations.

Questions in the second section are divided in four sections: fertility and
immigration, male and female life expectancies, emigration, and mean mater-
nal age at birth. The evaluation on mean maternal age at birth is used in the
derivation of age schedules of fertility. Therefore, the first two parts aim at
eliciting opinions on a pair of indicators and have the same structure. At the
beginning, the expert is asked to provide central scenarios of the two indica-
tors at 2030 and 2065 and also a high scenario of one of them at 2030. The
subsequent questions elicit conditional central and high scenarios. Typical
queries are as follows: “Assuming that the total number of immigrants is
100,000 in 2030, provide a central scenario for the total fertility rate in
2030,” or “Assuming that the total number of immigrants is 100,000 in
2030 and that the total fertility rate in 2013 is 1.5, provide a central scenario
for the total fertility rate in 2065.” Parts 3 and 4 of the second section of the
questionnaire concern single indicators; thus, central and high scenarios are
elicited conditioned on the values taken by the same indicator at the previous
time points.

The questionnaire was sent to 30 Italian experts (professional academic demogra-
phers); 16 demographers answered the questions on mortality and emigration, and 14
answered the questions on fertility and immigration. As an illustration, Table 1

Table 1 Some results of the elicitation procedure

Total Number of Immigrants (in
thousands) and TFR

Male and Female Life Expectancies
at Birth

Expert 1 Expert 2 Expert 3 Expert 1 Expert 2 Expert 3

c(IM2030) 250 200 350 c(EM2030) 81 81 83

c(IM2065) 250 150 500 c(EM2065) 84 83 87

c(TFR2030) 1.6 1.5 1.5 c(EF2030) 87 86 88

c(TFR2065) 1.6 1.56 1.7 c(EF2065) 90 87 89

σ(IM2030) 100.43 60.30 39.27 σ(EM2030) 0.78 3.10 1.48

σ(IM2065) 120.30 86.20 –87.41 σ(EM2065) 1.10 3.49 1.64

σ(TFR2030) 0.14 0.13 0.11 σ(EF2030) 1.10 3.13 1.68

σ(TFR2065) 0.41 0.16 0.23 σ(EF2065) 1.91 3.16 7.23

ρ(IM2030IM2065) 0.97 0.75 0.45 ρ(EM2030EM2065) 0.71 0.89 0.45

ρ(TFR2030 TFR2065) 0.53 0.03 –0.53 ρ(EF2030EF2065) 0.29 0.95 0.04

ρ(IM2030TFR2030) 0.55 0.03 0.32 ρ(EM2030EF2030) 0.72 0.98 0.92

ρ(IM2065TFR2065) 0.03 0.12 0.22 ρ(EM2065EF2065) 0.57 0.66 0.99

ρ(IM2030TFR2065) 0.12 0.05 –0.15 ρ(EM2030EF2065) 0.42 0.95 0.05

ρ(IM2065TFR2030) 0.07 0.17 –0.76 ρ(EM2065EF2030) 0.51 0.89 0.04
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displays, for selected experts, central scenarios (in the table denoted by c(·)) along with
standard deviations and correlations of selected indicators, as derived from the answers
of the questionnaire.

Figures 1 and 2 depict the expert central scenarios for immigration and total fertility
rate, and for male and female life expectancies at birth, respectively. As shown in
Table 1 and Figs. 1 and 2, expert evaluations are noticeably variable. The method that
we suggest actually embodies such variability in a formal framework.

The Algorithm

Here we describe the algorithm designed for the procedure, which has been imple-
mented in a computer program using MATLAB, to obtain stochastic population
forecasts using our method through simulation. The male and female populations are
separately forecasted and grouped into age intervals. The forecasting period is divided
into time intervals that have the same length as the age intervals. For each forecasting
interval, the algorithm follows the cohort-component method: that is, (1) starting from
an initial population, the population for each age group is projected forward by
applying age- and sex-specific survival rates derived from life expectancy; (2) the
number of births for each subgroup over the time interval and the number of
births still alive at the beginning of the next interval are computed using
fertility and mortality rates; and (3) net migration flows are added, and the
number of immigrants and births from immigrants still alive at the beginning of
the next time interval are projected forward.

