
J. Math. Biol. (2018) 76:697–754
https://doi.org/10.1007/s00285-017-1153-2 Mathematical Biology

Stochastic population growth in spatially heterogeneous
environments: the density-dependent case

Alexandru Hening1,2 · Dang H. Nguyen3 ·
George Yin3

Received: 29 May 2016 / Revised: 16 June 2017 / Published online: 3 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract This work is devoted to studying the dynamics of a structured population
that is subject to the combined effects of environmental stochasticity, competition
for resources, spatio-temporal heterogeneity and dispersal. The population is spread
throughout n patches whose population abundances are modeled as the solutions of a
system of nonlinear stochastic differential equations living on [0,∞)n . We prove that
r , the stochastic growth rate of the total population in the absence of competition, deter-
mines the long-term behaviour of the population. The parameter r can be expressed
as the Lyapunov exponent of an associated linearized system of stochastic differential
equations. Detailed analysis shows that if r > 0, the population abundances converge
polynomially fast to a unique invariant probability measure on (0,∞)n , while when
r < 0, the population abundances of the patches converge almost surely to 0 expo-
nentially fast. This generalizes and extends the results of Evans et al. (J Math Biol
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66(3):423–476, 2013) and proves one of their conjectures. Compared to recent devel-
opments, our model incorporates very general density-dependent growth rates and
competition terms. Furthermore, we prove that persistence is robust to small, possibly
density dependent, perturbations of the growth rates, dispersal matrix and covari-
ance matrix of the environmental noise. We also show that the stochastic growth rate
depends continuously on the coefficients. Our work allows the environmental noise
driving our system to be degenerate. This is relevant from a biological point of view
since, for example, the environments of the different patches can be perfectly corre-
lated. We show how one can adapt the nondegenerate results to the degenerate setting.
As an example we fully analyze the two-patch case, n = 2, and show that the stochas-
tic growth rate is a decreasing function of the dispersion rate. In particular, coupling
two sink patches can never yield persistence, in contrast to the results from the non-
degenerate setting treated by Evans et al. which show that sometimes coupling by
dispersal can make the system persistent.

Keywords Stochastic population growth · Density-dependence · Ergodicity · Spatial
and temporal heterogeneity · Lotka–Volterra model · Lyapunov exponent · Habitat
fragmentation · Stochastic environment · Dispersion
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1 Introduction

The survival of an organism is influenced by both biotic (competition for resources,
predator-prey interactions) and abiotic (light, precipitation, availability of resources)
factors. Since these factors are space-time dependent, all types of organisms have to
choose their dispersal strategies: If they disperse they can arrive in locations with dif-
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Stochastic population growth in spatially heterogeneous… 699

ferent environmental conditions while if they do not disperse they face the temporal
fluctuations of the local environmental conditions. The dispersion strategy impacts key
attributes of a population including its spatial distribution and temporal fluctuations in
its abundance. Individuals selecting more favorable habitats are more likely to survive
or reproduce. When population densities increase in these habitats, organisms may
prosper by selecting habitats that were previously unused. There have been numer-
ous studies of the interplay between dispersal and environmental heterogeneity and
how this influences population growth; seeHastings (1983),Gonzalez andHolt (2002),
Schmidt (2004), Roy et al. (2005), Schreiber (2010), Cantrell et al. (2012), Durrett and
Remenik (2012), Evans et al. (2013) and references therein. Themathematical analysis
for stochastic models with density-dependent feedbacks is less explored. In the setting
of discrete-space discrete-time models there have been thorough studies by Benaïm
and Schreiber (2009); Schreiber (2010); Schreiber et al. (2011). Continuous-space
discrete-time population models that disperse and experience uncorrelated, environ-
mental stochasticity have been studied by Hardin et al. (1988a, b, 1990). They show
that the leading Lyapunov exponent r of the linearization of the system around the
extinction state almost determines the persistence and extinction of the population. For
continuous-space continuous-time population models Mierczyński and Shen (2004)
study the dynamics of random Kolmogorov type PDE models in bounded domains.
Once again, it is shown that the leading Lyapunov exponent r of the linarization around
the trivial equilibrium 0 almost determines when the population goes extinct and when
it persists. In the current paper we explore the question of persistence and extinction
when the population dynamics is given by a system of stochastic differential equa-
tions. In our setting, even though our methods and techniques are very different from
those used by Hardin et al. (1988a) and Mierczyński and Shen (2004), we still make
use of the system linearized around the extinction state. The Lyapunov exponent of
this linearized system plays a key role throughout our arguments.

Evans et al. (2013) studied a linear stochastic model that describes the dynamics of
populations that continuously experience uncertainty in time and space. Their work
has shed some light on key issues from population biology. Their results provide fun-
damental insights into “ideal free” movement in the face of uncertainty, the evolution
of dispersal rates, the single large or several small (SLOSS) debate in conservation
biology, and the persistence of coupled sink populations. In this paper, we propose
a density-dependent model of stochastic population growth that captures the interac-
tions between dispersal and environmental heterogeneity and complements the work
of Evans et al. (2013). We then present a rigorous and comprehensive study of the
proposed model based on stochastic analysis.

The dynamics of a population in nature is stochastic. This is due to environmental
stochasticity—the fluctuations of the environment make the growth rates random. One
of the simplest models for a population living in a single patch is

dU (t) = U (t)(a − bU (t))dt + σU (t)dW (t), t ≥ 0, (1.1)

where U (t) is the population abundance at time t, a is the mean per-capita growth
rate, b > 0 is the strength of intraspecific competition, σ 2 is the infinitesimal variance
of fluctuations in the per-capita growth rate and (W (t))t≥0 is a standard Brownian
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700 A. Hening et al.

motion. The long-term behavior of (1.1) is determined by the stochastic growth rate

a − σ 2

2 in the following way (see Evans et al. 2015; Dennis and Patil 1984):

• If a − σ 2

2 > 0 and U (0) = u > 0, then (U (t))t≥0 converges weakly to its unique
invariant probability measure ρ on (0,∞).

• If a − σ 2

2 < 0 and U (0) = u > 0, then limt→∞ U (t) = 0 almost surely.

• If a − σ 2

2 = 0 and U (0) = u > 0, then lim inf t→∞ U (t) = 0 almost surely,
lim supt→∞ U (t) = ∞ almost surely, and limt→∞ 1

t

∫ t
0 U (s) ds = 0 almost

surely.

Organisms are always affected by temporal heterogeneities, but they are subject to
spatial heterogeneities only when they disperse. Population growth is influenced by
spatial heterogeneity through theway organisms respond to environmental signals (see
Hastings 1983; Cantrell and Cosner 1991; Chesson 2000; Schreiber and Lloyd-Smith
2009). There have been several analytic studies that contributed to a better under-
standing of the separate effects of spatial and temporal heterogeneities on population
dynamics. However, few theoretical studies have considered the combined effects
of spatio-temporal heterogeneities, dispersal, and density-dependence for discretely
structured populations with continuous-time dynamics.

As seen in both the continuous (Evans et al. 2013) and the discrete (Palmqvist
and Lundberg 1998) settings, the extinction risk of a population is greatly affected
by the spatio-temporal correlation between the environment in the different patches.
For example, if spatial correlations are weak, one can show that populations coupled
via dispersal can survive even though every patch, on its own, would go extinct (see
Evans et al. 2013; Jansen and Yoshimura 1998; Harrison and Quinn 1989). Various
species usually exhibit spatial synchrony. Ecologists are interested in this pattern as it
can lead to the extinction of rare species. Possible causes for synchrony are dispersal
and spatial correlations in the environment (see Legendre 1993; Kendall et al. 2000;
Liebhold et al. 2004). Consequently, it makes sense to look at stochastic patch models
coupled by dispersion for which the environmental noise of the different patches can
be strongly correlated. We do this by extending the setting of Evans et al. (2013) by
allowing the environmental noise driving the system to be degenerate.

The rest of the paper is organized as follows. In Sect. 2, we introduce ourmodel for a
population living in a patchy environment. It takes into account the dispersal between
different patches and density-dependent feedback. The temporal fluctuations of the
environmental conditions of the various patches aremodeled byBrownianmotions that
are correlated. We start by considering the relative abundances of the different patches
in a low density approximation. We show that these relative abundances converge in
distribution to their unique invariant probability measure asymptotically as time goes
to infinity. Using this invariant probability measure we derive an expression for r , the
stochastic growth rate (Lyapunov exponent) in the absence of competition. We show
that this r is key in analyzing the long-term behavior of the populations. In AppendixA
we show that if r > 0 then the abundances converge weakly, polynomially fast, to
their unique invariant probability measure on (0,∞)n . In Appendix B, we show that if
r < 0 then all the population abundances go extinct asymptotically, at an exponential
rate (with exponential constant r ). Appendix C is dedicated to the case when the noise
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driving our system is degenerate (that is, the dimension of the noise is lower than
the number of patches). In Appendix D, we show that r depends continuously on the
coefficients of our model and that persistence is robust—that is, small perturbations of
themodel do notmake a persistent system become extinct.We provide some numerical
examples and possible generalizations in Sect. 4.

