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ABSTRACT 

Benefits of Near-Term Cloud Location Forecasting for Large Solar PV 

Timothy Robert Rudd 

As the „green‟ energy movement continues to gain momentum, photovoltaic 

generation is becoming an increasingly popular source for new power generation.  The 

primary focus of this paper is to demonstrate the benefits of close-to real-time cloud 

sensing for Photovoltaic generation.  In order to benefit from this close-to real-time data, 

a source of cloud cover information is necessary.  This paper looks into the potential of 

point insolation sensors to determine overhead cloud coverage.  A look into design 

considerations and economic challenges of implementing such a monitoring system is 

included.  The benefits of cloud location sensing are examined using computer 

simulations to target important time-scales and options available to plant operators.  

Finally, the economics of advanced forecasting options will be examined in order to 

determine the benefit to plant operators.  

 

Keywords: Energy, Power, Photovoltaic, Renewable, Economics, Cloud, Insolation, 

Forecast. 
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Chapter 1 : Introduction 

1.1 Background 

The sun is the source of all energy on earth.  As an example, plants use 

photosynthesis to produce nutrients like carbohydrates which are food sources for 

animals.  The idea of harvesting energy from the sun is a concept that dates back 

thousands of years.  Using the sun reliably though, has proven difficult to master.  The 

variability of solar energy and renewable energy in general has proven to be the major 

challenge of growing renewable generation capacity. 

There are many benefits to traditional, large-scale, mechanically-rotating, heavy 

inertia based generation.  Traditionally, mechanically generated power was understood to 

flow from high-voltage generation sources to lower-voltage based loads.  This provided 

an inherent level of stability for the power grid as power was expected to flow in a 

unidirectional manner.  Solar energy sources do not follow this same pattern as they are 

often connected close to loads, and are subject to sudden changes in generation due to 

atmospheric and solar time-based changes.  

A recent goal of many developed countries has been to curtail the use of limited 

supply fossil fuels in a “sustainable” fashion.  This phenomenon has gone so far as to 

change the way many consumers think about their global environmental footprint.  In a 

world-leading effort to promote “green” or earth-friendly pursuits, the state of California 

passed Assembly Bill 32 (AB32): Global Warming Solutions Act and former governor 

Arnold Schwarzenegger signed Executive Order S-14-08.  The assembly bill was passed 

in an effort to reduce the statewide level of greenhouse gas emissions.  The executive 
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order mandates that all retailers of electricity meet 33 percent of their total load with 

renewable sources of energy by the year 2020 [1,2]. 

Many utilities are seeking to meet this demand for clean energy with wind farms and 

photovoltaic solar plants.  Meeting such a large target for renewable energy is not 

something that can be done as simply as adding more renewable generation and taking 

off-line old fuel based generators.  Doing this would leave system extremely vulnerable 

to the natural transient conditions of renewable energy sources.  Instead, it is necessary to 

research and implement methods of protecting and controlling the electrical grid from the 

variability of renewable power production.  

This demand will be met by in a number of ways.  One way is distributed generation, 

where small or medium-scale PV arrays are connected to the power system at the 

distribution level.  These PV generators are typically owned by energy customers, and 

produce relatively small amounts of power, i.e. less than 10MW.  An example of 

medium-scale would be the newly installed 5MW Sunset Reservoir Solar Project in San 

Francisco owned by Recurrent Energy [3].  Such PV arrays are typically installed by 

customers seeking to reduce long-term economic expenditures with a large up-front 

payment.  In addition, the demand will need to be met by the category of PV generation 

that is large-scale generation.  These plants interface with the power system at the 

transmission level and produce output power in the 10‟s to 100‟s of MW range.  Recent 

advances in photovoltaic efficiencies, as well as government ordered support and 

incentives have made implementing and operating large-scale PV plants a more feasible 

solution for investors. An advantage of large-scale PV plant inverters is the time-delayed 

smoothing response of the power output to transients in the system.  
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The variability of solar radiation affects all sizes of PV installations, but the 

ramifications of losing large-scale generation are much more significant to operators of 

the power system than their small-scale counterparts.  This is true in spite of the fact that 

the changes in output power are quicker than their large-scale counterparts.  The total 

magnitude of power loss is much less catastrophic on the distribution level where the 

magnitude of generation is typically in line with the size of loads on the respective 

distribution feeder. 

Insolation is the measure of solar radiation that is received at a specific location and 

time, commonly expressed as average irradiance in W/m
2
.  Variations in insolation result 

from two primary factors: time of day, and cloud coverage.  Clouds are one of the biggest 

obstacles to the flourishing of PV generation.  They represent the source of most 

unpredictable rapid changes in the output of PV plants.  There are many factors that 

influence the time it takes a cloud to pass a given point including the cloud size, height, 

and speed.  The time it takes for an entire PV plant to be shaded by passing clouds is on 

the order of minutes [4].  

Being able to predict the passing of a cloud over a given plant would be an incredibly 

useful bit of knowledge for both utility and PV plant operators.  The primary advantage 

for PV plant operators would be the ability to more accurately forecast a day‟s generation 

capacity.  In its current form, PV managers use day-out forecasts to more-or-less guess 

what their generation will be.  Unfortunately, these predictions are subject to strong 

economic pressures.  When a PV plant does not meet its target generation it is penalized 

for underproduction, but the opposite scenario of over-producing is not adequately 

lucrative.  The benefit for system operators comes primarily from being able to avoid 
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voltage instability during cloud-induced power drops by bringing other generation within 

the system online. 

1.2 Thesis Scope 

The primary focus of this paper is to demonstrate the benefits of close-to real-time 

cloud sensing for Photovoltaic generation.  In order to benefit from this close-to real-time 

data, a source of cloud cover information is necessary.  This paper will look into the 

potential of point insolation sensors to determine overhead cloud coverage.  A look into 

design considerations and economic challenges of implementing such a monitoring 

system will be included.  The benefits of cloud location sensing will be examined using 

computer simulations to target important time-scales and options available to plant 

operators.  Finally, the economics of advanced forecasting options will be looked into for 

the benefit of the plant operators.  

1.3 Thesis Organization 

Chapter one of this thesis provides a background on PV generation by introducing the 

need for addressing and understanding the reliability and variability of renewable energy.  

Chapter two provides more background on the nature and effects of meteorological 

changes to PV power generation.  It also contains a discussion concerning the use of solar 

insolation meters at fixed locations to forecast the movement and changes of clouds.  The 

economics of a few solutions will be examined.  Finally, it will compare insolation based 

readings with a sky image based readings for forecasting. 

Chapter three of this thesis goes into case specific simulations demonstrating the 

benefits of near-term cloud location forecasting.  It contains a discussion on the 

ramifications of loss of generation, as well as the effects of bringing other generation 
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sources online.  The stability of the system is analyzed from the perspective of voltage 

and frequency stability. 

Chapter four discusses the economic challenges facing intermittent renewable energy 

sources, and the need for new economic structuring for solar renewable energy. 

The thesis is finally concluded in Chapter five with a summary of the results obtained 

in chapters two through four.  In the end, propositions for future studies relating to the 

inherent uncertainty and variability of renewable power and generation are 

recommended. 
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Chapter 2 : Fixed Location Insolation Meters for Cloud Location Forecasting 

There are many advantages and disadvantages to the use of photovoltaic solar energy.  

The most common advantages include their solid-state nature, ease of installation, ease of 

operation, ease of maintenance, no need for a fuel delivery system, and the ability to be 

modularized.  Common disadvantages for PV energy plants include the high cost of 

generation, large environmental impact in the case of a large centralized PV plant, and 

relatively low conversion efficiencies for terrestrial solar energy.  Aside from these 

disadvantages, an even larger detriment to PV energy lies in the inherent variability of 

solar radiation, or solar insolation, with respect to many different factors.  The three 

largest factors affecting the insolation at a specific location are the time of day, season of 

the year, and meteorological or atmospheric conditions.  To understand the reasons 

behind changes in solar irradiance and how this effects PV generated power, it is 

necessary to understand the basics of sunlight, and clouds. 

