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Abstract In this paper we discuss a proof-theoretic foundation of set theory that
focusses on set definitions in an open type free framework. The idea tomake Cantor’s
informal definition of the notion of a set more precise by saying that any given
property defines a set seems to be in conflict with ordinary modes of reasoning.
There is to some extent a confusion here between extensional perspectives (sets as
collections of objects) and intensional perspectives (set theoretic definitions) that the
central paradoxes build on. The solutions offered by Zermelo-Fraenkel set theories,
von Neumann-Bernays set-class theories and type theories follow the strategy of
retirement behind more or less safe boundaries. What if we revisit the original idea
without making strong assumptions on closure properties of the theoretical notion
of a set? That is, take the basic definitions for what they are without confusing the
borders between intensional and extensional perspectives.

Keywords Set theory · Foundations · Proof theory ·Definitional reflection · Partial
inductive definitions · Functional closure

1 Introduction

Foundations of set theory relates to answers of the following two main questions:

(A) What is a set?
(B) What does it mean to reason with sets?

With respect to (A) Cantor’s informal definition of the notion of a set seems
perfectly intuitive.

By an “aggregate” (Menge) we understand any collection into a whole (Zusammenfassung
zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. [2,
p. 85]
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It is natural to think of collection into a whole as an act of abstraction. The question
is how to understand this. In view of the paradoxes by Russell and others, the idea
to make this more precise by saying that any given property defines a set seemed to
be in conflict with intended natural modes of reasoning. What was wrong with this
idea?

It might be an issue of confusing extensional and intensional perspectives. The
idea of a set as a gathering of given objects into a whole paints a picture of sets as
collections (a, b, . . .). We have given objects and we collect them into a whole by
so to speak bracketing them. This extensional view of sets has a clear expression in
the cumulative hierarchy. Abstracting with respect to a given property introduces a
more intensional perspective, i.e., the way in which we actually define a set with the
intention to capture a collection of objects.

Russell’s antinomy came as a veritable shock to those few thinkers who occupied themselves
with foundational problems at the turn of the century. [4, p. 2]

There is something strange about this reaction. Why do we expect that such
a, very general, more intensional characterisation will capture just sets as collec-
tions of objects in an intuitive extensional sense, i.e., as bracketing a given collec-
tion of objects? There is no reason to think that these two notions and perspectives
should coincide, i.e., that the intensional characterisation would produce just nice
sets, namely collections of given objects. It is in this respect of interest to note that
the definition, i.e., the defining property x /∈ x of the Russell set R is a very ele-
mentary one. Its proof-theoretic behaviour can, for example, be observed already in
intuitionistic propositional logic [3].

So if we accept the idea of abstraction with respect to any given defining property,
i.e., full comprehension, as a foundation for set theory, we have an answer to question
(A), that is, what a set is. But how should we then understand the paradoxes? The
Russell paradox for instance seems to show that something is wrong with respect to
question (B). The paradoxical argument builds on several basic assumptions, where
one of the most important ones is the assumption that ‘R is a set’ is a well-defined
notion with respect to intended intuitive logical reasoning, which is a very strong
assumption with respect to the given definition. So this is one way to view Russell’s
paradox; too strong assumptions on basic theoretical notions.

The solutions offered by Zermelo-Fraenkel set theories, von Neumann-Bernays
set-class theories and type theories follow the strategy of retirement behind more
or less safe boundaries (see [4]). There are several ideas about proof-theoretically
founded restrictions on the comprehension scheme [5], [9]. Compare further the
set theory of Fitch (see [4], [9]), the notion of a Frege structure [1] and notions of
structural rules in relation to paradoxes [14].

Now what if we revisit the original idea without making strong assumptions on
closure properties of the theoretical notion of a set? That is, take the basic definitions
for what they are without confounding intensional and extensional perspectives.
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2 Defining Sets

If we think of set definitions as abstractions λX , saying that a property, or functional
expression, X defines a set, we may derive the following definitions of membership
and equality for sets:

• A ∈ λX iff X (A),
• A = B iff (x ∈ A ⇐⇒ x ∈ B) for all sets x
(i.e., (A = λX & B = λY =⇒ λX = λY ) ⇐⇒ (X (x) ⇐⇒ Y (x)) for all
sets x).