2 Model and results

We study a population with overlapping generations, which live in a spatio-temporally
heterogeneous environment consisting of n distinct patches. The growth rate of each
patch is determined by both deterministic and stochastic environmental inputs. We
denote by Xi (t) the population abundance at time t ≥ 0 of the i th patch and write
X(t) = (X1(t), . . . , Xn(t)) for the vector of population abundances. Following Evans
et al. (2013), it is appropriate to model X(t) as a Markov process with the following
properties when 0 ≤ �t � 1:

• the conditional mean is

E
[
Xi (t + �t) − Xi (t) | Xi (t) = xi

] ≈
⎡

⎣ai xi − xi bi (xi ) +
∑

j �=i

(
x j D ji − xi Di j

)
⎤

⎦�t,

where ai ∈ R is the per-capita growth rate in the i th patch, bi (xi ) is the per-capita
strength of intraspecific competition in patch i when the abundance of the patch
is xi , and Di j ≥ 0 is the dispersal rate from patch i to patch j ;

• the conditional covariance is

Cov
[
Xi (t + �t) − Xi (t), X j (t + �t) − X j (t) | X = x

] ≈ σi j xi x j�t

for some covariance matrix � = (σi j ).

The difference between our model and the one from Evans et al. (2013) is that we
added density-dependent feedback through the xibi (xi ) terms.

Wework on a complete probability space (�,F , {Ft }t≥0,P)with filtration {Ft }t≥0
satisfying the usual conditions. We consider the system

dXi (t) =
⎛

⎝Xi (t) (ai − bi (Xi (t))) +
n∑

j=1

Dji X j (t)

⎞

⎠ dt

+Xi (t)dEi (t), i = 1, . . . , n, (2.1)

where Di j ≥ 0 for j �= i is the per-capita rate at which the population in patch i
disperses to patch j, Dii = −∑ j �=i Di j is the total per-capita immigration rate out

of patch i,E(t) = (E1(t), . . . , En(t))T = 	
B(t), 	 is a n × n matrix such that
	
	 = � = (σi j )n×n and B(t) = (B1(t), . . . , Bn(t)) is a vector of independent
standard Brownian motions adapted to the filtration {Ft }t≥0. Throughout the paper,
we work with the following assumption regarding the growth of the instraspecific
competition rates.
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Assumption 2.1 For each i = 1, . . . , n the function bi : R+ �→ R is locally Lipschitz
and vanishing at 0. Furthermore, there are Mb > 0, γb > 0 such that

∑n
i=1 xi (bi (xi ) − ai )∑n

i=1 xi
> γb for any xi ≥ 0, i = 1, . . . , n satisfying

n∑

i=1

xi ≥ Mb

(2.2)

Remark 2.1 Note that if we set x j = x ≥ Mb and xi = 0, i �= j , we get from (2.2)
that

b j (x) − a j > γb, x ≥ Mb, j = 1, . . . , n.

Remark 2.2 Note that condition (2.2) is biologically reasonable because it holds if
the bi ’s are sufficiently large for large xi ’s. We provide some simple scenarios when
Assumption 2.1 is satisfied.

a) Suppose bi : [0,∞) → [0,∞), i = 1, . . . , n are locally Lipschitz and vanishing
at 0. Assume that there exist γb > 0, M̃b > 0 such that

inf
x∈[M̃b,∞)

bi (x) − ai − γb > 0, i = 1, . . . , n

It is easy to show that Assumption 2.1 holds.
b) Particular cases of (a) are for example, any bi : R+ �→ R that are locally Lipschitz,

vanishing at 0 such that limx→∞ bi (x) = ∞.
c) One natural choice for the competition functions, which is widely used throughout

the literature, is bi (x) = κi x, x ∈ (0,∞) for some κi > 0. In this case the
competition terms become −xi b(xi ) = −κi x2i .

Remark 2.3 Note that if we have the SDE

dXi (t) =
⎛

⎝Xi (t) fi (Xi (t)) +
n∑

j=1

Dji X j (t)

⎞

⎠ dt

+Xi (t)dEi (t), i = 1, . . . , n, (2.3)

where fi are locally Lipschitz this can always be rewritten in the form (2.1) with

ai := fi (0) and bi (x) := fi (0) − fi (x), i = 1, . . . , n.

Therefore, our setting is in fact very general and incorporates both nonlinear growth
rates and nonlinear competition terms.

The drift f̃ (x) = ( f̃1(x), . . . , f̃n(x)) where f̃i (x) = xi (ai − bi (xi )) +∑n
j=1 Dji X j (t) is sometimes said to be cooperative. This is because fi (x) ≤ fi (y)

if (x, y) ∈ R
n+ such that xi = yi , x j ≤ y j for j �= i . A distinctive property of

cooperative systems is that comparison arguments are generally satisfied. We refer to
Chueshov (2002) for more details.
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Remark 2.4 If the dispersal matrix (Di j ) has a normalized dominant left eigenvector
α = (α1, . . . , αn) then one can show that the system

dXi (t) =
⎛

⎝Xi (t) (ai − bi Xi (t)) + δ

n∑

j=1

Dji X j (t)

⎞

⎠ dt

+ Xi (t)dEi (t), i = 1, . . . , n,

converges as δ → ∞ to a system (X̃1(t), . . . , X̃n(t)) for which

X̃i (t) = αi X̃(t), t ≥ 0, i = 1, . . . , n,

where X̃(t) = X̃1(t) + · · · + X̃n(t) and X̃ is an autonomous Markov process that
satisfies the SDE

d X̃(t) = X̃(t)
n∑

i=1

αi (ai − biαi X̃(t)) dt + X̃(t)
n∑

i=1

αi dEi (t).

As such, our system is a general version of the system treated in Evans et al. (2015).
One can recover the system from Evans et al. (2015) as an infinite dispersion limit of
ours.

We denote by Xx(t) the solution of (2.1) started at X(0) = x ∈ R
n+. Following

Evans et al. (2013), we call matrices D with zero row sums and non-negative off-
diagonal entries dispersal matrices. If D is a dispersal matrix, then it is a generator
of a continuous-time Markov chain. Define Pt := exp(t D), t ≥ 0. Then Pt , t ≥
0 is a matrix with non-negative entries that gives the transition probabilities of a
Markov chain: The (i, j)th entry of Pt gives the proportion of the population that
was initially in patch i at time 0 but has dispersed to patch j at time t and D is the
generator of this Markov chain. If one wants to include mortality induced because
of dispersal, one can add cemetery patches in which dispersing individuals enter and
experience akilling rate beforemoving to their final destination.Ourmodel is a density-
dependent generalization of the one byEvans et al. (2013).We are able to prove that the
linearization of the density-dependent model fully determines the non-linear density-
dependent behavior, a fact which was conjectured by Evans et al. (2013). Furthermore,
we prove stronger convergence results and thus extend the work of Evans et al. (2013).
Analogous results for discrete-time versions of themodel have been studied byBenaïm
and Schreiber (2009) for discrete-space and by Hardin et al. (1988a, b) for continuous-
space.

We will work under the following assumptions.

Assumption 2.2 The dispersal matrix D is irreducible.

Assumption 2.3 The covariance matrix � is non-singular.

Assumption 2.2 is equivalent to forcing the entries of the matrix Pt = exp(t D) to
be strictly positive for all t > 0. This means that it is possible for the population to
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disperse between any two patches. We can always reduce our problem to this setting
by working with the maximal irreducible subsets of patches. Assumption 2.3 says
that our randomness is non-degenerate, and thus truly n-dimensional. We show in
Appendix C how to get the desired results when Assumption 2.3 does not hold.

Throughout the paper we set Rn+ := [0,∞)n and R
n,◦
+ := (0,∞)n . We define

the total abundance of our population at time t ≥ 0 via S(t) := ∑n
i=1 Xi (t) and let

Yi (t) := Xi (t)
S(t) be the proportion of the total population that is in patch i at time t ≥ 0.