2.1 Sunlight 

The solar energy that is received on earth is a product of a massive thermonuclear 

fusion reaction that is the sun.  The sun‟s primary constituent, hydrogen, is constantly 

being converted to helium in this reaction.  The energy produced via the conversion of 

mass to energy comes from the relation E=mc
2
.  Stemming from this massive reaction, 

the energy dissipates uniformly and makes its way to earth [5]. 

 As sunlight makes its way through the earth‟s atmosphere it can be absorbed, 

scattered or make its way unaffected to the surface of the earth.  Water vapor, ozone, 

oxygen, and carbon dioxide all play large roles in the absorption of sunlight whether 

visible, infra-red, or ultra-violet.  Figure 2-1 below shows the effects of the atmosphere 
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on extra-terrestrial solar radiation.  Note how the sunlight at the top of the atmosphere is 

significantly altered by the time it makes its way to sea level. 

 

Figure 2-1: Solar Radiation Spectrum[6] 

The amount of solar radiation that makes its way to the earth is a function of the 

length of a particular path to the surface of the earth.  The light at the top of the 

atmosphere is commonly referred to as air mass = 0(AM 0), and sea level as air mass = 

1(AM 1).  The intensity of solar radiation is reduced from 1367 W/m
2
, the solar constant 

for earth, to roughly 1000W/m
2
 from AM 0 to AM 1, a difference of almost 30% [5].  

The unit for this power density of sunlight is irradiance in W/m
2
.  This is an 

instantaneous measure of intensity of the sun.  The integral of power density over a 

period of time, typically a day, is energy density, known as irradiation.  Irradiation is 

commonly expressed in kWh/m
2
.  The most common way of quantifying irradiation is by 



8 

 

using peak sun hours (PSH).  PSH are the number of equivalent hours at an irradiance of 

1000W/m
2 

based on the entire day‟s irradiance levels [5].  Due to higher levels of 

dispersion around sunrise and sunset, the actual irradiance is less than the irradiance 

around solar noon, or when the sun is normal to the earth‟s surface.  Therefore the PSH 

are always less than the number of hours of daylight for terrestrial applications.  

According to a study done at Lawrence Berkeley National Laboratory, the periods of time 

around sunrise and sunset typically incur 10 to 13 percent changes in photovoltaic output 

over a time period roughly every 15 minutes [4].  

In addition to daily changes in irradiance, the earth is also subject to seasonal 

changes.  In revolving around the sun one time per year, the earth follows an elliptical 

path.  The earth has in inclination angle of 23.45
o
 to its polar axis [5].  For this reason, the 

sun is lower in the winter than the summer, and there is more daylight in the summer than 

the winter.  This pertains to both the northern and southern hemispheres, at their 

respective summer and winter seasons.  Both of these differences between seasons play a 

large role in power output of PV plants. 

Of the total solar energy that makes its way to the surface of the earth, only a small 

fraction of that energy is converted into electrical energy by current photovoltaic panels.  

Common photovoltaic modules have efficiencies in the range of 5 to19 percent, while 

high-end and cost-prohibitive modules have efficiencies around 35 percent.  Panels with 

higher efficiencies are typically used in extra-terrestrial applications. 

2.2 Cloud Cover 

Meteorology is the scientific study of the atmosphere.  Variables to the study of 

meteorology include, but are not limited to: temperature, air pressure, water vapor, and 
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time.  Clouds are typically the result of rising air that reaches its dew-point temperature, 

saturating the air.  This water vapor then condenses on dust, ice, or salt to form a cloud 

[7]. 

As previously mentioned, the greatest obstacle to predictable solar irradiance levels is 

the variability of meteorological and atmospheric conditions, or cloud cover.  The 

changes in irradiance at a specific location caused by a passing cloud can surpass 60 

percent of the peak irradiance on the time-order of a few seconds.  For a larger system, 

the effects are dependent on the size of the PV array, the size, height, and movement of 

the clouds.  For a PV plant with a rated capacity of 100MW, the time it takes for cloud 

cover to entirely cover an un-shaded facility would be on the order of a minute [4]. 

Changes in PV plant output due to clouds are quite different from changes due to the 

position of the sun.  Changes due to the position of the sun are predictable, uniform, and 

correlate well with other PV plants, whereas changes in cloud cover are specific to a 

particular location and do not carry-over to other, even nearby, locales.  Also, clouds 

bring about varying levels of insolation within large PV plants.  This results in a common 

scenario where part of a large plant may be completely unobstructed while another area 

may have significant shading.  This variation of insolation over the area of the PV plant 

leads to the concept of PV plant „smoothing‟.  Studies of large PV plant impacts and 

effects are few and far between.  Much of this is due to the small number of large PV 

plants installed compared to the relatively high number of proposed large PV plants.  One 

of the premier studies out of Lawrence Berkeley National Labs substantiated a concept 

that had been mentioned only a few times before, namely, „smoothing‟.  Smoothing is the 

effect that occurs when sudden spikes of solar irradiance occur over a large PV plant with 
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many panels and inverters [4].  The power output does not vary with the same immediacy 

as it would over a small number of PV panels.  There is an inherent delay and dampening 

of the effects of localized irradiance changes.  Figures 2-2 and 2-3 demonstrate this effect 

on two different power plants, one 30kW and one multi-Megawatt plant.  The dashed 

lines are the output of an insolation meter and the solid lines correspond to the power 

output of the plant. 

 

Figure 2-2: Irradiance vs Power Output for 30kW System [4] 
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Figure 2-3: Irradiance vs Power Output for Multi-MW [4] 

In comparing these two scenarios, 30kW and multi-MW, it is interesting to note that 

as the time scale for irradiance grows versus the observed fractional change in irradiance, 

the systems‟ responses are more in-line.  That is, the longer the power ramp, the higher 

correlation there is between the point sensor and the total plant output.  More specific 

scenarios have been studied at a 13.2 MW facility in Nevada.  It was found in one case 

that a 75% ramp in insolation over a 10 second period resulted in only a 20% reduction in 

power output over the same period.  A more exaggerated ramp of negative 80% in one 

minute led to only a 50% total power reduction.  A negative ramp of 75% recorded by an 

insolation meter over 10 minutes manifested itself in only a 65% percent change in output 

power [4].  



12 

 

Another important bit of information gleaned from the Berkeley labs study is the time 

scale involved in power output ramps for multi-MW power systems.  Whereas smaller 

PV plants are capable of dropping output on the order of a few seconds, larger PV plants 

have time scales on the order of minutes [4]. 

It can be seen that knowing where and when clouds of various sizes will cover a solar 

facility would be an extremely useful tool.  The most common tools for judging weather 

conditions available to plant operators today change based on the size of the facility.  For 

plants fewer than 5MW, John Hostetter at REC Solar installs weather monitoring stations 

consisting of: pyranometers to measure ambient light, wind speed detection, ambient 

temperature thermometers, and cell temperature thermometers.  These weather stations 

are rather minimally useful in prediction and are instead used simply for service 

monitoring.  For facilities larger than those being installed by REC Solar, greater than 

5MW, other solar firms are making significant investments in weather stations including 

radar measurements costing from a few hundred thousand to over a million US dollars 

[8]. 