The algorithm requires the following inputs:

& The starting population by age and sex
& The length of the time intervals dividing the forecasting period (equal to the length

of the age intervals)
& The (conditional) scenarios provided by the experts on all summary indicators
& The values of the prior parameters
& The number of groups assumed in the mixture model
& The number N of samples to draw for each indicator along with the number of

draws to discard so to ensure the convergence of the Markov chain Monte Carlo
(MCMC) procedure

& The confidence level 1 − γ of the predictive intervals

The algorithm works through four steps. At the first step, means, standard deviations
and correlations (across time and between indicators) of the evaluations of each expert
are worked out.

At the second step, N samples drawn for each indicator by means of a Gibbs
sampler are stored. On the basis of standard results on Bayesian finite mixture
models, because of the choice of the priors, the full conditionals are worked out
in a closed form. For each indicator, the values at each time point of the
forecasting interval are obtained by choosing suitable interpolation techniques.
Samples of net migration flows are computed and split by sex. Therefore, at
this step, we obtain for each summary indicator N draws from the joint
distribution of the values at each of the points in the forecasting interval.
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Fig. 1 Experts’ central scenarios on number of immigrants (in thousands) and total fertility rate at
2030 and 2065
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Fig. 2 Experts’ central scenarios on male and female life expectancies at birth at 2030 and 2065
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At the third step, the whole set of age- and time-specific quantities is derived by
starting from the summary indicators. In this implementation, we choose extremely
simple ways to obtain smooth age-specific quantities. In particular, N matrices of male
and N matrices of female age- and time-specific mortality rates are obtained from the
corresponding life expectancies at birth on the basis of the extended model life tables
provided by the United Nations. N matrices of age- and time-specific fertility rates are
derived from the vectors of total fertility rates and the vectors of mean maternal ages at
birth, using a rescaled normal model, as in Billari et al. (2012). For migration, N
matrices of male and N matrices of female age-specific net migration flows are derived
from the corresponding vectors of total net flows, applying a rescaled gamma model, as
in Billari et al. (2012). This is a simplifying assumption that assumes the absence of
pre-school, retirement, and post-retirement peaks in the age profile of migrations, with
the only peak being related to labor migration. More general models of migration for
the derivation of the age schedules could also be implemented.

At the fourth and last step, the matrices of age-specific mortality rates by sex and the
matrices of age-specific fertility rates along with the matrices of the migration flows by
age and sex are used as inputs of the cohort-component method to derive N matrices of
the total population by age and time for each sex. Such matrices can be considered as
draws from the corresponding distribution of the male and female populations so that
forecasts and prediction intervals can be derived from them. For instance, the forecast
of the female population size of a fixed age and for a fixed forecasting time is given by
the arithmetic mean of the N corresponding draws of the female population size for the
considered age and forecasting time. An estimate of the (1 − γ)% prediction interval is
given by the interval determined by the (γ / 2)Nth and (1 – γ / 2)Nth sample quantiles.
Similarly, stochastic forecasts for summary indicators related to the age structure of the
population (e.g., dependency ratios) can be obtained.

An Application: Bayesian Expert-Based Stochastic Forecasts
of the Italian Population

We now illustrate the results of the stochastic forecast of the Italian population
from 2010 to 2065, obtained by applying our proposed method. The actual results
are based on N = 10,000 samples of 20,000 drawn from the joint distribution of
the demographic indicators at the two time points of 2030 and 2065. We assessed
the convergence of the MCMC procedure by visual inspection and, more formally,
by Raftery and Lewis’s diagnostic tests and other tests implemented in the R
package coda (Plummer et al. 2006; Raftery and Lewis 1992). The prior param-
eters are specified as follows. The prior mean μR of the vector of the indicators is
set equal to the vector of the central scenarios provided by ISTAT. For ΣR, the
covariances are all fixed equal to 0, while the prior variances are specified by
inflating the values derived from high/low ISTAT scenarios. We chose this strategy
to specify a diffuse prior. Table 2 shows the prior means and standard deviations
for each indicator. As discussed earlier, Σ0 is given by the arithmetic mean,
computed over all experts, of the covariance matrices of their elicitations, multi-
plied by a suitable positive constant in order to inflate it. The spread parameters k0
and n0 are chosen to ensure a high variability in the prior on the groups’ means
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and covariance matrices. More specifically, k0 is set equal to 1, and n0 is set equal
to the dimension of vector R. Finally, we set αj =1 / J, thus ensuring a diffuse
prior assignment on the groups’ probabilities.