Set Y(t) = (Y1(t), . . . ,Yn(t)). An application of Itô’s lemma to (2.1) yields

dYi (t) = Yi (t)

⎛

⎝ai −
n∑

j=1

a jY j (t) − bi (S(t)Yi (t)) +
n∑

j=1

Y j (t)b j (S(t)Y j (t))

⎞

⎠ dt

+
n∑

j=1

DjiY j (t)dt + Yi (t)

⎛

⎝
n∑

j,k=1

σk j Yk(t)Y j (t)) −
n∑

j=1

σi j Y j (t)

⎞

⎠ dt

+ Yi (t)

⎡

⎣dEi (t) −
n∑

j=1

Y j (t)dE j (t)

⎤

⎦

dS(t) = S(t)

(
n∑

i=1

(aiYi (t) − Yi (t)bi (S(t)Yi (t)))

)

dt + S(t)
n∑

i=1

Yi (t)dEi (t)

(2.4)

We can rewrite (2.4) in the following compact equation for (Y(t), S(t))where b(x) =
(b1(x1), . . . , bn(xn)).

dY(t) =
(
diag(Y(t)) − Y(t)Y
(t)

)
	
dB(t)

+ D
Y(t)dt +
(
diag(Y(t)) − Y(t)Y
(t)

)

× (a − �Y(t) − b(S(t)Y(t)))dt

dS(t) = S(t) [a − b(S(t)Y(t))]
 Y(t)dt + S(t)Y(t)
	
dB(t),

(2.5)

where Y(t) lies in the simplex � := {(y1, . . . , yn) ∈ R
n+ : y1 + · · · + yn = 1}. Let

�◦ = {(y1, . . . , yn) ∈ R
n,◦
+ : y1 + · · · + yn = 1} be the interior of �.

Consider Equation (2.5) on the boundary ((y, s) : y ∈ �, s = 0) (that is, we set
S(t) ≡ 0 in the equation for Y(t)). We have the following system

dỸ(t) =
(
diag(Ỹ(t)) − Ỹ(t)Ỹ
(t)

)
	
dB(t)

+D
Ỹ(t)dt +
(
diag(Ỹ(t)) − Ỹ(t)Ỹ
(t)

)
(a − �Ỹ(t))dt (2.6)
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on the simplex �. We also introduce the linearized version of (2.1), where the com-
petition terms bi (xi ) are all set to 0,

dXi (t) =
⎛

⎝Xi (t)ai +
n∑

j=1

DjiX j (t)

⎞

⎠ dt

+Xi (t)dEi (t), i = 1, . . . , n. (2.7)

and let S(t) = ∑n
i=1 Xi (t) be the total population abundance, in the absence of

competition. The processes (X1(t), . . . ,Xn(t)), Ỹ(t) and S(t) have been studied by
Evans et al. (2013).

Evans et al. (2013, Proposition 3.1) proved that the process (Ỹ(t))t≥0 is an irre-
ducible Markov process, which has the strong Feller property and admits a unique
invariant probability measure ν∗ on �. Let Ỹ(∞) be a random variable on � with
distribution ν. We define

r :=
∫

�

(

a
y − 1

2
y
�y

)

ν∗(dy)

=
∑

i

aiE
[
Ỹi (∞)

]
− 1

2
E

⎡

⎣
∑

i j

σi j Ỹi (∞)Ỹ j (∞)

⎤

⎦ (2.8)

Remark 2.5 We note that r is the stochastic growth rate (or Lyapunov exponent) of
the total population S(t) in the absence of competition. That is,

P

{

lim
t→∞

lnSx(t)

t
= r

}

= 1.

The expression (2.8) for r coincides with the one derived by Evans et al. (2013).

We use superscripts to denote the starting points of our processes. For example
(Yy,s(t), Sy,s(t)) denotes the solution of (2.4) with (Y(0), S(0)) = (y, s) ∈ � ×
(0,∞). Fix x ∈ R

n+ and define the normalized occupation measures,

�
(x)
t (·) = 1

t

∫ t

0
1{Xx(u)∈·}du. (2.9)

These randommeasures describe the distribution of the observed population dynamics
up to time t . If we define the sets

Sη := {x = (x1, . . . , xn) ∈ R
n,◦
+ : |xi | ≤ η for some i = 1, . . . , n},

then �
(x)
t (Sη) is the fraction of the time in the interval [0, t] that the total abundance

of some patch is less than η given that our population starts at X(0) = x.
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Definition 2.1 One can define a distance on the space of probability measures living
on the Borel measurable subsets ofRn+, that is on the space (Rn+,B(Rn+)). This is done
by defining ‖·, ·‖TV, the total variation norm, via

‖μ, ν‖TV := sup
A∈B(Rn+)

|μ(A) − ν(A)|.

Theorem 2.1 Suppose that Assumptions 2.2 and 2.3 hold and that r > 0. The process
X(t) = (X1(t), . . . , Xn(t))t≥0 has a unique invariant probability measure π on Rn,◦

+
that is absolutely continuouswith respect to the Lebesguemeasure and for any q∗ > 0,

lim
t→∞ tq

∗‖PX(t, x, ·) − π(·)‖TV = 0, x ∈ R
n,◦
+ , (2.10)

and PX(t, x, ·) is the transition probability of (X(t))t≥0. Moreover, for any initial value
x ∈ R

n+\{0} and any π -integrable function f we have

P

{

lim
T→∞

1

T

∫ T

0
f
(
Xx(t)

)
dt =

∫

R
n,◦
+

f (u)π(du)

}

= 1. (2.11)

Remark 2.6 Theorem 2.1 is a direct consequence of Theorem A.2, which will be
proved in Appendix A. As a corollary we get the following result.

Definition 2.2 Following Roth and Schreiber (2014), we say that the model (2.1) is
stochastically persistent if for all ε > 0, there exists η > 0 such that with probability
one,

�
(x)
t (Sη) ≤ ε

for t sufficiently large and x ∈ Sη\{0}.
Corollary 2.1 If Assumptions 2.2 and 2.3 hold, and r > 0, then the process X(t) is
stochastically persistent.

Proof By Theorem 2.1, we have that for all x ∈ R
n,◦
+ ,

P

{
�

(x)
t ⇒ π as t → ∞

}
= 1.

Since π is supported on R
n,◦
+ , we get the desired result. ��

Biological interpretation of Theorem 2.1 The quantity r is the Lyapunov exponent
or stochastic growth rate of the total population process (S(t))t≥0 in the absence of
competition. This number describes the long-term growth rate of the population in
the presence of a stochastic environment. According to (2.8) r can be written as the
difference μ − 1

2σ
2 where

• μ is the average of per-capita growth rates with respect to the asymptotic distri-
bution Ỹ(∞) of the population in the absence of competition.
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• σ 2 is the infinitesimal variance of the environmental stochasticity averaged accord-
ing to the asymptotic distribution of the population in the absence of competition.

We note by (2.8) that r depends on the dispersal matrix, the growth rates at 0 and the
covariance matrix of the environmental noise. As such, the stochastic growth rate can
change due to the dispersal strategy or environmental fluctuations.

When the stochastic growth rate of the population in absence of competition is
strictly positive (i.e. r > 0) our population is persistent in a strong sense: for any
starting point (X1(0), . . . , Xn(0)) = (x1, . . . , xn) ∈ R

n,◦
+ the distribution of the

population densities at time t in the n patches (X1(t), . . . , Xn(t)) converges as t → ∞
to the unique probability measure π that is supported on R

n,◦
+ .

Definition 2.3 We say the population of patch i goes extinct if for all x ∈ R
n+\{0}

P

{
lim
t→∞ Xx

i (t) = 0
}

= 1.

We say the population goes extinct if the populations from all the patches go extinct,
that is if for all x ∈ R

n+\{0}

P

{
lim
t→∞Xx(t) = 0

}
= 1.

Theorem 2.2 Suppose that Assumptions 2.2 and 2.3 hold and that r < 0. Then for
any i = 1, . . . , n and any x = (x1, . . . , xn) ∈ R

n+,

P

{

lim
t→∞

ln Xx
i (t)

t
= r

}

= 1. (2.12)

Biological interpretation of Theorem 2.2 If the stochastic growth rate of the popu-
lation in the absence of competition is negative (i.e. r < 0) the population densities of
the n patches (X1(t), . . . , Xn(t)) go extinct exponentially fast with rates r < 0 with
probability 1 for any starting point (X1(0), . . . , Xn(0)) = (x1, . . . , xn) ∈ R

n+.
In Appendix A, we prove Theorem 2.1 while Theorem 2.2 is proven in Appendix B.