Current forecasts for large PV plant output capacity are made based upon primarily 

radar and satellite imagery available to the plant operators.  Radar and satellite are the 

most commonly used tools by PV operators.  On their own, both radar and satellite 

forecasts have big downsides.  For radar systems, the cost as well as the range covered is 

prohibitive.  Similarly for satellite, the cost is prohibitive.  The benefit of radar over 

satellite is the resolution of imagery that is available.  The benefit of satellite over radar is 

the range covered.  Satellites are capable of producing images with diameters on the 

order of 1000‟s of miles, while radar is limited to roughly 60 miles reliably.  
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2.3 Fixed Location Insolation Meters for Cloud Location Forecasting 

There are many things to consider when determining how to predict the expected 

output of a PV plant based on insolation observed at various points throughout the 

system.  In an effort to produce reliable and more cost-effective predictions, fixed 

location insolation metering will be examined.  One of the most difficult things to 

develop is the methodology for tracking the clouds with a large number of insolation 

meters. 

The first associated challenge is determining the optimum spacing for the sensors 

within the network to avoid any aliasing effects and get an accurate picture of the 

possible cloud location.  In order to determine the spacing of sensors you need to start 

with a base of acceptable power loss without being detected by insolation meters.  As 

insolation meters can only give readings for insolation at a fixed location, there is a 

significant amount of uncertainty that would arise between two adjacent meters.  Figure 

2-4 demonstrates this principle graphically. 

 

Figure 2-4: Undetected Potential Cloud Movement 
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As an example, the sizing of the Topaz Solar Farm will be used to determine solar 

sensor spacing.  For the sake of this example, a maximum undetected loss of 10% 

operating capacity will be used.  Topaz Solar Farm is in the initial stages of building a 

550MW facility over roughly 3800 acres, approximately 6 square miles.  Ten percent of 

this area corresponds to a cloud area of 380 acres or 1,538,000 square meters.  Assuming 

a square layout, each length of the concerned cloud coverage would be 1240m.  To be 

able to recreate an image based upon these considerations the sensors need to be spaced 

twice as densely, or at least as close as 620m.  As the maximum acceptable undetected 

loss decreases, the spacing of the sensors decreases.  Similarly, fewer sensors will be 

needed to determine the location of clouds if a larger loss of generation capacity is 

acceptable.  

The maximum amount of potential operating loss depends heavily upon the 

conditions of the power grid at the location of a proposed plant.  Where generation 

capacity is abundant, higher losses without ancillary or backup generation may be 

acceptable.  Where loads are more prevalent, generation capacity will be crucial. 

The next factor to determine is the distance these sensors need to be away from the 

plant in all directions.  This corresponds to the time-frame associated with the cloud 

location.  As a longer prediction time-frame is desired by both plant operators and the 

ISO, the distance from the plant needs to similarly increase.  If a 15 minute preview is 

wanted, and the quickest cloud taken into consideration moves at 30mph (reasonable for 

the Central Coast), then the sensors need to go out to a distance of 7.5 miles, or 12km.  

This corresponds to 20 adjacent sensors spaced at 620m. 
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As can be seen, the number of sensors is not trivial, and will manifest itself greatly in 

the proposed cost of such a solution.  Fixing a price point on a cloud tracking solution 

like fixed location insolation meters may appear trivial at first glance, but is in fact rather 

complex.  There are a very large number of isolated sensors required in order to pull off 

such a feat.  In its most simple form, all that would be required is the correct number of 

solar sensors, miles and miles of Ethernet cables with appropriate repeaters as necessary, 

and a computer with a 1-wire input to accumulate the respective data from each of the 

insolation meters.   

The first solution to be examined would work only in an environment with a heavy 

amount of distributed generation lines available.  The biggest challenge to the idea lies in 

the accumulation of data over ranges of approximately 15 mile diameters, as previously 

calculated.  At PG&E similar challenges in data accumulation are met for the purpose of 

Supervisory Control and Data Acquisition (SCADA).  SCADA is used to provide real-

time information to engineers and operators that is extremely helpful in providing a high 

level of service reliability.  The estimated costs per location are provided below in Table 

2-1. 

Table 2-1: Estimated Cost per Location of First Solution 

Item Description Unit Cost ($) 

Solar Diode + 1-Wire Hobby Boards Set-up 30.00 [9] 

Bluewave BGY890 890-960MHz Directional Antenna with Mount 50.00 [10] 

MDS EL805-BO 902-928MHz Radio and Range Extender 600.00 [10] 

Enclosure 18"x16"x10" 50.00 [10] 

Lightning Arrestor  50.00 

PT Distribution Voltage Potential Transformer 900.00 

Pipe  25.00 

Cables  65.00 

Total Cost  1,740.00 
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The costs in this table are based upon both independent research as well as a PG&E 

prepared cost estimate for the purpose of installing SCADA at new switch locations.  

This document, with sensitive information withheld, can be found in the Appendix. 

As you can see, this solution relies upon distribution power using a potential 

transformer to transform to a standard voltage of 120V.  The advantage of such a system 

comes in the form of reliability, only losing power in the event of a faulted circuit.  

Unfortunately, finding a locale with such a heavy penetration of distribution voltage 

power lines and also conducive to large PV is not a likely scenario.  Following the 

voltage transformation, a dc power supply may be used to power both the radio and the 

sensor device.  As the sensor takes it measurements, the measurements are in-turn sent to 

a receiver where the information can be processed. 

A second solution that will be examined uses a similar set-up as road-side Call Boxes.  

The solution uses a 20W solar panel to provide a trickle charge to a 12V 12AH Battery.  

Table 2-2 gives the estimated costs for this solution. 

 

Table 2-2: Estimated Costs for Second Solution 

Item Description Unit Cost ($) 

Solar Diode + 1-Wire Hobby Boards Set-up 30.00 [9] 

Blue Wave BGY890 890-960MHz Direction Antenna with Mount 50.00 [10] 

MDS EL805-BO 902-928MHz Radio and Range Extender 600.00 [10] 

Enclosure 18"x16"x10"  50.00 [10] 

Battery 12V 12AH 75.00  

Lightning Arrestor   50.00  

Pipe    25.00  

Cables    65.00  

Alps AP-NB20W 20W Solar Panel 150.00 [10] 
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Morning Star SS-6-12V 12V PWN Charge Controller 40.00 [10] 

Total Cost    1,145.00  

 

As you can see, there are a couple reasons this could be considered a better option.  

First, the cost of implementing this solution is less than the first primarily due to the lack 

of a costly potential transformer.  In addition, there is no longer any reliance upon the 

grid for power, as power is stored in a localized battery.  

The best method to quantify the predicted path of the cloud would be to utilize an 

occupancy grid, similar to the ones used by autonomous robots in determining their 

surroundings.  Instead of the sensor moving as it does with an autonomous robot to 

characterize fixed surroundings, the solar sensor would be fixed and determining the 

moving location of clouds.  Uncertainty exists not only in the size of the cloud but also in 

the shape of the cloud as it moves through the sky.  As varying levels of solar insolation 

are recorded at multiple sensors, the probability of cloud coverage in a specific location 

can be updated.  Figure 2-5 graphically suggests how this proposed method would work.  

The initial readings determine a cloud that encompasses those locations, as the second 

readings come in, the model determines what the likely location for the cloud is, and will 

be. 
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Figure 2-5: Proposed Simulation Method for Determining True Path 

In order to combat the high number of sensors required, one could also look into other 

options concerning placement and density of solar sensors.  A possible way to reduce the 

number of sensors would be to coordinate time-stamped data with other real time 

observations whether that is satellite imagery, wind speed, or wind direction.  Also, 
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having real-time plant generation levels can help ensure that predictions are being met, 

and if they are not, they could be used to calibrate the predictions. 