The mixture model is fitted for several choices of the number J of mixture compo-
nents. For each of the resulting models, the Bayesian information criterion (BIC) is
computed. For comparison, we also consider the model obtained by assuming that the
expert evaluations are sampled from the same multivariate Gaussian distribution, with
mean μ and covariance matrix Σ (nonmixture model). A multivariate Gaussian distri-
bution centered on R and with covariance matrix Σ / k0 is assigned to μ. The same
prior assignment used for the mixture model is specified for R; an inverse-Wishart prior
distribution, with parameters Σ0 and n0, is assigned to Σ. The values of n0 and k0 are
chosen as for the mixture model. Table 3 shows the forecasts—that is, the posteriors’
means and standard deviations, and correlations for the total number of immigrants (in
thousands) and total fertility rate as obtained from the mixture model for J = 2, 3, 4, and
5, and from the nonmixture model. As shown in the table, the posterior values obtained
by letting J vary do not differ significantly, thus proving the robustness of the model
with respect to the choice of the number of components. The forecasts under the
nonmixture model are characterized by higher values for immigration and by an overall
higher variability. The correlations between the two indicators are, in all cases, quite
low. As for the model fit, the mixture with two components scores the smallest BIC
value among all the models considered. Thus, the mixture with two components
provides the best fit of the expert evaluations. This result supports the choice
of the mixture model because it improves on the nonmixture model in terms of
goodness of fit. The choice of the smallest mixture model is not surprising
given the number of observations (i.e., the number of experts). In particular, the
two groups of experts identified by the mixture model differ mainly in terms of
correlations, as shown in Table 4. Similar results for model fit are obtained for
mortality and emigration.

Our preferred specification, which we now show and discuss, is therefore a forecast
based on the mixture model with two components. Table 2 shows the forecasts along
with the 85 % prediction intervals for all the demographic indicators at 2030 and 2065.
Figure 3 depicts the forecast of the Italian population and the corresponding 85 %

Table 2 Prior means and standard deviations and posterior forecasts with 85 % forecast intervals for each
indicator, number of immigrants and of emigrants (in thousands)

Prior Mean Prior SD Forecasts (85 % forecast intervals)

Indicator 2030 2065 2030 2065 2010 2030 2065

Total Fertility Rate 1.5 1.5 0.5 0.5 1.42 1.53 (1.36 1.70) 1.63 (1.36 1.89)

Mean Maternal Age at
Birth

31.8 32.0 1 1 31.4 31.8 (31.3 32.3) 31.8 (30.69 32.91)

Male Life Expectancy 82.8 86.6 3 3 79.5 82.93 (80.36 85.58) 86.89 (83.70 90.13)

Female Life Expectancy 87.7 91.5 3 3 84.6 87.21 (85.01 89.44) 91.02 (86.89 95.04)

Number of Immigrants 321 304 100 100 408.66 321.19 (297.68 346.58) 314.35 (275.98 348.29)

Number of Emigrants 101 128 30 30 83.81 101.34 (89.01 115.83) 101.09 (90.08 111.50)
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prediction interval. Table 5 shows the forecasts of the total population and of the elderly
dependency ratio (the ratio of the population older than 65 to the population aged 14–
65, as a percentage) at 2030 and 2065, along with their 85 % prediction intervals.

Table 3 Posterior means, standard deviations and correlations of total number of immigrants (IM, in
thousands) and total fertility rate (TFR)

Mixture Model

Two Groups Three Groups Four Groups Five Groups Nonmixture Model

E(IM2030) 288.98 282.91 281.74 280.63 299.40

E(IM2065) 270.53 264.91 254.77 256.53 285.89

E(TFR2030) 1.53 1.53 1.52 1.53 1.53

E(TFR2065) 1.63 1.62 1.62 1.63 1.63

σ(IM2030) 65.20 60.30 66.05 65.26 72.11

σ(IM2065) 85.90 90.51 86.96 85.89 99.27

σ(TFR2030) 0.10 0.12 0.11 0.10 0.16

σ(TFR2065) 0.16 0.18 0.23 0.16 0.20

ρ(IM2030IM2065) 0.42 0.44 0.41 0.45 0.44

ρ(TFR2030TFR2065) 0.38 0.35 0.27 0.29 0.57

ρ(IM2030TFR2030) 0.20 0.12 0.10 0.20 0.11

ρ(IM2065TFR2065) –0.09 –0.05 –0.13 –0.07 –0.10

ρ(IM2030TFR2065) –0.07 –0.08 –0.12 –0.13 0.10

ρ(IM2065TFR2030) –0.09 –0.05 –0.06 0.04 –0.18

BIC 291.09 333.54 346.67 380.67 305.10

Table 4 Posterior means, standard deviations, and correlations of total number of immigrants (IM) and total
fertility rate (TFR) in the two subgroups of experts