2.1 Degenerate noise

We consider the evolution of the process (X(t))t≥0 given by (2.1) when Assumption
2.3 does not hold. If the covariancematrix� = 	T	 coming for theBrownianmotions
E(t) = (E1(t), . . . , En(t))T = 	
B(t) is singular, the environmental noise driving
our SDEs has a lower dimension than the dimension n of the underlying state space.
It becomes much more complex to prove that our process is Feller and irreducible.
In order to verify the Feller property, we have to verify the so-called Hörmander
condition, and to verify the irreducibility, we have to investigate the controllability of
a related control system.

We are able to prove the following extinction and persistence results.
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Theorem 2.3 Assume that Ỹ(t) has aunique invariant probabilitymeasure ν∗. Define
r by (2.8). Suppose that r < 0. Then for any i = 1, . . . , n and any x = (x1, . . . , xn) ∈
R
n+

P

{

lim
t→∞

ln Xx
i (t)

t
= r

}

= 1. (2.13)

In particular, for any i = 1, . . . , n and any x = (x1, . . . , xn) ∈ R
n+

P

{
lim
t→∞ Xx

i (t) = 0
}

= 1.

Remark 2.7 The extra assumption in this setting is that theMarkov process describing
the proportions of the populations of the patches evolving without competition, Ỹ(t),
has a unique invariant probability measure. In fact, we conjecture that Ỹ(t) always has
a unique invariant probability measure. We were able to prove this conjecture when
n = 2—see Remark 3.1 for details.

Theorem 2.4 Assume that Ỹ(t) has aunique invariant probabilitymeasure ν∗. Define
r by (2.8). Suppose that Assumption 2.2 holds and that r > 0. Assume further that
there is a sufficiently large T > 0 such that the Markov chain (Y(kT ), S(kT ))k∈N it
is irreducible and aperiodic, and that every compact set in �◦ × (0,∞) is petite for
this Markov chain.

The process X(t) = (X1(t), . . . , Xn(t))t≥0 has a unique invariant probability
measure π onRn,◦

+ that is absolutely continuous with respect to the Lebesgue measure
and for any q∗ > 0,

lim
t→∞ tq

∗‖PX(t, x, ·) − π(·)‖TV = 0, x ∈ R
n,◦
+ , (2.14)

where ‖·, ·‖TV is the total variation norm and PX(t, x, ·) is the transition probability of
(X(t))t≥0. Moreover, for any initial value x ∈ R

n+\{0} and any π -integrable function
f , we have

P

{

lim
T→∞

1

T

∫ T

0
f
(
Xx(t)

)
dt =

∫

R
n,◦
+

f (u)π(du)

}

= 1. (2.15)

Remark 2.8 We require as before that Ỹ(t) has a unique invariant probabilitymeasure.
Furthermore, we require that there exists some time T > 0 such that if we observe the
process (Y(t), S(t)) at the fixed times T, 2T, 3T, . . . , kT, . . . it is irreducible (loosely
speaking this means that the process can visit any state) and aperiodic (returns to a
given state occur at irregular times).

2.2 Case study: n = 2

Note that the two Theorems above have some extra assumptions. We exhibit how one
can get these conditions explicitly as functions of the various parameters of the model.
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For the sake of a clean exposition we chose to fully treat the case when n = 2 and
bi (x) = bi x, x ≥ 0, i = 1, 2 for some b1, b2 > 0 (each specific case would have to
be studied separately as the computations change in each setting). As a result, (2.1)
becomes

{
dX1(t) = (

X1(t)(a1 − b1X1(t)) − αX1(t) + βX2(t)
)
dt + σ1X1(t)dB(t)

dX2(t) = (
X2(t)(a2 − b2X2(t)) + αX1(t) − βX2(t)

)
dt + σ2X2(t)dB(t),

where σ1, σ2 are non-zero constants and (B(t))t≥0 is a one dimensional Brownian
motion. The Lyapunov exponent can now be expressed as (see Remark 3.1)

r = a2 − σ 2
2

2
+ (a1 − a2 + σ 2

2 )

∫ 1

0
yρ∗

1 (y) dy

− (σ1 − σ2)
2

2

∫ 1

0
y2ρ∗

1 (y) dy (2.16)

where ρ∗
1 is given in (3.5) later.

If σ1 = σ2 =: σ , one has (see Remark 3.1)

r = a2 − σ 2

2
+ (a1 − a2 + σ 2)y�. (2.17)

Theorem 2.5 Define r by (2.16) if σ1 �= σ2 and by (2.17) if σ1 = σ2 = σ . If r < 0
then for any i = 1, 2 and any x = (x1, x2) ∈ R

2+

P

{

lim
t→∞

ln Xx
i (t)

t
= r

}

= 1. (2.18)

Theorem 2.6 Suppose that σ1 �= σ2 orβ+(b2/b1)(a1−a2−α+β)−α(b2/b1)2 �= 0.
Define r as in Theorem 2.5. If r > 0 then the conclusion of Theorem 2.4 holds.

Remark 2.9 Once again the parameter r tells us when the population goes extinct
and when it persists. To obtain the conclusion of Theorem 2.4 when r > 0, we need
σ1 �= σ2 or β + (b2/b1)(a1 − a2 − α + β) − α(b2/b1)2 �= 0. The condition σ1 �= σ2
tells us that the noise must at least differ through its variance. If σ1 = σ2 then we
require

a1 + β
b1 + b2

b2
�= a2 + α

b1 + b2
b1

.

The term β b1+b2
b2

measures the dispersion rate of individuals from patch 2 to patch
1 averaged by the inverse relative competition strength of patch 2. In particular, if
b1 = b2 we have that

2(β − α) �= a2 − a1,
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710 A. Hening et al.

that is twice the difference of the dispersal rates cannot equal the difference of the
growth rates. The dynamics of the system is very different if these conditions do not
hold (see Sect. 3.2 and Theorem 2.7).

Theorem 2.7 Suppose that σ1 = σ2 = σ, b1 = b2 and 2(β − α) = a2 − a1. In this

setting one can show that the stochastic growth rate is given by r = a1 −α +β − σ 2

2 .

Assume that (X1(0), X2(0)) = x = (x1, x2) ∈ R
2,◦
+ and let U (t) be the solution to

dU (t) = U (t)(a1 − α + β − bU (t)) dt + σU (t)dB(t),U (0) = x2.

Then we get the following results

1) If x1 = x2 then P(Xx
1(t) = Xx

2(t) = U (t), t ≥ 0) = 1.
2) If x1 �= x2 then P(Xx

1(t) �= Xx
2(t), t ≥ 0) = 1.

3) If r < 0 then X1(t) and X2(t) converges to 0 exponentially fast. If r > 0 then

P

{

lim
t→∞

Xx
1(t)

U x(t)
= lim

t→∞
Xx
2(t)

U x(t)
= 1

}

= 1.

Thus, both X1(t) and X2(t) converge to a unique invariant probability measure
ρ on (0,∞), which is the invariant probability measure of U (t). The invariant
probability measure of (X1(t), X2(t))t≥0 is concentrated on the one-dimensional
manifold {x = (x1, x2) ∈ R

2,◦
+ : x1 = x2}.

The proof of Theorem 2.7 is presented in Sect. 3.2.

2.3 Robust persistence and extinction

Themodel weworkwith is an approximation of the real biological models. As a result,
it is relevant to see if ‘close models’ behave similarly to ours. This reduces to studying
the robustness of our system. Consider the process

d X̂i = X̂i
(
âi − b̂i (Xi )

)
dt + D̂i j (X̂)X̂i dt + X̂i 	̂(X̂)dB(t) (2.19)

where b̂(·), D̂(·), 	̂(·) are locally Lipschitz functions and D̂i j (x) ≥ 0 for all x ∈
R
n+, i �= j and D̂ii (x) = −∑ j �=i Di j (x). If there exists θ > 0 such that

sup
x∈Rn,◦

+

{‖a − â‖, ‖b(x) − b̂(x)‖, ‖D − D̂(x)‖, ‖	 − 	̂(x)‖} < θ, (2.20)

then we call X̂ a θ -perturbation of X.

Theorem 2.8 Suppose that the dynamics of (X(t))t≥0 satisfy the assumptions of The-
orem 2.1. Then there exists θ > 0 such that any θ -perturbation (X̂(t))t≥0 of (X(t))t≥0
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is persistent. Moreover, the process (X̂(t))t≥0 has a unique invariant probability mea-
sure π̂ on R

n,◦
+ that is absolutely continuous with respect to the Lebesgue measure

and for any q∗ > 0

lim
t→∞ tq

∗‖PX̂(t, x, ·) − π̂(·)‖TV = 0, x ∈ R
n,◦
+ ,

where PX̂(t, x, ·) is the transition probability of (X̂(t))t≥0.