2.4 Characterization of Potential Insolation Meter 

An important piece to this large puzzle of cloud location forecasting is the insolation 

meter that will be used.  From an economics and usability stand-point, a Maxim 1-Wire 

network was chosen to accumulate data.  1-Wire Networks are useful in that each device 

connected to the network is uniquely identified by a 64bit ROM ID.  This allows adding 

however many sensors and not worrying about possible cloned sensor issues.  It is also 

useful as it is capable of receiving power over Ethernet instead of requiring a stand-alone 

energy source, though this may not be practical for field application as seen in the 

previously mentioned estimated costs. 

The kit chosen included both the 1-Wire A/D adapter and a photo diode in order to be 

able to time-stamp values of solar insolation that were encountered.  Testing of the circuit 

was performed over a one week period in which all-forms of useful insolation readings 

could be obtained.  A picture of the set-up used is shown in Figure 2-6. 
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Figure 2-6: Sensor Testing Circuit 

Appendix C includes the raw measurements taken over the week-long period. 

The freeware utility „LogTemp for Dallas 1-Wire sensors‟ was used to record the 

values from the 1-Wire A/D.  This program allows for input from any number of 

connected devices, and allows the user to compare time stamped data from the various 

locations easily.  The most useful data was compiled on May 18
th

 where it was possible 

to characterize the sensor based upon moving clouds.  A careful analysis of the data 

shows a range from 60.05mV to 245.69mV.  Based on these values, thresholds for levels 

of insolation can be established.  With simultaneous observation of weather conditions, it 
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was noted that at roughly 100mV, the cloud cover limited any direct solar irradiance, 

shading the entire local area.  

Using a value of 100mV as a threshold, levels of insolation can be deemed cloudy or 

not.  Figure 2-7 shows how this threshold could work based upon values of insolation 

taken on May 18
th

.   

 

Figure 2-7: Insolation Readings for Cloudy vs Sunny Taken on 5/18 

The values surrounded by red are greater than 100mV, while the values surrounded by 

blue are less than 100mV. 

It would be possible to increase the number of thresholds beyond one hard limit at 

100mV, but doing so will greatly increase the size of computed data. 
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2.5 Total Sky Imaging for Cloud Location Forecasting 

At the University of California in San Diego, using Total Sky Imaging (TSI) is being 

researched for applications related to efficiently controlling PV systems.  The test-subject 

for their system is their own campus smart grid that hopes to have up to 3MW of PV 

online in the near future.  They are attempting to use Total Sky Imaging to create an 

accurate model for cloud location forecasting, and implement it within a larger PV 

control system [11]. 

TSIs work by providing a series of time-stamped images of current cloud cover 

conditions.  These images are taken by a camera facing down onto a hemispherical 

mirror. Figure 2-8 shows an example of a TSI.  Current generation TSI are capable of 

producing an image with up to a 3.5 mile diameter [12].  An obvious disadvantage of TSI 

is that it requires a good deal of open space around it, or it requires placement above low 

lying obstacles. 

 

Figure 2-8: Picture of Total Sky Imager [13] 

In their studies at UCSD they have chosen to take images at 30 second intervals and 

process them to determine the amount of cloud cover.  Figures 2-9, and 2-10 demonstrate 

this action. 
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Figure 2-9: Total Sky Imager Raw Image [13] 
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Figure 2-10: Filtered Sky Image to Show Fractional Cloud Coverage (72%) [13] 

In addition, the images are then cross correlated in order to create cloud motion 

vectors.  These vectors are then applied to the sky image to determine the most likely 

path of the cloud.  Figures 2-11 –14 show how this concept works through in various 

phases. 
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Figure 2-11: Determining Cloud Motion Vector [9] 

 

Figure 2-12: Cloud Forecasting [12] 
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Figure 2-13: Cloud Location Predications as Far as a Few Minutes in Advance 

[12] 



27 

 

 

Figure 2-14: Cloud Forecast Error for 30s ahead [12] 

An advantage of TSI over fixed location insolation meters is the resolution involved.  

The amount of uncertainty between meters is significantly reduced due to the nature of 

photographic imagery compared to solar insolation meters which are only capable of 

accounting for the area directly above them. 

In order for a system with TSI to be effective for large PV, it would also need to be 

implemented within a grid similar to that of the proposed fixed location insolation meters.  

This is because the 3.5 mile range is simply not large enough to predict cloud coverage 

more than a couple of minutes in advance of real-time, as seen in Figures 2-13 and 2-14, 
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and demonstrated in the earlier example.  This would become even more obvious for PV 

plants on the order of 100 times the size of the UCSD system. 

A third solution, in addition to the two aforementioned insolation metering solutions, 

is determining the cost of implementing a TSI based forecasting grid.  This option takes 

advantage of the larger diameter of coverage of the TSI, and in-turn requires fewer 

locations from which to record values.  Table 2-3 gives this estimate. 

Table 2-3: Estimated Costs for TSI Solution 

Item Description Unit Cost ($) 

Solar Diode + 1-Wire Hobby Boards Set-up 30.00 [9] 

Blue Wave BGY890 890-960MHz Direction Antenna with Mount 50.00 [10] 

MDS EL805-BO 902-928MHz Radio and Range Extender 600.00 [10] 

Enclosure 18"x16"x10" 50.00 [10] 

PT Distribution Voltage Potential Transformer 900.00 

Lightning Arrestor 

 

50.00 

Pipe 

 

25.00 

Cables 

 

65.00 

TSI Total Sky Imager Research Unit 12,000.00 [14] 

Total Cost 

 

13,770.00 

 

As you can see the total cost for each site is significantly higher using this option.  

Also, due to the high cost of the TSI unit compared with the rest of the equipment, only 

the potential transformer based solution is examined.  A similarly devised solar/battery-

based solution would be near the same total cost per location. 

2.6 Economic Comparison of Insolation Metering and TSI 

The number of locations required for each potential solution can be computed as 

follows.  The number of sensors for the first two solutions that rely upon fixed location 

solar sensors can be calculated using the values derived in Chapter 2.  To cover an area of 

12km x 12km, corresponding to the newly planned Topaz Solar Farm, with a spacing of 
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620m between the sensors, roughly 400 monitoring stations are required.  For the case 

using TSIs the number of sensors is reduced based upon the larger coverage area.  The 

3.5mi diameter of the images produced by the TSI corresponds to 5.63km.  Using values 

on the conservative side, this would require 9 TSI based monitoring stations. 

Using these values, the total estimated cost for the monitoring stations for each 

solution can be calculated.  The results are shown in Table 2-4 below. 

Table 2-4: Estimated Costs for Total Monitoring Solution 

Solution Cost Per Location Total Cost 

PT Based Insolation Metering  $               1,740.00   $  696,000.00  
Solar Based Insolation Metering  $               1,145.00   $  458,000.00  
TSI Based Monitoring  $             13,770.00   $  123,930.00  

 

As you can see, for a location this large, the more economical choice is the TSI based 

solution.  This is due to a number of factors, primarily the density of sensors and 

coverage diameter.  As previously mentioned, the spacing of sensors for the fixed 

location insolation meters depends on the maximum allowable error in cloud sizing.  As 

this value is allowed to increase, the spacing density can similarly increase.  Also, the 

size of the plant plays a large role.  As the plant size decreases, a significantly smaller 

number of sensors will be required for both solutions. 
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Chapter 3 : Simulations Demonstrating the Benefits of Near-Term Forecasting 

In order to demonstrate the merits of near-term forecasting, as previously described, a 

simulation test circuit must be designed.  

3.1 Previous Study into Effects of Loss of PV Generation 

Previously studies concerning the effects of loss of PV generation on a power system 

have been incomplete [15].  For these studies, discrete losses of power generation were 

taken into account rather than continuous power ramps.  Figure 3-1 shows the 60MW 

Power Plant Generator that was connected to a larger and generic power grid. 