In the same manner the axiomatic approach, Z F and other similar set theories,
introduce axioms stating the existence of sets for certain specific safe defining prop-
erties, such as for example the subset property

x ∈ P(A) iff x is a subset of A

but also other types of axioms such as axioms introducing measurable cardinals and
other large cardinals.

Although the axioms of power set and replacement, together with axioms of infin-
ity (large cardinals starting withℵ0), provide for strongmeans to build sets following
the cumulative hierarchy intuition of the universe of sets, they still represent a theory
marked by withdrawal from foundational disasters to more favourable positions. It
is not only matters of a first order formalization of safe axioms, but also from a
more general intensional perspective a lack of elementary foundational principles.
There is a very elementary and suggestive extensional picture through the cumulative
hierarchy, but this is lacking with respect to definitional issues.

Why is (x = x), for example, not an admissible set defining condition?

1. It contradicts the idea of sets as collections of given objects, i.e., λ(x = x) is a
member of λ(x = x).

2. We cannot comprehend the given objects we are supposed to collect into a whole
by abstraction.

In both cases we say that (x = x) does not define a set in the sense of a total
object that behaves nicely with respect to the intended reading of logical constants
and the notion of membership. But this does not really answer the question. It just
says that whatever λ(x = x) may define it is not a set in the extensional sense as a
collection of given objects.

The problem here is an example of what we in many cases meet as we try to define
a notion where it is difficult to map out the exact borders by elementary means, the
notion of a total computable function being a canonical example. Froma foundational
and theoretical point of view it would be nice if it were possible to make sense in
some way of the initial, and very elementary, ideas of Frege and others [4].
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Let us look at a very naïve and simplistic attempt to define sets based on the idea
of sets as introduced by abstraction of defining properties. In defining sets this way
it is natural to make a distinction between set expressions, i.e., sets, terms etc., and
propositional expressions, i.e., propositions, formulas etc. But if we accept more
open definitions this does not seem necessary, and for reasons of simplicity we will
just make a distinction between sets (A) and set theoretical reasoning (B) in what
follows. This would also be in line with reading Ockham’s razor as saying that basic
classifications and distinctions are matters of proofs and not foundational definitions.
The definition of sets is:

• T and F are sets,
• A → B, A ∈ B, A = B are sets if A and B are sets,
• S( f ), ∃( f ) and ∀( f ) are sets if the world of sets is closed under the given func-
tion f .

Thiswould answer question (A). To answer question (B)we add the followingderived
definition:

• T is true,
• A → B is true if (A is true =⇒ B is true),
• A ∈ S( f ) is true if f (A) is true,
• A = B is true if (x ∈ A is true ⇐⇒ x ∈ B is true) for all sets x ,
• ∃( f ) is true if f (x) is true for some set x ,
• ∀( f ) is true if f (x) is true for all sets x .

Russell’s paradox tells us of course directly that there are no such definitions
satisfying the intended closure properties we have written down above. But from an
intensional, i.e., definitional, point of view, we actually intend to define something
by writing down these clauses. The question is just what that is, in what ways we
can interpret these acts of defining?

3 Functional Closure, Local Logic and the Notion
of Absoluteness

There are three major issues to observe in the definitions given above in Sect. 2:

1. We introduce functional constructions, S( f ), ∃( f ) and ∀( f ), by a defining con-
dition asking for the notion we define to be closed under a given function.

2. We introduce a conditional construction A → B by a defining condition asking
B to follow from A.

3. What we actually state in the ‘definitions’ are closure conditions for notions we
hope to be able to define in one way or another.
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3.1 The Functional Closure

The idea of function closure (in the realm of monotone inductive definitions) is that
we have some things a, b, . . . given and also some functions f, g, . . .. We then define
a notion X by saying that

• a, b, . . . is an X ,
• if x is an X , then f (x), g(x), . . . is an X .