Biological interpretation of Theorem 2.8 As long as the perturbation of our model is
small, persistence does not change to extinction. Our model, even though it is only an
approximation of reality, can provide relevant information regarding biological sys-
tems. Small enough changes in the growth rates, the competition rates, the dispersion
matrix and the covariance matrix leave a persistent system unchanged.

3 Theoretical and numerical examples

This subsection is devoted to some theoretical and numerical examples.We choose the
dimension to be n = 2, so that we can compute the stochastic growth rate explicitly.

Remark 3.1 If an explicit expression for r is desirable, one needs to determine the
first and second moments for the invariant probability measure ν∗. One can show that
ρ∗, the density of ν∗ with respect to Lebesgue measure, satisfies

−
∑

i

∂

∂yi
[μi (y)ρ∗(y)] + 1

2

∑

i, j

∂2

∂yi∂y j
[vi j (y)ρ∗(y)] = 0, y ∈ �, (3.1)

where μi (y) and vi, j (y) are the entries of

μ(y) = D
y +
(
diag(y) − yy
) (a − �y) ,

v(y) =
(
diag(y) − yy
(t)

)
	
	

(
diag(y) − yy
(t)

)
,

and ρ∗ is constrained by
∫
�

ρ∗(y)dy = 1 with appropriate boundary conditions. The
boundary conditions are usually found by characterizing the domain of the infinites-
imal generator of the Feller diffusion process Ỹ(t), which is usually a very difficult
problem.

However, following Evans et al. (2013), in the case of two patches (n = 2) and
non-degenerate noise the problem is significantly easier. Let � = diag(σ 2

1 , σ 2
2 ). The

system becomes

{
dX1(t) = (

X1(t)(a1 − bX1(t)) − αX1(t) + βX2(t)
)
dt + σ1X1(t)dB1(t)

dX2(t) = (
X2(t)(a2 − bX2(t)) + αX1(t) − βt X2(t)

)
dt + σ2X2(t)dB2(t).

(3.2)
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It is easy to find the density ρ∗
1 of Ỹ1(∞) explicitly (by solving (3.1)) and noting

that 0, 1 are both entrance boundaries for the diffusion Ỹ1(t)). Then

ρ∗
1 (x) = Cxβ−α1(1 − x)−β−α2 exp

(

− 2

σ 2
1 + σ 2

2

(
β

x
+ α

1 − x

))

, x ∈ (0, 1)

where C > 0 is a normalization constant and

αi := 2σ 2
i

σ 2
1 + σ 2

2

, i = 1, 2

β := 2

σ 2
1 + σ 2

2

(a1 − a2 + β − α).

One can then get the following explicit expression for the Lyapunov exponent

r = a2 − σ 2
2

2
+ (a1 − a2 + σ 2

2 )

∫ 1

0
yρ∗

1 (y) dy

−σ 2
1 + σ 2

2

2

∫ 1

0
y2ρ∗

1 (y) dy. (3.3)

Next, consider the degenerate case

{
dX1(t) = (

X1(t)(a1 − b1X1(t)) − αX1(t) + βX2(t)
)
dt + σ1X1(t)dB(t)

dX2(t) = (
X2(t)(a2 − b2X2(t)) + αX1(t) − βX2(t)

)
dt + σ2X2(t)dB(t),

(3.4)

where σ1, σ2 are non-zero constants and (B(t))t≥0 is a one dimensional Brownian
motion. Since Ỹ1(t)+ Ỹ2(t) = 1, to find the invariant probability measure of Ỹ(t), we
only need to find the invariant probability measure of Ỹ1(t).

If σ2 �= σ2 we can find the invariant density ρ∗
1 of Ỹ1(∞) explicitly (by solving

(3.1). Then

ρ∗
1 (x) = Cx β̂−α̂1(1 − x)−β̂−α̂2 exp

(

− 2

(σ1 − σ2)2

(
β

x
+ α

1 − x

))

,

x ∈ (0, 1) (3.5)

where C > 0 is a normalization constant and

α̂1 := −2σ1
(σ1 − σ2)

, α̂2 := 2σ2
(σ1 − σ2)

,

β̂ := 2

(σ1 − σ2)2
(a1 − a2 + β − α).

The Lyapunov exponent can now be expressed as
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r = a2 − σ 2
2

2
+ (a1 − a2 + σ 2

2 )

∫ 1

0
yρ∗

1 (y) dy

− (σ1 − σ2)
2

2

∫ 1

0
y2ρ∗

1 (y) dy.

We note that the structure of the stochastic growth rate r for non-degenerate noise
(3.3) and for degenerate noise (2.16) with σ1 �= σ2 is the same. The only difference is
that one needs to make the substitution σ 2

1 + σ 2
2 �→ (σ1 − σ2)

2 and the changes in α̂i .
If σ1 = σ2 =: σ the system (2.6) for Ỹ(t) = (Ỹ1(t), Ỹ2(t)) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dỸ1(t) =
(
Ỹ1(t)(a1 − a1Ỹ1(t) − a2Ỹ2(t)) − αỸ1(t) + βỸ2(t)

)
dt

+σ 2Ỹ1(t)
[
(Ỹ1(t) + Ỹ2(t))2 − (Ỹ1(t) + Ỹ2(t))2

]
dt

dỸ1(t) =
(
Ỹ2(t)(a2 − a1Ỹ1(t) − a2Ỹ2(t)) − βỸ2(t) + αỸ1(t)

)
dt

+σ 2Ỹ2(t)
[
(Ỹ1(t) + Ỹ2(t))2 − (Ỹ1(t) + Ỹ2(t))2

]
dt.

(3.6)

Using the fact that Ỹ1(t) + Ỹ2(t) = 1 this reduces to

dỸ1(t) =
(
(a1 − a2)[1 − Ỹ1(t)]Ỹ1(t) + β − (α + β)Ỹ1(t)]

)
dt. (3.7)

The unique equilibrium of 3.7 in [0,1] is the root y� in [0,1] of (a1 − a2)(1 − y)y +
β − (α + β)y = 0. Hence, the unique invariant probability measure of Ỹ(t) in this
case is the Dirac measure concentrated in (y�, 1 − y�). Thus

r = a2 − σ 2

2
+ (a1 − a2 + σ 2)y�.

3.1 The degenerate case σ1 = σ2, α = β

Consider the following system, where α, σ, ai , bi , i = 1, 2 are positive constants.

{
dX1(t) = (

X1(t)(a1 − b1X1(t)) − αX1(t) + αX2(t)
)
dt + σ X1(t)dB(t)

dX2(t) = (
X2(t)(a2 − b2X2(t)) + αX1(t) − αX2(t)

)
dt + σ X2(t)dB(t).

(3.8)

Suppose that a1 �= a2 or that b1 �= b2. This system is degenerate since both equations
are driven by a single Brownian motion. In this case, the unique equilibrium of (3.7)
in [0,1] is the root y� in [0,1] of (a1 − a2)(1 − y)y + α(1 − 2y) = 0. Solving this

quadratic equation, we have y� = a1 − a2 − 2α +√(a1 − a2)2 + 4α2

2(a1 − a2)
if a1 �= a2

and y� = 1
2 if a1 = a2.
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It can be proved easily that this equilibrium is asymptotically stable and that
limt→∞ Ỹ1(t) = y�. Thus, if a1 �= a2

r = a1y
� + a2(1 − y�) − σ 2

2

= a2 + a1 − a2 − 2α +√(a1 − a2)2 + 4α2

2
− σ 2

2

= a1 + a2 − 2α +√(a1 − a2)2 + 4α2

2
− σ 2

2
.

As a result

r =

⎧
⎪⎪⎨

⎪⎪⎩

a1 + a2 − 2α +√(a1 − a2)2 + 4α2

2
− σ 2

2
if a1 �= a2, b1 = b2

a1 − σ 2

2
if a1 = a2, b1 �= b2.

(3.9)

Note that if a1 �= a2 and b1 = b2

α + (b2/b1)(a1 − a2) − α(b2/b1)
2 = a1 − a2 �= 0

and that if a1 = a2 and b1 �= b2

α + (b2/b1)(a1 − a2) − α(b2/b1)
2 = α (1 − b2/b1) �= 0.