 

Figure 3-1: Discrete PV Concept [15] 

The method used was to drop one of the „PVdrop‟ elements from Figure 3-1 every 

second over a period of 10s, in order to simulate the shading of a PV array to 60% of its 

original generation capacity.  The harsh nature in which the generators were removed 

from the system resulted in unrealistic frequency and voltage characteristics as seen in 

Figure 3-2 and 3-3. 
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Figure 3-2: Step Reduction in Power Generation, Effect on Frequencies [15] 

 

Figure 3-3: Step Reduction in Power Generation, Effect on Voltages [15] 

As can be seen in Figure 3-2 and 3-3, there is a ringing taking place with the removal 

of generation in an instantaneous fashion.  As the ringing was not allowed to dampen 

before further generation was removed, the ringing continued adding to itself, growing 
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unrealistically over the period of time.  This will be shown to be the case in the following 

example of a continuous loss of generation. 

This was not the only oversight the study failed to include.  In addition, the study 

failed to include the effects of ancillary generation in the power grid.  

3.2 Base Case for PV Plant Simulations 

Figure 3-4 shows the test circuit modified for a continuous power generation ramping 

scheme.  It is based upon the steady-state circuit used in the previous study, changing 

only the amount of power generated, and type of power generation. 
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Figure 3-4: Power System with 150MW PV Plant 

For the purposes of this study a 150MW PV generator was chosen.  This value is on 

the high end of the power range for current PV arrays, but is well in the range of 

currently proposed facilities in the state of California, including the 550MW Topaz Solar 

Farm in the Carrizo Plain [16].  ETAP was chosen as the test environment for this circuit 

based on its transient stability abilities.  Figure 3-4 shows a generic power system with a 

150MW PV plant represented as Gen3.  At this time ETAP is not available with a proper 

PV array module, so the generator was modeled following the guidelines provided by 

ETAP for simulating a PV Array with Maximum Power Point Tracking (MPPT) Inverter 
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[17].  Transient analysis is to be performed on this power system for various cloud cover 

conditions.  Backup power generation, or ancillary generation, is provided by generator 2 

in the power system.  Due to the limitations of ETAP transient analysis it is not possible 

to add disconnected generation to the system during simulation.  In order to work around 

this limitation, the generation ramp function was used to increase the generation at bus 2 

from 75MW to 150MW as needed. 

Another crucial element to the simulation of a large PV power system is the time-

scale involved.  As previously mentioned, the effects of shading a large PV systems are 

„smoothed‟, or slowed, as the plant increases in size resulting in a time frame on the order 

of minutes rather than seconds.  A test was performed to determine the effects of shade-

ramping speeds on the power system voltage and frequency stability.  In ETAP, the 

maximum positive power ramp is limited to 200 percent, so the maximum cloud coverage 

studied is 50 percent to fit within this stipulation.  

Initially, the power system is tested in a kind-of worst-case scenario lacking ancillary 

generation for three different scenarios: moderate, quick, and slow cloud shading speeds. 

For the case of moderate cloud cover ramping, a negative ramp of 50 percent 

generation power over a 50 second period was used.  Figures 3-5 through 3-7 

demonstrate this scenario. 
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Figure 3-5: Moderate Cloud Ramping Generator Power 

 

Figure 3-6: Moderate Cloud Ramping Bus Voltages 
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Figure 3-7: Moderate Cloud Ramping Bus Frequencies 

For the case of quick cloud cover, a negative power generation ramp of 50 percent 

was used over 10 seconds to demonstrate the effects.  Figures 3-8 through 3-10 

demonstrate this case. 
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Figure 3-8: Quick Cloud Ramping Generator Power 

 

Figure 3-9: Quick Cloud Ramping Bus Voltages 
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Figure 3-10: Quick Cloud Ramping Bus Frequencies 

Finally, for a slower cloud ramping scenario, a negative power generation ramp of 50 

percent over 100 seconds was used.  Figures 3-11 through 3-13 demonstrate this test. 

 

Figure 3-11: Slow Cloud Ramping Generator Power 
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Figure 3-12: Slow Cloud Ramping Bus Voltages 

 

Figure 3-13: Slow Cloud Ramping Bus Frequencies 

Before proceeding into analysis, an understanding of these voltages and frequencies 

within the larger context of grid interconnected voltage and frequency stability is needed. 
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IEEE 1547 lays out the over-frequency and under-frequency ranges for devices with grid 

interconnections.  It determines the maximum allowable amount of time to operate grid 

connected devices that are in abnormal or even harmful frequency conditions.  Table 3-1 

below provides acceptable frequency ranges for grid interconnected devices. 

Table 3-1: Frequency Ranges and Corresponding Trip Times [14] 

 

As can be seen from the preceding images corresponding to frequency (3-7,3-10,and 

3-13), the quickly moving cloud cover has a more substantial frequency deviation from 

the ideal 100%, or 60Hz.  Table 3-2 shows the minimum observed frequencies in percent 

and in hertz.  

Table 3-2: Observed Minimum Frequency within the Grid 

Slow Cloud Cover 99.996% 59.9976Hz 

Moderate Cloud Cover 99.992% 59.9952Hz 

Quick Cloud Cover 99.97% 59.982Hz 

These frequencies, as seen in comparison to Table 3-1, all fall within an acceptable 

range of operation, assuming that the conditions are only temporary.  Some simple 

calculations verify the insignificance of these minor changes in frequency for even the 

worst-case scenario of quick cloud cover. 
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Based on these calculations for the maximum frequency disturbance observed, and 

the grid interconnection acceptable frequency ranges, it can be concluded that the effects 

of frequency disturbance by cloud cover are not great enough to warrant nuisance 

frequency relay operation. 

In comparison to the previously mentioned study, these frequency deviations due to a 

continuous loss of power generation are significantly less than the deviations that were 

observed with the discrete elements being removed from the system.  This is in line with 

the idea that quicker cloud cover will result in a more drastic change in the amount of 

frequency disturbance.  Figure 3-2 shows a minimum frequency of 99.93 percent 

compared to the 99.97 percent incurred by the quickest cloud cover. 

The next topic covered under the interconnection standard IEEE 1547 are the 

definitions of voltage stability.  Table 3-3 shows the acceptable voltage ranges for the 

operation of over voltage and under voltage protective devices. 

Table 3-3: Voltage Ranges and Corresponding Trip Times [18] 
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Again, looking back to the three different cloud cover scenarios, conclusions about 

voltage stability can be made.  Unlike the case for frequency deviation, voltage 

deviations are seemingly unaffected in magnitude by the relative speed of the cloud 

cover.  This can be seen by comparing the corresponding bus voltages between the three 

scenarios in Figures 3-6, 3-9, and 3-12.  For bus 13, the bus relating to the pre-

transformed PV voltage, the voltage drops as low as 84 percent in each of the three cases.  

It is also useful to note the similarities here between the previous study done, and this 

study.  Namely, both PV generators are similarly susceptible to cloud cover when on the 

topic of voltage stability.  The case of a 40% drop in generation in that study, shown in 

Figure 3-3, resulted in a voltage drop to 86% [15].  Both of these voltage scenarios lead 

to issues with protective device operation.  Table 3-3 shows that bus voltages under 88 

percent of their nominal value (base voltage) should be cleared within 2 seconds.  This 

scenario is encountered for each of these demonstrations.  For smaller losses of power 

generation, there is a smaller amount of voltage loss.  Similarly for even larger losses of 

generation the voltage at the respective buses will drop. 

3.3 Individual Scenarios for Ancillary Generation Support 

The following studies will demonstrate a few of the more poignant examples of the 

many possible cloud cover and ancillary service ramping scenarios.  For the sake of 

simulation time, the moderate cloud cover ramping speed is used for each of the 

following studies. 