Group 1 Group 2

E(IM2030) 270.45 269.51

E(IM2065) 243.00 237.81

E(TFR2030) 1.53 1.53

E(TFR2065) 1.64 1.63

σ(IM2030) 69.70 52.00

σ(IM2065) 90.00 79.50

σ(TFR2030) 0.64 0.84

σ(TFR2065) 0.52 0.49

ρ(IM22030IM2065) 0.59 0.39

ρ(TFR2030TFR2065) 0.48 0.17

ρ(IM2030TFR2030) 0.67 0.21

ρ(IM2065TFR2065) –0.39 0.34

ρ(IM2030TFR2065) –0.32 0.41

ρ(IM2065TFR2030) 0.47 –0.32
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Our forecasts of the Italian population show a likely growth between 2010
and 2030. Although the starting population is 60.34 million, the central forecast
for 2030 is 61.65 million; the lower and upper bounds of the prediction interval
are, respectively, 59.83 and 63.48 million. Between 2030 and 2065, the popu-
lation is forecasted to be more likely decrease than to increase. The central
forecast is 55.88 million, but as expected, there is more uncertainty, with a
prediction interval from 48.50 to 63.34 million. Thus, a further increase is not
ruled out.

As results of the forecast, we provide age- and sex-specific population
figures; forecasts of any indicator related to the age structure of the population
can be derived. In particular, the forecasts of the elderly dependency ratio show
that there is virtually no uncertainty that the Italian population will continue to
age during the whole interval. Our method forecasts a rise of elderly
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Fig. 3 Forecasts of the Italian population from 2010 to 2065 with 85 % forecast intervals

Table 5 Stochastic forecast of the Italian population and of the elderly dependency ratio with 85 %
prediction intervals

2010 2030 2065

Total Population 60.340 61.651 (59.828 63.478) 55.876 (48.504 63.342)

Elderly Dependency Ratio 32.20 45.87 (43.52 48.31) 68.58 (59.11 79.14)
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dependency ratio from 32.2 % in 2010 to 45.9 % in 2030 (with prediction
interval ranging from 43.5 to 48.31) and to 68.6 % in 2065 (with prediction
interval ranging from 59.1 to 79.1).

Comparison With Other Approaches

We can assess the performance of our preferred forecast (i.e., the mixture model) by
comparing its results against those obtained under different approaches.

First, what is the impact of correlation between indicators? To assess this, we applied
the mixture model with two components, dropping the assumption of correlation
between indicators and therefore assuming that the three components of demographic
change—fertility, mortality, and migration—are independent. The resulting forecasts
did not show significant differences in terms of point predictions and associated
variability. This was indeed expected because of the low correlations derived from the
expert evaluations as shown in Table 3.

Second, we derived an alternative expert-based stochastic forecast by applying the
method proposed by Billari et al. (2012), using a simple linear combination of expert
opinions. As displayed in Table 6, compared with the mixture model, the linear
combination shows a higher variability in forecasts, with uncertainty regarding the
2065 population ranging from 42.42 to 63.51 million.

Third, we compared the mixture model with official deterministic scenarios by
ISTAT. The comparison is shown in Table 6. Mixture expert-based predictions are,
on average, lower than ISTAT scenarios, with the central scenario of ISTAT not
contained within the 85 % forecast interval in 2030. Expert evaluations on future
trends of demographic components seem to depart from the assumptions behind
ISTAT forecasts. Very recently, ISTAT has undertaken a reconstruction of the Italian
population on the basis of the data made available by the 2011 census. The revised total
population size at 2012 is 59.40 million, but it is not clear whether further revisions will
be made. Both our forecasts and ISTAT projections, based on the same nonrevised
starting population at 2010, would then overpredict the total population in 2012.
However, our predictions show a smaller forecast error if looking at the central forecast.