Implicitly this means that X is defined by these clauses and nothing else. From an
intensional and foundational point of view in ‘generating’ X the things that f, g, . . .

act on in X are not given, besides the initial things a, b, . . ., they are introduced as we
build X . Once defined, X is then the smallest collection of things including a, b, . . .

and being closed under f, g, . . ..
Similarly the idea of a functional closure is that we have some things a, b, . . .

and functions f, g, . . . given and also functionals F, G, . . .. Analogously, from an
intensional and foundational point of view, the functions ‘in’ X that F, G, . . . act on,
i.e., functions that X is closed under, are not given, but introduced as we build X .
In both cases we take for granted certain things as primitive notions. In the first
case some given objects and functions and in the second case some given objects
(not necessary in all cases), some functions and functionals. In both cases what we
rely on is, so to speak, inscribed in fundamental circles of reasoning. The objects we
generate in building up the function closure are of course given in an abstract manner
of speaking. The same thing holds for the functions we generate in building up the
functional closure:

• a, b, . . . is an X ,
• if x is an X , then f (x), g(x), . . . is an X ,
• if X is closed under f , then F( f ), G( f ), . . . is an X .

In non-foundational and mathematically precise definitions we assume there is
given a universe of objects, a function space and some functions and functionals
defined on this universe/function space.

3.2 Local Logic

When defining A → B is true in terms of if A is true, then B is true it is really
an issue what we mean by if A is true, then B is true as a defining condition. A
reasonable interpretation of this is that what we mean to say is that B follows from A
on the basis of information provided by the given definition, i.e., that we can prove B
to follow from A in the local logic that the given definition implicitly defines. With
respect to set theory this means that the sets we introduce, or to be more precise the
set definitions we introduce, open up for reasoning relative to a local set theoretic
context. What this could mean will be explained below.
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3.3 Absoluteness

It is one thing to use if A is true, then B is true as a defining condition in a definition
and quite another thing to state if A is true, then B is true as a closure condition for a
given definition. In view of an analogy between models of set theoretical axioms and
definitions of set theoretical concepts we might introduce the notion of absoluteness
(cf. [8]) also in this definitional context. Whereas in the first case we compare how
a set theoretical notion (formula) behaves in a model in relation to its behavior in
another model, which intuitively means outside the model if the second model is
the true cumulative hierarchy V , in the latter case we compare how a definitional
notion/condition behaves inside the definition, in the local logic of the definition,
with how it behaves outside the definition in the world of intended interpretation of
defining conditions.

A set theory S is a pair of definitions SΦ and T SΦ, following the ideas discussed
above in Sect. 2, for a given collection of functions Φ. A defining condition A is
(left) absolute (with respect to S), if for all defining conditions B

B follows from A in T SΦ iff (A is true in T SΦ =⇒ B is true in T SΦ).

What this means is that deriving something from A in T SΦ is the same as impli-
cation. One closure condition that is generally self-evident is the following one

a is true by definition D iff there is a defining condition A in D of a true by D.

This is the basic axiom of definitional theory.
Take the Russell set S(λ(x ∈ x → F)) (let us call it r ) and let R be a set theory

that includes this set. The set r is not (left) absolute in R. r → F is true in R, that is F
follows from r in R. But whereas r is true in R, F is obviously not since it is not even
defined in R. The argument follows from the basic definitional axiom together with
an assumption that the local logic of the definition has a reasonable behavior with
respect to the intended interpretation of involved logical constants. This argument
demonstrates that negation is not an absolute notion, which from a proof-theoretic
point of view would be a reasonable way to interpret the Russell paradox, i.e., falsity
is an absolute notion, while negation is not.