The first scenario to be studied deals with backup generation that comes online in the 

midst of a negative power ramp from the PV plant.  The oncoming generation has a 

slightly slower power ramp rate, 75MW in 70 seconds, compared to the moderately 
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paced cloud cover power ramp of negative 75MW in 50 seconds.  Figures 3-14 through 

3-16 highlight this first case.  

 

Figure 3-14: Power Generation Ramps for Case 1 
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Figure 3-15: Bus Voltages for Case 1 

 

Figure 3-16: Bus Frequencies for Case 1 
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There are a couple things that can be gleaned from this study.  As the period for 

dropping generation and adding generation overlap, the loss of total voltage magnitude is 

not nearly as severe as the case without backup generation, dropping to only 90 percent 

compared to 84 percent.  The frequency is also supported in this case allowing a drop of 

only 99.994 percent compared to 99.992 percent. 

The second scenario examined is for more timely, or responsive, backup generation.  

In this case the generation ramp rate is the same as in Case 1.  The only change is that the 

operators were able to bring ancillary generation online in a more immediate time frame.  

Figures 3-17 through 3-19 correspond to Case 2. 

 

Figure 3-17: Power Generation Ramps for Case 2 
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Figure 3-18: Bus Voltages for Case 2 

 

Figure 3-19: Bus Frequencies for Case 2 (Range 99.995 to 100.005) 
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It can clearly be seen that as the backup generation is brought online in a more 

immediate fashion, both the bus voltages and frequencies remain closer to their ideal 

values. 

The third scenario is nearly the same as this scenario, but involves matching the speed 

of the ancillary generation power ramp with that of the cloud cover-induced impact.  

Figures 3-20 through 3-22 correspond to Case 3. 

 

Figure 3-20: Power Generation Ramps for Case 3 
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Figure 3-21: Bus Voltages for Case 3 

 

Figure 3-22: Bus Frequencies for Case 3 

This case demonstrates the best-case scenario where generation loss and recovery are 

perfectly in line.  The margin for difference between observed and ideal bus voltages are 
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clearly both at a minimum.  The remaining disturbances to voltage and frequency can be 

attributed to the layout of the system and location of the ancillary generation with respect 

to the PV generation.  As the oncoming ancillary generation is moved further from the 

receding PV generation the disturbances would be expected to increase. 

In case 4, the effect of slowed cloud cover and generation is explored.  This case is 

timed such that the oncoming generation matches the time the when the negative ramp of 

the PV plant is complete.  Figures 3-23 through 3-25 cover this fourth case. 

 

Figure 3-23: Generation Power Ramps for Case 4 
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Figure 3-24: Bus Voltages for Case 4 

 

Figure 3-25: Bus Frequencies for Case 4 

This case demonstrates the importance of timely backup generation.  As no ancillary 

generation was brought on-line before the generation was removed from the system, the 
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bus voltage is disturbed to its highest magnitude, which would for this example require 

its removal from the system as the disturbance lasts longer than the allowed 2 seconds. 

At this point, the remaining cases look into the potential downsides pertaining to 

generation forecasting.  Two of the many possible cases will be shown to cover incorrect 

generation consideration.  

The first of these cases looks into the scenario of partial cloud coverage that quickly 

removes itself from the system.  The oncoming generation is unresponsive to the change 

in generation and continues to ramp up to its full generation capacity.  Figures 3-26 

through 3-28 cover this first problematic case. 

 

Figure 3-26: Power Generation Ramps for Problematic Case 1 
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Figure 3-27: Bus Voltages for Problematic Case 1 (Range: 95 to 105) 

 

Figure 3-28: Bus Frequencies for Problematic Case 1 

As expected, the addition of unnecessary generation results in overvoltage for many 

of the buses within the system.  This could have been remedied somewhat by having the 
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capacitors at the respective buses turn off for this period of time, or by having load-tap 

changing transformers at the most impacted buses.  Despite the seemingly large voltage 

spikes, none of these warrant isolation from the grid. 

The second problematic case is nearly the same as this first case.  The change is in 

having more responsive oncoming generation.  When the system realizes that the cloud 

coverage was only temporary it works to drop the oncoming generation back to its pre 

cloud cover levels.  Figures 3-29 through 3-31 correspond to this case. 

 

Figure 3-29: Power Generation Ramps for Problematic Case 2 
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Figure 3-30: Bus Voltages for Problematic Case 2 

 

Figure 3-31: Bus Frequencies for Problematic Case 2 
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The scenario results are much better than the previous study.  For this case, the 

voltages and frequencies return to their nominal values in a much more expedient 

manner.  Again, none of these disturbances warrant isolation from the power grid. 
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Chapter 4 : Economic Impacts 

The economics of near-term cloud location forecasting is not a simple case.  There 

are at least three interested parties in the operation of PV plants.  The first interested 

parties are PV plant operators seeking to get the best financial gain possible out of their 

large investment.  The second interested parties are the utilities themselves.  The utilities 

are most concerned with making sure that the negative impacts of renewable generation 

to their locale on the grid are kept to an absolute minimum.  Similarly, the Independent 

System Operators (ISOs) are seeking to minimize the amount of uncertainty in the use of 

unpredictable renewable generation.  For the ISOs, any removal of uncertainty is a cost-

saving effort as the amount of ancillary generation available at any time can be lowered. 

4.1 Potential Economic Benefits for Independent System Operators or PV Plant 

Operators Based on More Adaptive Economics 

The largest economic challenge facing the renewable energy market is that the 

anticipated renewable energy forecasts have a high degree of variability compared to the 

total load forecasts which come much closer to anticipated targets.  For this reason, some 

advantages for more accurate and timely renewable energy forecasting include: a better 

means to reduce operational uncertainty, a more efficient way to operate energy market 

and grid, and a reduction in need for regulating reserves or ancillary generation.  

As mentioned earlier, the major driving forces behind renewable energy growth are 

politically passed legislation that determines how much renewable energy needs to be 

included in the mix of energy.  In California this is known as a Renewable Portfolio 

Standard (RPS).  In an effort to prepare themselves for the 33% RPS that has been 

mandated for the year 2020 by AB32, Pacific Gas and Electric (PG&E) has worked with 
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the California Independent System Operators (CAISO) to study the many aspects of 

integrating new renewable energy generation [19].  The focus of the study was on 

PG&E‟s Renewable Integration Model (RIM), a model used to improve the awareness of 

the associated constraints associated with the integration of renewable energy.  Figures4-

1 and 4-2 show the different scenarios that PG&E chose to study using their RIM.  In the 

year 2009, California utilities had an average of 15.4% renewable energy used in their 

energy mix [19].  

 

Figure 4-1: Scenarios for Intermittent Renewable Resource Generation [19] 
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Figure 4-2: Operating Flexibility Requirements [19] 

As Figure 4-1 shows, PG&E looked at a few different options for meeting the 33% 

RPS.  The reference includes a somewhat even distribution of new intermittent energy 

sources, while the high distributed generation allows for more PV.  The final scenario 

looks into integrating large amount of out-of-state wind energy.  Figure 4-2 can be 

assisted by Figure 4-3 in explaining the timescales involved with day-ahead commitment, 

load following, and load regulation. 
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Figure 4-3: Time Scales Relevant to Operating Power Systems [4] 

It can be seen that the amount of generation that is required to be available for load 

following is significant compared to the amount of generation that is scheduled a day in 

advance. The major reason for this is the inherent uncertainty in generation.  The most 

significant need for load following and regulation needs comes for the case of high PV 

and distributed generation penetration.  Any reduction in the uncertainty of predictions 

would result in a similar reduction of needs for ancillary generation or resources 

committed to load following and regulation.  