Table 6 Forecasts of the Italian population, with 85 % intervals

2030 2065

Stochastic Forecasta

Mixture model 61.651 (59.828 63.478) 55.876 (48.504 63.342)

Linear combination 61.152 (58.583 63.733) 52.936 (42.416 63.511)

Forecastb

Mixture model 60.340 61.651 (59.828 63.478) 55.876 (48.504 63.342)

ISTAT scenarios 60.340 63.482 (61.675 65.205) 61.305 (53.390 69.125)

a Comparison with stochastic forecasts based on linear pooling of expert opinions.
b Comparison with deterministic forecasts.
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Conclusions and Discussion

In this article, we suggest a method for deriving stochastic population forecasts on the
basis of a combination of expert evaluations. Expert opinions are elicited through of a
specially designed questionnaire in which experts are asked to provide (conditional)
scenarios on summary indicators of the components of the demographic change. In this
way, opinions are elicited not only on the central scenarios but also on the marginal
variability and on the correlations across time and between indicators. Moreover, our
method allows for the dependence between expert opinions, combining opinions in the
framework provided by the Supra-Bayesian approach. A mixture model is used to
allow for the dependence between experts, under the assumptions that experts belong to
a limited number of groups to which they are assigned according to their actual
opinions. The forecast distribution is derived as a posterior distribution, and a Gibbs
sampling algorithm is designed to approximate this posterior. The approach is imple-
mented through a specially written MATLAB program. We apply the method, using
several Italian demographers as experts, and provide stochastic forecasts of the Italian
population from 2010 to 2065. These forecasts are also compared with the scenarios
provided by the official forecasting agency and with forecasts obtained under alterna-
tive approaches based on the same expert elicitations.

Our proposal lies within the expert-based random scenario approach (Lutz et al.
1998). There is debate among demographers regarding the feasibility and reliability of
forecasts based on expert opinions (see, e.g., Alho and Spencer 1990; Booth 2006; Lee
1999), and some issues that emerge in this debate are worth discussing here. One of the
problems is that experts may be highly influenced by recent trends or idiosyncrasies.
Moreover, experts tend to be overconfident in their opinions, potentially generating
forecasts that have a lower variability than would be desirable. Finally, expert-based
forecasts cannot generally be validated with data, contrary to (for instance) time series
models. Although we recognize the broad validity of these critiques, we can defend our
expert-based random scenario proposal from different perspectives. First, and very
simply, when past data are too limited or even unavailable, expert-based forecasting
may be the only option. This applies also to phenomena that emerge suddenly, such as
low fertility or switchingmigration regimes. If it is possible to learn from other cases (i.e.,
countries) that are leading trends (Alkema et al. 2011; Raftery et al. 2012), some kind of
expert opinion for the leading countries is essential. More importantly, and from a
conceptual point of view, experts are de facto involved in all population forecasts,
regardless of whether these forecasts are explicitly defined as expert-based—and not
only because the forecaster unavoidably uses her/his own expertise and is sometimes the
only expert. In actual practice, differences exist on the stage of the forecasting procedure
at which the involvement of experts takes place, in theway they are asked to contribute to
the forecast, and in the formalization of their involvement. When forecasts are based on
time series models, expert opinions are used in the choice of the statistical model; when a
Bayesian approach is followed, expert opinions are also involved in the specification of
the prior distribution of the parameters. In the approach based on the extrapolation of
empirical errors, experts (usually official agencies) are involved in providing central
trajectories for the stochastic projections and, in some cases, for the a posteriori
evaluation of the forecasts. The uniqueness of the random-scenario approach, in the
version proposed by our method, is that it uses experts as the sole source for the
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derivation of the forecasts. This strategy does not imply at all that information on past
demographic trends or on other countries is neglected. Indeed, if experts are truly experts
(as the ones consulted in a routine way by forecasting agencies), then in their (marginal
or conditional) evaluations, they take into account this information because they have
knowledge of it. Additional research is undoubtedly needed on how to better gain
knowledge from experts in human population forecasting, including, in particular, efforts
to limit their overconfidence. This issue has been tackled in other areas of forecasting, in
fields as diverse as politics, economics and finance epidemiology, and population
ecology (e.g., Speirs-Bridge et al. 2010; Tetlock 2005; Tyszka and Zielonka 2002).

To conclude, it is important to emphasize some specific limitations of our modeling
approach. In the current implementation of our method, we did not explicitly consider
the uncertainty in the initial age and sex distribution of the population, which is
particularly problematic given some inconsistencies between the census-based and the
register-based population in Italy. Nevertheless, this uncertainty could, in principle, be
handled using the same expert-based probabilistic approach we propose: that is, experts
could be called to express opinions on the baseline population as well. Moreover, we did
not explicitly consider the uncertainty that arises bymoving from summary indicators of
fertility, mortality, and migration to the full age schedules. Finally, a drawback thus far
unavoidable in expert-based approaches to stochastic population forecasting is that they
must generally be performed by resorting to summary demographic indicators, even if
models built using age-specific rates could, in some cases, be a better alternative. Further
research will need to be targeted to these limitations.
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