This notion of absoluteness can further be specialized as follows:
A defining condition A is

1. (right) absolute (with respect to S) if

A follows from B in T SΦ ⇐⇒ (B is true in T SΦ =⇒ A is true in T SΦ),

2. upward absolute if

B follows from A in T SΦ =⇒ (A is true in T SΦ =⇒ B is true in T SΦ),
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3. downward absolute if

A is true in T SΦ =⇒ (B is true in T SΦ =⇒ B follows from A in T SΦ),

4. etc.

To say that a defining condition, or a set, is (left/right) absolute means that the
condition, or set, with respect to local reasoning has the same meaning inside the
local logic as outside it.

4 A Proof-Theoretic Interpretation

Even if we note that there are no definitions having the closure properties stated in
Sect. 2 above, there is still the possibility to read these definitions from a more strict
intensional point of view. We then look at the closure conditions as clauses in two
partial inductive definitions ([6, 7, 13]). The idea is basically to look at if . . ., then
. . . and is closed under in terms of the notion of logical consequence that defines the
local logic of the definitions in question, i.e., that if A, then B is read as B follows
from A by the given definition.

As a mathematical object a (partial inductive) definition D consists of a collection
of equations

a = A

for a ∈ U for some given universe of discourse and where A is a defining condition
built up from elements in U , 	 and ⊥ using constructions

∧
I and ⇒. Let D(a) be

the collection of conditions defining a in D if there are any and {⊥} otherwise. The
local logic of D,�D , is then given by the following elementary (monotone) inductive
definition

�, a �D a

� �D 	 �,⊥ �D C

� �D Ai (i ∈ I )
� �D

∧
I Ai

�, Ai �D C
(i ∈ I )

�,
∧

I Ai �D C

�, A �D B
� �D A ⇒ B

� �D A �, B � C
�, A ⇒ B �D C

� �D A
(A ∈ D(a))

� �D a
�, A �D C (A ∈ D(a))

�, a �D C
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The function closure with respect to X ⊂ U and functions f1 . . . fn with arities
k1 . . . kn over U , is then formally defined by the following definition

a =	 (a ∈ X)

fi (x1 . . . xki ) = (x1 . . . xki ) (i ≤ n)

Def (D(X, f1 . . . fn)) is then the smallest set containing X and being closed under
the functions f1 . . . fn .

Similarly the functional closure with respect to X ⊂ U , functions f1 . . . fn with
arities k1 . . . kn over U , a functional F : [U → U ] → U and a set Φ ⊂ [U → U ],
is given by a definition D(X, f1 . . . fn, F, Φ):

a =	 (a ∈ X)

fi (x1 . . . xki ) = (x1 . . . xki ) (i ≤ n)

F( f ) = ∧
U (x ⇒ f (x)) ( f ∈ Φ)

Now we might rewrite the definitions SΦ and T SΦ in the following way:

SΦ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = 	
F = 	

A → B =
∧

(A, B)

A ∈ B =
∧

(A, B)

A = B =
∧

(A, B)

S( f ) =
∧

SΦ

(x ⇒ f (x))

∃( f ) =
∧

SΦ

(x ⇒ f (x))

∀( f ) =
∧

SΦ

(x ⇒ f (x))

T SΦ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = 	
A → B = A ⇒ B

A ∈ S( f ) = f (A)

A = B =
∧

SΦ

((x ∈ A ⇒ x ∈ B), (x ∈ B ⇒ x ∈ A))

∃( f ) = f (x) (SΦ)

∀( f ) =
∧

SΦ

( f (x))
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Reading them as foundational definitions we have to accept certain notions as
primitive notions; the conditions T and F , the function →, the functionals S, ∃ and
∀, the notion of a function and indexing families over the sets we define. In principle
what amounts to understanding the functional closure as a primitive foundational
notion. The resulting formal systems, defining the local logics of the definitions, are
consequently formal systems in an informal sense. They define what a proof is as
a foundational notion, providing a proof-theoretic foundation of set theory, that is,
using proof-theoretical notions in an abstract and open manner (cf. the notion of a
general proof theory in [10–12]).