A study by the National Renewable Energy Lab (NREL) on solar resource variability 

and forecasting done in Hawaii confirmed earlier assumptions that the best sources of 

information for sub-hourly forecasting were ground based observations, whether from 

radiometers or TSI.  The models they used were either related to persistence of operating 
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conditions using irradiance meters at select sites, or cloud-fraction based using TSI.  The 

method used was similar to the previously discussed TSI based method used by UCSD.  

Moving to larger time frames they found that cloud motion vectors from satellites and 

Numerical Weather Prediction (NWP) models were more accurate due to the distances 

and wind profiles involved.  The NREL found that for the sake of accurate forecast 

models both of these techniques, sub-hourly and hours-to-day, are necessary to 

accommodate minimized ancillary services for load following and regulation.  Figure 4-4 

shows one of their ground based irradiance meters, similar in design to the second 

proposed structure for insolation recordings discussed earlier in the chapter [20]. 
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Figure 4-4: NREL Ground Based Sensor [20] 
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Economically speaking, both variability and uncertainty increase the requirement for 

ancillary services.  More accurate forecast models have a large effect on the uncertainty 

of renewable generation.  Both variability and uncertainty are modeled with mean-

squared error or using standard deviations.  The more accurate your forecast model is the 

smaller the error term becomes, lowering the requirements for ancillary services and the 

associated costs [21, 22, 23]. 

As both PV and wind are highly intermittent renewable energy sources, similarities in 

forecasting and ancillary services can be drawn.  Unfortunately due to a larger installation 

base, as well as a higher number of in-depth forecasting studies, wind energy has been 

the recipient of more favorable ISO treatment.  The CAISO, like all ISOs, schedules 

generation in advance.  Like solar, wind energy production is typically deviates from the 

scheduled amount of production.  In the early years of wind, the CAISO would impose 

large “grid-imbalance” fees upon wind generators due to this mismatch in generation and 

forecasted generation.  Due to the stifling effects of these fees, investments in new wind 

energy facilities dwindled.  Recently the CAISO implemented a new program to retool 

the payment schemes to accommodate the characteristics highly volatile wind energy 

production.  These new tools allow for closer to-real-time, hourly, changes in predicted 

load with less economic downside to the wind energy producers.  They have 

implemented this cost saving effort by requiring all new wind projects to install meters 

and share the costs associated with forecasting [24].  

Table 4-1 shows just how helpful it is to be able to predict generation from hour-

ahead rather than day ahead forecasts. 
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Table 4-1: Average Wind Production Forecast Error [25] 

 

Similarly, the CAISO has concluded that the hour-ahead forecasts have a significantly 

lower error compared to that of the day-ahead forecasts.  That being said, wind and solar 

both are recipients of short duration changes that hour-ahead forecasting only helps so 

much.  The CAISO is in the process of rolling out a 15 minute based persistence model to 

automatically accumulate multiple short term forecasts for use in intra-hour forecasts for 

wind energy [23]. 

Another potential solution to handling the variability of intermittent energy resources, 

though not cost-effective to any degree yet, is energy storage.  The advantage of energy 

storage for handling of fluctuation of renewable energy is that it can be very responsive.  

Potential Energy Storage technologies and applications are shown in Table 4-2. 



64 

 

Table 4-2: Energy Storage Technologies and Applications [26] 

 

This table shows the many potential storage mediums that can be used for varying 

applications and time scales.  It can be seen that the quickest responding mediums are 

fuel cells, pumped hydro, redox flow cells, batteries, and flywheels.  The study of energy 

storage for suppressing fluctuations in renewable energy performed by the Pacific 

Northwest National Laboratory, determined that the benefits for energy storage are the 

fast response and improved regulation, as well as producing no carbon dioxide emissions.  

Unfortunately, due to the high associated costs, the power and energy capacity should be 

minimized to save high investment and capital costs [26].  Perhaps as new technologies 

emerge, and prices move downward, energy storage will be an economical regulation 

method for renewable energy. 
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Chapter 5 : Conclusion 

This thesis had a couple large objectives; to ascertain the benefits of near-term cloud 

location based forecasting and to look into the potential of ground based insolation 

meters to meet this challenge of near-term forecasting. Chapter 1 introduced the need for 

addressing and understanding the reliability and variability of renewable energy.   

Chapter 2 provided a background on the effects of meteorological changes to PV 

generation.  In addition it described the use of insolation meters or total sky imagers for 

forecasting cloud coverage, and the estimated costs for each solution.  It was found that 

both ground based insolation meters and TSI are capable of providing enough 

information to be useful for forecasting future cloud based coverage.  The limitations for 

close-to real-time forecasting included the time frame for forecasts, and level of 

resolution to be sought.  The forecast time frame was limited by how far the sensors are 

from the corresponding facility.  As the intended forecast period grows, the number of 

sensors required similarly increases.  The level of resolution refers to what the maximum 

cloud coverage with respect to facility size is allowable without causing concern.  As a 

higher resolution is required the spacing of the arrangement of solar sensors decreases, 

and hence the number of sensors increases.  Both of these limitations have an effect on 

the number of sensors and thus the associated costs of such solutions.  An advantage of 

TSI comes in the higher resolution due to the characteristics of photography.  Since the 

device characterizes close to 3 miles of sky above it there is reduced uncertainty between 

the devices, and significantly fewer devices are required.  TSI became a drastically 

cheaper option when looking at solutions for forecasting at the case-example of the future 

Topaz Solar Farm.  It also showed that as facilities increased above 5MW, the investment 
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made by the installers included significantly more spending for radar based weather 

stations.  It is somewhere above this 5MW threshold that ground based metering whether 

image or insolation based starts to make sense.   

Chapter 3 looked into detailed simulations of how close-to real-time forecast 

information could be used, and the effects it would have.  It was found that the speed of 

cloud coverage had a larger effect on frequency stability than on voltage stability.  Also, 

it was seen that even minimally delayed responses in ancillary generation produced 

significant voltage stability benefits.   

Chapter 4 looked into the economic challenges facing the adoption of insolation 

metering or TSI solutions.  It showed the economic challenges facing the wide-spread 

adoption of new renewable energy sources, as well as the benefits wind energy is reaping 

from its larger installation and research base.  Unfortunately, aside from political 

incentives, for solar energy to become more attractive to investors and utilities, changes 

like shared cost-forecasting, and short interval output predictions, that are starting to 

occur within the wind energy infrastructure will need to also take place in the solar 

industry. 

5.1 Future Considerations and Recommendations 

This thesis opens up many avenues for continued studies relating to the near-term 

cloud location forecasting, as well as understanding and quantifying PV variability.  

Some future proposed studies directly relating to this thesis include, but are not limited 

to:  

 Comparison of predicted and experienced solar production from a fully 

implemented fixed location insolation metering scheme. 



67 

 

 An in-depth investigation of balancing generation and loads, and how sudden 

changes in irradiance can be handled. 

 Investigation into the effects of catastrophic generation isolating events 

caused by frequency or voltage instability. 

 Research focused on remediation and maintenance for localized power and 

voltage stability issues due to photovoltaic variability.  