Therefore, the assumptions of Theorem 2.6 hold. If r < 0, by Theorem 2.5 the
population goes extinct, while if r > 0, the population persists by Theorem 2.6.

3.2 The degenerate case when the conditions of Theorem 2.6 are violated

We analyse the system

{
dX1(t) = (

X1(t)(a1 − bX1(t)) − αX1(t) + βX2(t)
)
dt + σ X1(t)dB(t)

dX2(t) = (
X2(t)(a2 − bX2(t)) + αX1(t) − βX2(t)

)
dt + σ X2(t)dB(t),

(3.10)

when 2(β − α) = a2 − a1. In this case σ1 = σ2 = σ ,

β + (b2/b1)(a1 − a2 − α + β) − α(b2/b1) = 0

and

r = a1 − α + β − σ 2

2
.

If r < 0 then limt→∞ X1(t) = limt→∞ X2(t) = 0 almost surely as the result of
Theorem 2.5.
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We focus on the case r > 0 and show that some of the results violate the conclusions
of Theorem 2.6.

If we set Z(t) = X1(t)/X2(t) then (see (C.6))

dZ(t) =
(
(1 − Z(t))Z(t)X2(t) + β + â1Z(t) − αZ2(t)

)
dt.

Noting that â1 = a1 − a2 − α + β = α − β yields

d(Z(t) − 1) =
(

− (Z(t) − 1)Z(t)X2(t) − (Z(t) − 1)(αZ(t) + β)
)
dt.

Assume Z(0) �= 1 and without loss of generality suppose Z(0) > 1. This implies

Z(t) − 1 = (Z(0) − 1) exp

(

−
∫ t

0
[Z(s)X2(s) + (αZ(s) + β)] ds

)

. (3.11)

Since Z(t) and X2(t) do not explode to ±∞ in finite time we can conclude that
if Z(0) �= 0 then Z(t) �= 0 for any t ≥ 0 with probability 1. In other words, if
x = (x1, x2) ∈ R

2,◦
+ with x1 �= x2 then

P(Xx
1(t) = Xx

2(t), t ≥ 0) = 0.

One can further see from (3.11) that Z(t)−1 tends to 0 exponentially fast. If Z(0) = 1
let X1(0) = X2(0) = x > 0. Similar arguments to the above show that

P(Xx
1(t) �= Xx

2(t), t ≥ 0) = 0.

To gain more insight into the asymptotic properties of (X1(t), X2(t)), we study

dX2(t) = X2(t)
(
(̂a2 − bX2(t)) + αZ(t)

)
dt + σ X2(t)dB(t)

= X2(t)
(
a1 − α + β − bX2(t)) + α(Z(t) − 1)

)
dt + σ X2(t)dB(t)

We have from Itô’s formula that,

d
1

X2(t)
=
(

b + (−a1 + α − β + σ 2 − α(Z(t) − 1))
1

X2(t)

)

dt

− σ
1

X2(t)
dB(t).

By the variation-of constants formula (see Mao 1997, Section 3.4), we have

1

X2(t)
= φ−1(t)

[
1

x2
+ b

∫ t

0
φ(s)ds

]
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where

φ(t) := exp

[

r t + α

∫ t

0
(Z(s) − 1)ds + σ B(t)

]

.

Thus,

X2(t) = φ(t)

x−1
2 + b

∫ t
0 φ(s)ds

.

It is well-known that

U (t) := ert+σ B(t)

x−1
2 + b

∫ t
0 e

rs+σ B(s)ds
,

is the solution to the stochastic logistic equation

dU (t) = U (t)(a1 − α + β − bU (t)) dt + σU (t)dB(t),U (0) = x2.

By the law of the iterated logarithm, almost surely

lim
t→∞ φ(t) = lim

t→∞ ert+σ B(t) = ∞. (3.12)

We have

X2(t)

U (t)
=

exp
(
α
∫ t
0 (Z(s) − 1)ds

) [
x−1
2 + b

∫ t
0 e

rt+σ B(t)ds
]

x−1
2 + b

∫ t
0 φ(s)ds

.

In view of (3.12), we can use L’hospital’s rule to obtain

lim
t→∞

X2(t)

U (t)

= lim
t→∞

exp
(
α
∫ t
0 (Z(s) − 1)ds

)
ert+σ B(t)

φ(t)

+ lim
t→∞

α(Z(t) − 1) exp
(
α
∫ t
0 (Z(s) − 1)ds

) [
x−1
2 + b

∫ t
0 e

rt+σ B(t)ds
]

bφ(t)

= 1 + lim
t→∞

α(Z(t) − 1)
[
x−1
2 + b

∫ t
0 e

rt+σ B(t)ds
]

bert+σ B(t)
(3.13)

almost surely. By the law of the iterated logarithm, limt→∞
ert+σ B(t)

e(r−ε)t
= ∞ and

limt→∞
ert+σ B(t)

e(r+ε)t
= 0 for any ε > 0. Applying this and (3.11) to (3.13), it is easy to

show that with probability 1
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lim
t→∞

X2(t)

U (t)
= 1.

Since limt→∞ Z(t) = 1 almost surely, we also have limt→∞
X1(t)

U (t)
= 1 almost

surely. Thus, the long term behavior of X1(t) and X2(t) is governed by the one-
dimensional diffusion U (t). In particular, both X1(t) and X2(t) converge to a unique
invariant probability measure ρ on (0,∞), which is the invariant probability measure
of U (t). In this case, the invariant probability measure of X(t) = (X1(t), X2(t))t≥0

is not absolutely continuous with respect to the Lebesgue measure on R
2,◦
+ . Instead,

the invariant probability measure is concentrated on the one-dimensional manifold
{x = (x1, x2) ∈ R

2,◦
+ : x1 = x2}.

Biological interpretation The stochastic growth rate in this degenerate setting is

given by r = a1 −α +β − σ 2

2 .We note that this term is equal to the stochastic growth

rate of patch 1, a1 − σ 2

2 , to which we add β, the rate of dispersal from patch 1 to patch
2, and subtract α, the rate of dispersal from patch 2 to patch 1. When

a1 − σ 2

2
> α − β

one has persistence, while when

a1 − σ 2

2
< α − β

one has extinction. In particular, if the patches on their own are sink patches so that

a1 − σ 2

2 < 0 and a2 − σ 2

2 < 0 dispersion cannot lead to persistence since

a1 − σ 2

2
> α − β and a2 − σ 2

2
> β − α

cannot hold simultaneously. The behavior of the system when r > 0 is different from
the behavior in the non-degenerate setting of Theorem 2.1 or the degenerate setting
of Theorem 2.6. Namely, if the patches start with equal populations then the patch
abundances remain equal for all times and evolve according to the one-dimensional
logistic diffusion U (t). If the patches start with different population abundances then
X1(t) and X2(t) are never equal but tend to each other asymptotically as t → ∞.
Furthermore, the long term behavior of X1(t) and X2(t) is once again determined
by the logistic diffusion U (t) as almost surely Xi (t)

U (t) → 1 as t → ∞. As such, if
r > 0 we have persistence but the invariant measure the system converges to does
not have R

2,◦
+ as its support anymore. Instead the invariant measure has the line

{x = (x1, x2) ∈ R
2,◦
+ : x1 = x2} as its support.

Example 3.1 We discuss the case when a1 �= a2 and σ1 = σ2. The stochastic growth
rate can be written by the analysis in the sections above as

r =

⎧
⎪⎨

⎪⎩

a1 + a2 − 2α +
√

(a1 − a2)2 + 4α2

2
− σ 2

2
if α = β, b1 = b2

a1 − α + β − σ 2

2 if a2 − a1 = 2(β − α), b1 = b2.
(3.14)
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Fig. 1 Consider (3.2) when α = β and the Brownian motions B1 and B2 are assumed to have correlation
ρ. The graphs show the stochastic growth rate r as a function of the dispersal rate α for different values of
the correlation. Note that if ρ = 0 we get the setting when the Brownian motions of the two patches are
independent while when ρ = 1 we get that one Brownian motion drives the dynamics of both patches. The
parameters are α = β, a1 = 3, a2 = 4, σ 2

1 = σ 2
2 = 7

Biological interpretation In the case when a1 = a2, σ1 = σ2 and b1 �= b2 (so that
the two patches only differ in their competition rates) the stochastic growth rate r does
not depend on the dispersal rate α. The system behaves just as a single-patch system

with stochastic growth rate a1 − σ 2

2 . In contrast to Evans et al. (2013, Example 1)
coupling two sink patches by dispersion cannot yield persistence.