5 Sets

From an extensional perspective viewing sets as collections of given sets, the notion
of an elementary set connects to hierarchies of what we somehow can visualize, i.e.,
low levels of the cumulative hierarchy. From an intensional point of view, where
the act of abstraction with respect to a given defining property/function is in focus, a
natural notion of an elementary set must build on characteristics of the definition. The
Levy hierarchy [8] of course shows strong connections between both perspectives
for Z F , but the situation here is a bit different as we look at set definitions in much
more open set theories. It is for instance clear that a set such as S(λ(x = x)) is a
very elementary set with respect to its defining function.

Let us say that a set

• S( f ) is a Φ-set if SΦ is closed under f , i.e., that f (x) follows from x in SΦ for
all sets x in SΦ,

• S( f ) is elementary if it is a Φ-set for all Φ.

Both S(λ(x = x)) and S(λ(x /∈ x)) are elementary sets. A simple example of a
non-elementary set is S(λ(x = S(λ(y = a)))).

6 Foundational Issues

It is clear that consistency is not an explicit issue in the present context. Falsity (i.e.,
F) is by definition something that is not defined and can thus never be proved in a set
theory SΦ. But consistency of course relates to issues of cut elimination for sequent
calculi, which relates to upward absoluteness. So assume we have a set theory S
where all basic defining conditions are absolute, or at least upward absolute. From
the point of view of set theoretic reasoning the sets definable in these theories are
somehow ‘nice’ sets.

Stating that there are functionsΦ with certain properties is what here corresponds
to axioms of set theory, and proving or believing that the theory SΦ is absolute in
some sense corresponds to defining a model for the axioms. But while the true
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cumulative hierarchy V is the universe in which these models live, a general set
theory SΩ with no restrictions on functions is the context in which these definitional
theories SΦ live. The big difference is that V is an extensional context, i.e., the true
world of pure sets, whereas SΩ is an intensional context based on a very general
notion of set definitions not presupposing a rationale of welldefinedness. What set
theories SΦ reflect is not inner models, but the locality of proof logics.

The idea of reduction is somehow inherent in the notion of foundations, i.e., that
we build on elementary foundations. Although we evidently just walk around in
ontological circles, this idea of reduction is not meaningless. A very clear and con-
ceptually elementary model provides a reduction in the sense that we see clearly why
given axioms make sense. The argument that the idea of a reduction is an illusion
since the construction of the model involves all the power of the axioms themselves
does not make for a strong case. It is the suggestive simplicity and clearness of the
picture the model paints that is important, i.e., that we really can see the construction.
Simplicity with respect to definitional principles builds another type of foundations;
the local logic of given definitions. The foundational construction here is the func-
tional closure interpreted as a partial inductive definition. What is important is then
that we can ‘see’ the proofs that build the sets and the set theoretical arguments in a
very elementary sense. A typical example making the difference clear is the power
set P(A) = S(P A) where P Ax is ∀z(z ∈ x → z ∈ A). To envision P(A) as a
collection of given objects involves very abstract acts of visualising for large sets A.
Can we see the set, can we trust the axiom? It is of course clear that S(P A) as a set
theoretical definition opens up for logical complexity in reasoning, but in this case
it is a matter of visualising proofs with respect to a given definition. Can we see the
proofs, can we trust the definition?

The definition itself is in some sense elementary, the proofs defining reasoning
in theories SΦ are also elementary in some sense. Thus there is a reduction in
foundations in some sense. But in actual set theoretical practice we need to trust
certain closure conditions on the definitions allowing for nice forms of reasoning for
what we believe to be nice theories SΦ. The major challenge here is to develop set
theory within the framework of theories SΦ and explore the meaning of classical set
theoretical issues in this context.

Since SΩ is closed, in the sense that each definable function f is reflected in a
set S( f ), we have the following

Theorem V (modulo large cardinals beyond ℵ0) has a definable reflection in SΩ .

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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