 There is a need to study and find more accurate models for cloud location 

forecasting, whether the information comes from satellites or ground based 

meters.  This information will lead to the adoption of more favorable 

economic rules similar to those being implemented for wind energy. 
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Appendix A : 1-Wire DataSheet 
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Appendix B : Hobby-Boards Solar Radiation Detector Schematic  
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Appendix C : Raw Measurements from Insolation Meter 

Table C-1 : Insolation Readings Taken on 5/16 at 1pm 

 

 

Figure C-1: Weather Conditions on 5/16 
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Table C-2: Insolation Readings Taken on 5/17 at 1pm 

 

 

Figure C-2: Weather Conditions on 5/17 
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Table C-3: Insolation Readings Taken on 5/18 (1 of 3) 

 

Table C-4: Insolation Readings Taken on 5/18 (2 of 3) 

 
 

Table C-5: Insolation Readings Taken on 5/18 (3 of 3) 
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Figure C-3: Weather Conditions on 5/18 
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Table C-6: Insolation Readings Taken Morning of 5/21 

 

 

Figure C-4: Weather Conditions on 5/21 (Note Fog Had Already Burned Off) 
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Table C-7: Insolation Readings Taken Evening of 5/24 

 

 

Figure C-5: Weather Conditions on 5/24 
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Appendix D : PG&E SCADA Estimated Costs 

Table D-1 : PG&E SCADA Cost Estimate 

 

Item Unit Extended

No. Qty. Unit Description Part# Price Price

 

Repeater

1 1 ea Universal Package, MDS P-70, Radio Support = 2;  

120VAC input, NEMA 4X Housing, 2-Lightning 

Protectors, 12 AH Batt. Back-up, Heater, Fan, Tail-End 

Link Operation Mode, Host=9710B (1200bps), 

Remote=Transnet EL805 (1200bps)

P702NA220F141_ $965.90 $965.90

2 1 ea Radio, MDS 9710B 800-960 MHzTransceiver, 

Interoperable, 12.5KHz, up to 9600 bps. TX: 928.6875 

MHz, RX: 952.6875 MHz. Install in Item 1

9710B $846.30 $846.30

3 1 ea Diagnostics Softw are, MDS InSite Radio Management 9710-DIAG $66.30 $66.30

4 1 ea Radio, MDS TransNet 900, adjustable RF output, 

synthesized, 902-928 MHz, 1.2 to 115.2 kbps 

RS232/RS485 I/F. Install in Item 1

EL805 $715.00 $715.00

5 1 ea TransNET 900 Diagnostic EL805-DIAG $66.30 $66.30

6 2 ea Bracket, P-Model to Pole Mount I/F 82-1743A01 $33.15 $66.30

7 1 ea Battery Back-Up, w ith 12 AH Battery. Install in Item 1 28-1575A04 $76.05 $76.05

12 1 ea Heater for P70. Install in item 1 03-3960A01 $146.25 $146.25

13 2 ea Lightning Arrestor for P70 97-1678A15 $42.50 $85.00

14 1 ea Engineering for Item 1 ENGR-SYS6 $350.00 $350.00

1 1 ea Antenna, Yagi, 10dB. Kathrein SCALA P/N:RY-900B SCARY-900B $452.00 $452.00

2 1 ea Mounting Kit for Antenna SCAMKPS-1 $54.00 $54.00

3 1 ea Pipe, Plain End  2-3/8" x 48" MTSMT-650 $23.09 $23.09

4 4 ea Cold Shrink Kit  1/4-1/2" to TY900 Ant. AND245174 $14.35 $57.40

7 1 ea Antenna , Omni, 3dB, 902-928 MHz, Antennex ANXFG-9023 $75.24 $75.24

8 1 ea Pipe to Pipe Kit by Antennex ANXFM2 $19.76 $19.76

9 2 Asbly Coaxial Cable Assembly, 50' long, NM-NM, made w / 

LDF4-50A Heliax (1/2").

ANDL4-PNMNM-XX $116.07 $232.14

10 2 ea RF Connector, 1/2 Male for LDF4 ANDL4PNM-RC $16.08 $32.16

11 2 Kit Hoisting Grip for LDF4 ANDL4SGRIP $13.60 $27.20

12 2 ea Grounding Kit for LDF4 AND241088-1 $14.93 $29.86

14 1 ea Clamps, Pipe to Pipe, Set of Tw o (1-2-7/8") CEL46 $33.00 $33.00

15 1 ea RF Connector, N Right Angle MF. Andrew ANDCA-TNRNF $18.78 $18.78

19 2 ea Antenna Support Mount $21.76 $43.52

Switch

15 1 ea Radio, MDS 9710B 800-960 MHzTransceiver, 

Interoperable, 12.5KHz, up to 9600 bps. TX: 928.6875 

MHz, RX: 952.6875 MHz. 

9710B $986.35 $986.35

1 1 ea Antenna, Yagi, 10dB. Kathrein SCALA P/N:RY-900B SCARY-900B $452.00 $452.00

2 1 ea Mounting Kit for Antenna SCAMKPS-1 $54.00 $54.00

3 1 ea Pipe, Plain End  2-3/8" x 48" MTSMT-650 $23.09 $23.09

4 2 ea Cold Shrink Kit  1/4-1/2" to TY900 Ant. AND245174 $14.35 $28.70

9 1 Asbly Coaxial Cable Assembly, 50' long, NM-NM, made w / 

LDF4-50A Heliax (1/2").

ANDL4-PNMNM-XX $116.07 $116.07

10 1 ea RF Connector, 1/2 Male for LDF4 ANDL4PNM-RC $16.08 $16.08

11 1 Kit Hoisting Grip for LDF4 ANDL4SGRIP $13.60 $13.60

12 1 ea Grounding Kit for LDF4 AND241088-1 $14.93 $14.93

14 1 ea Clamps, Pipe to Pipe, Set of Tw o (1-2-7/8") CEL46 $33.00 $33.00

15 1 ea RF Connector, N Right Angle MF. Andrew ANDCA-TNRNF $18.78 $18.78

16 1 ea Protector, Polyphaser POLIS-B50LN-C2 $55.25 $55.25

18 1 ea Cbl. Assmbly. NM-NM, 2feet,Andrew : ANDF1A-PNMNM-2 $30.32 $30.32

19 1 ea Antenna Support Mount $21.76 $21.76

LO1 1 ea Cbl. RS232 (DB9F/DB25M) 5801/9710B CSTM Fig B P/N# 200143-3 $16.60 $16.60

Remote Sites

8 3 ea RF Adaptor TNC-M to NF 97-1677A161 $20.40 $61.20

9 3 ea Cable, Programming (TransNet) 03-3246A01 $21.25 $63.75

10 3 ea Radio, MDS TransNet 900, adjustable RF output, 

synthesized, 902-928 MHz, 1.2 to 115.2 kbps 

RS232/RS485 I/F. 

EL805 $715.00 $2,145.00

11 3 ea TransNET 900 Diagnostic EL805-DIAG $66.30 $198.90

4 4 ea Cold Shrink Kit  1/4-1/2" to TY900 Ant. AND245174 $14.35 $57.40

5 2 KT Support/Hoisting Grip for 1/4" or 3/8" coax ANDL1SGRIP $11.38 $22.76

6 2 Asbly Coaxial Cable Assembly, 25' long, NM-NM, made w / 

LDF2-50 Heliax (3/8").

ANDL2-PNMNM-XX $82.31 $164.62

7 2 ea Antenna , Omni, 3dB, 902-928 MHz, Antennex ANXFG-9023 $75.24 $150.48

8 2 ea Pipe to Pipe Kit by Antennex ANXFM2 $19.76 $39.52

13 2 ea Grounding Kit for LDF2 223158 $1.00 $2.00

16 2 ea Protector, Polyphaser POLIS-B50LN-C2 $55.25 $110.50

17 2 ea RF Adaptor. TNC-M to NF. Right Angle R/FRFT1234-11 $9.36 $18.72

18 2 ea Cbl. Assmbly. NM-NM, 2feet,Andrew : ANDF1A-PNMNM-2 $30.32 $60.64

19 2 ea Antenna Support Mount $21.76 $43.52

LO1 2 ea Cbl. RS232 (DB9F/DB9M) 5801/Transnet CSTM Fig A, P/N# 200142-3 $15.20 $30.40
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Table D-2 : PG&E PT Cost Estimate 

 