However, if the growth rates of the patches are different a1 �= a2 then the expression
for r given in (3.14) yields for α � |a1 − a2| that

r ≈ a1 + a2
2

− σ 2

2
+ (a1 − a2)2

8α
.

In particular

lim
α→∞ r(α) = a1 + a2

2
− σ 2

2
.

We note that r is a decreasing function of the dispersal rate α for large values of α

(also see Fig. 1). This is different from the result of Evans et al. (2013, Example 1)
where r was shown to be an increasing function of α. In contrast to the non-degenerate
case, coupling patches by dispersal decreases the stochastic growth rate and as such
makes persistence less likely. This highlights the negative effect of spatial correlations
on population persistence and why one may no longer get the rescue effect. This is one
of your main biological conclusions. Furthermore, we also recover that dispersal has
a negative impact on the stochastic growth rate when there is spatial heterogeneity
(i.e. a1 �= a2). This fact has a long history, going back to the work by Karlin (1982).
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4 Discussion and generalizations

For numerousmodels of population dynamics it is natural to assume that time is contin-
uous. One reason for this is that often environmental conditions change continuously
with time and therefore can naturally be described by continuous time models. There
have been a few papers dedicated to the study of stochastic differential equation mod-
els of interacting, unstructured populations in stochastic environments (see Benaïm
et al. 2008; Schreiber et al. 2011; Evans et al. 2015). These models however do not
account for population structure or correlated environmental fluctuations.

Examples of structured populations can be found by looking at a population in
which individuals can live in one of n patches (e.g. fish swimming between basins
of a lake or butterflies dispersing between meadows). Dispersion is viewed by many
population biologists as an importantmechanism for survival.Not only does dispersion
allow individuals to escape unfavorable landscapes (due to environmental changes or
lack of resources), it also facilitates populations to smooth out local spatio-temporal
environmental changes. Patch models of dispersion have been studied extensively in
the deterministic setting (see for example Hastings 1983; Cantrell et al. 2012). In the
stochastic setting, there have been results for discrete time and space by Benaïm and
Schreiber (2009), for continuous time and discrete space by Evans et al. (2013) and
for structured populations that evolve continuously both in time and space.

We analyze the dynamics of a population that is spread throughout n patches,
evolves in a stochastic environment (that can be spatially correlated), disperses among
the patches and whose members compete with each other for resources. We charac-
terize the long-term behavior of our system as a function of r—the growth rate in the
absence of competition. The quantity r is also the Lyapunov exponent of a suitable
linearization of the system around 0. Our analysis shows that r < 0 implies extinction
and r > 0 persistence. The limit case r = 0 cannot be analyzed in our framework. We
expect that new methods have to be developed in order to tackle the r = 0 scenario.

Since mathematical models are always approximations of nature it is necessary
to study how the persistence and extinction results change under small perturbations
of the parameters of the models. The concept of robust persistence (or permanence)
has been introduced by Hutson and Schmitt (1992). They showed that for certain
systems persistence holds even when one has small perturbations of the growth func-
tions. There have been results on robust persistence in the deterministic setting for
Kolmogorov systems by Schreiber (2000) and Garay and Hofbauer (2003). Recently,
robust permanence for deterministic Kolmogorov equations with respect to pertur-
bations in both the growth functions and the feedback dynamics has been analyzed
by Patel and Schreiber (2016). In the stochastic differential equations setting results
on robust persistence and extinction have been proven by Schreiber et al. (2011) and
Benaïm et al. (2008). We prove analogous results in our framework where the popu-
lations are coupled by dispersal. For robust persistence we show in Appendix D that
even with density-dependent perturbations of the growth rates, dispersion matrix and
environmental covariance matrix, if these perturbations are sufficiently small and if
the unperturbed system is persistent then the perturbed system is also persistent. In the
case of extinctionwe can prove robustness when there are small constant perturbations
of the growth rates, dispersal matrices and covariance matrices.
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In ecology there has been an increased interest in the spatial synchrony present in
population dynamics. This refers to the changes in the time-dependent characteristics
(i.e. abundances etc) of structured populations. One of the mechanisms which creates
synchrony is the dependence of the population dynamics on a synchronous random
environmental factor such as temperature or rainfall. The synchronizing effect of envi-
ronmental stochasticity, or the so-called Moran effect, has been observed in multiple
population models. Usually this effect is the result of random but correlated weather
effects acting on spatially structured populations. Following Legendre (1993) one
could argue that our world is a spatially correlated one. For many biotic and abiotic
factors, like population density, temperature or growth rate, values at close locations
are usually similar. For an in-depth analysis of spatial synchrony see Kendall et al.
(2000) and Liebhold et al. (2004). Most stochastic differential models appearing in
population dynamics treat only the case when the noise is non-degenerate (although
see Rudnicki 2003; Dieu et al. 2016). This simplifies the technical proofs significantly.
However, from a biological point of view it is not clear that the noise should never
be degenerate. For example if one models a system with multiple populations then all
populations can be influenced by the same factors (a disease, changes in temperature
and sunlight etc). Environmental factors can intrinsically create spatial correlations
and as such it makes sense to study how these degenerate systems compare to the
non-degenerate ones. In our setting the n different patches could be strongly spatially
correlated. Actually, in some cases it could be more realistic to have the same one-
dimensional Brownian motion (Bt )t≥0 driving the dynamics of all patches. We were
able to find conditions under which the proofs from the non-degenerate case can be
generalized to the degenerate setting. This is a first step towards a model that tries
to explain the complex relationship between dispersal, stochastic environments and
spatial correlations.

We fully analyze what happens if there are only two patches, n = 2, and the noise
is degenerate. Our results show unexpectedly, and in contrast to the non-degenerate
results by Evans et al. (2013), that coupling two sink patches cannot yield persistence.
More generally, we show that the stochastic growth rate is a decreasing function of
the dispersal rate. In specific instances of the degenerate setting, even when there is
persistence, the invariant probability measure the system converges to does not have
R
2,◦
+ as its support. Instead, the abundances of the two patches converge to an invariant

probability measure supported on the line {x = (x1, x2) ∈ R
2,◦
+ : x1 = x2}. These

examples shows that degenerate noise is not just an added technicality—the results
can be completely different from those in the non-degenerate setting. The negative
effect of spatial correlations (including the fully degenerate case) has been studied
in several papers for discrete-time models (see Schreiber 2010; Harrison and Quinn
1989; Palmqvist and Lundberg 1998; Bascompte et al. 2002; Roy et al. 2005). The
negative impact of dispersal on the stochastic growth rate r when there is spatial
heterogeneity (i.e. a1 �= a2) has a long history going back to the work of Karlin
(1982) on theReduction Principle. FollowingAltenberg (2012) the reduction principle
can be stated as the widely exhibited phenomenon that mixing reduces growth, and
differential growth selects for reduced mixing. The first use of this principle in the
study of the evolution of dispersal can be found in Hastings (1983). The work of
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Kirkland et al. (2006) provides an independent proof of the Reduction Principle and
applications to nonlinear competing species in discrete-time, discrete-space models.
In the case of continuous-time, discrete-space models (given by branching processes)
a version of the Reduction Principle is analysed by Schreiber and Lloyd-Smith (2009).

4.1 k species competing and dispersing in n patches

Real populations do not evolve in isolation and as a resultmuch of ecology is concerned
with understanding the characteristics that allow two species to coexist, or one species
to take over the habitat of another. It is of fundamental importance to understand what
will happen to an invading species.Will it invade successfully or die out in the attempt?
If it does invade, will it coexist with the native population? Mathematical models for
invasibility have contributed significantly to the understanding of the epidemiology
of infectious disease outbreaks (Cross et al. 2005) and ecological processes (Law and
Morton 1996; Caswell 2001). There is widespread empirical evidence that heterogene-
ity, arising from abiotic (precipitation, temperature, sunlight) or biotic (competition,
predation) factors, is important in determining invasibility (Davies et al. 2005; Pyšek
and Hulme 2005). However, few theoretical studies have investigated this; see, e.g.,
Schreiber and Lloyd-Smith (2009), Schreiber and Ryan (2011) and Schreiber (2012).

In this paper we have considered the dynamics of one population that disperses
through n patches. One possible generalization would be to look at k populations
(X1, . . . ,Xk) that compete with each other for resources, have different dispersion
strategies and possibly experience the environmental noise differently. Looking at
such a model could shed light upon fundamental problems regarding invasions in
spatio-temporally heterogeneous environments.

The extension of our results to competitionmodels could lead to the development of
a stochastic version of the treatment of the evolution of dispersal developed for patch
models in the deterministic setting by Hastings (1983) and Cantrell et al. (2012). In
the current paper we have focused on how spatio-temporal variation influences the
persistence and extinction of structured populations. In a follow-up paper we intend
to look at the dispersal strategies in terms of evolutionarily stable strategies (ESS)
which can be characterized by showing that a population having a dispersal strategy
(Di j ) cannot be invaded by any other population having a different dispersal strategy
(D̃i j ). The first thing to check would be whether this model has ESS and, if they exist,
whether they are unique. One might even get that there are no ESS in our setting. For
example, Schreiber and Li (2011) show that there exist no ESS for periodic non-linear
models and instead one gets a coalition of strategies that act as an ESS. We expect to
be able to generalize the results of Cantrell et al. (2012) to a stochastic setting using
the methods from this paper.
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Appendix A: The case r > 0

The next sequence of lemmas and propositions is used to prove Theorem 2.1. We start
by showing that our processes are well-defined Markov processes.

Proposition A.1 The SDE (stochastic differential equation) defined by (2.1) has
unique strong solutionsX(t) = (X1(t), . . . , Xn(t)), t ≥ 0 for any x = (x1, . . . , xn) ∈
R
n+. Furthermore, X(t) is a strong Markov process with the Feller property, is irre-

ducible on R
n+\{0} and P{Xi (t) > 0, t > 0, i = 1, . . . , n} = 1 if X(0) ∈ R

n+\{0}.
Proof Since the coefficients of (2.1) are locally Lipschitz, there exists a unique local
solution to (2.1) with a given initial value. In other words, for any initial value, there
is a stopping time τe > 0 and a process (X(t))t≥0 satisfying (2.1) up to τe and
lim
t→τe

‖X(t)‖ = ∞ (see e.g. Khasminskii 2012, Section 3.4). Clearly, if X(0) = 0 then

X(t) = 0, t ∈ [0, τe) which implies that τe = ∞. By a comparison theorem for SDEs
(see Geiß and Manthey (1994, Theorem 1.2) and Remark A.2 below),

P {Xi (t) < Xi (t), t ∈ (0, τe), i = 1, . . . , n} = 1 if Xi (0) = Xi (0) ≥ Mb (A.1)

where (Xi (t))t≥0 is given by (2.7). Since (2.7) has a global solution due to the Lipschitz
property of its coefficients, we have from (A.1) that τe = ∞ almost surely. Define the
process

dX i (t) =
⎛

⎝−
∣
∣
∣
∣
3ai
2

∣
∣
∣
∣X i (t) +

n∑

j=1

DjiX j (t)

⎞

⎠ dt + X i (t)dEi (t), i = 1, . . . , n.

Since the bi s are continuous and vanish at 0, there exists r > 0 such that for |x| ≤ r
we have

−
∣
∣
∣
∣
3ai
2

∣
∣
∣
∣ ≤ ai − bi (xi ), i = 1, . . . , n. (A.2)

Let τ be the stopping time

τ := inf
{
t : ∣∣X (t)

∣
∣ > r

}
(A.3)

Now, consider the caseX(0) ∈ R
n+\{0}. By Evans et al. (2013, Proposition 3.1), (A.2),

(A.3) and a comparison argument (see Remark A.2 and the proof of Evans et al. (2015,
Theorem 4.1)), we can show that

P
{
Xi ≥ X i (t) > 0, t ∈ (0, τ )

} = 1,
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which implies

P {Xi (t) > 0, t ∈ (0,∞)} = 1 for all X(0) ∈ R
n+\{0}. (A.4)

Moreover, since P {0 ≤ Xi (t) < Xi (t) for all t ≥ 0, i = 1, . . . , n} = 1, we can
use standard arguments (e.g., Mao 1997, Theorem 2.9.3) to obtain the Feller property
of the solution to (2.1). ��
Remark A.1 There are different possible definitions of “Feller” in the literature. What
wemean by Feller is that the semigroup (Tt )t≥0 of the process maps the set of bounded
continuous functions Cb(R

n+) into itself i.e.

Tt (Cb(R
n+)) ⊂ Cb(R

n+), t ≥ 0.

Definition A.1 We call a mapping f : Rd → R
d quasi-monotonously increasing,

if for j = 1, . . . , d

f j (x) ≤ f j (y),

whenever x j = y j and xl ≤ yl , l �= j .

Remark A.2 One often wants to apply the well-known comparison theorem for one-
dimensional SDEs (see Ikeda and Watanabe 1989) to a multidimensional setting.
Below we explain why we can make use of comparison theorems for stochastic dif-
ferential equations in our setting. Consider the following two systems

dR j (t) = a j (t, R(t)) dt +
r∑

k=1

σ jk(t, R(t))dWk(t) (A.5)

and

dS j (t) = b j (t, S(t)) dt +
r∑

k=1

σ jk(t, S(t))dWk(t) (A.6)

for j = 1, . . . , d, t ≥ 0 together with the initial condition

R j (0) ≤ S j (0), j = 1, . . . , d P − a.s., (A.7)

where W = (W1(t), . . . ,Wr (t))t≥0 is an r -dimensional standard Brownian motion,
and the coefficients ai , bi , σ jk are continuous mappings on R+ × R

d . Suppose (A.5)
and (A.6) have explosion times θR, θS .

Let (C0), (C1), and (C2) be the following conditions.

(C0) The solution to (A.5) is pathwise unique and the drift coefficient a(t, x) is quasi-
monotonously (see Definition A.1) increasing with respect to x .
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(C1) For every t ≥ 0, j = 1, . . . , d and x ∈ R
d the following inequality holds

a j (t, x) ≤ b j (t, x).

(C2) There exists a strictly increasing function ρ : R+ → R+ with ρ(0) = 0 and

∫ ∞

0+
1

ρ2(u)
du = ∞

such that for each j = 1, . . . , d

r∑

k=1

|σ jk(t, x) − σ jk(t, y)| ≤ ρ(|x j − y j |) for all t ≥ 0, x, y ∈ R
d .

Sometimes it is assumed incorrectly that conditions (C1) and (C2) suffice to con-
clude that P{R(t) ≤ Y (t), t ∈ [0, θR ∧ θS)} = 1. Some illuminating counterexamples
regarding this issue can be found in Assing and Manthey (1995, Section 3). However,
if in addition to conditions (C1) and (C2), one also has condition (C0), then Geiß and
Manthey (1994, Theorem 1.2) indicates that P{R(t) ≤ Y (t), t ∈ [0, θR ∧ θS)} = 1.
Note that, in the setting of our paper, the drift coefficient of (2.7) is quasi-monotonously
increasing and we can pick ρ(x) = x, x ∈ R+. Therefore, conditions (C0), (C1),
and C(2) hold, which allows us to use the comparison results. In special cases one
can prove comparison theorems even when quasi-monotonicity fails; see Evans et al.
(2015, Theorem 6.1) and Nlath et al. (2007, Corollary A.2).

To proceed, let us recall some technical concepts and results needed to prove the
main theorem. Let � = (�0,�1, . . .) be a discrete-time Markov chain on a general
state space (E, E), where E is a countably generated σ -algebra. Denote by P the
Markov transition kernel for �. If there is a non-trivial σ -finite positive measure ϕ on
(E, E) such that for any A ∈ E satisfying ϕ(A) > 0 we have

∞∑

n=1

Pn(x, A) > 0, x ∈ E

where Pn is the n-step transition kernel of �, then the Markov chain � is called
ϕ-irreducible. It can be shown (see Nummelin 1984) that if � is ϕ-irreducible, then
there exists a positive integer d and disjoint subsets E0, . . . , Ed−1 such that for all
i = 0, . . . , d − 1 and all x ∈ Ei , we have

P(x, E j ) = 1 where j = i + 1 (mod d)

and

ϕ

(

E\
d−1⋃

i=0

Ei

)

= 0.
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The smallest positive integer d satisfying the above is called the period of �. An
aperiodic Markov chain is a chain with period d = 1.

A set C ∈ E is called petite, if there exists a non-negative sequence (an)n∈N with∑∞
n=1 an = 1 and a nontrivial positive measure ν on (E, E) such that

∞∑

n=1

anPn(x, A) ≥ ν(A), x ∈ C, A ∈ E .

The following theorem is extracted from Jarner and Roberts (2002, Theorem 3.6).

Theorem A.1 Suppose that � is irreducible and aperiodic and fix 0 < γ < 1.
Assume that there exists a petite set C ⊂ E, positive constants κ1, κ2 and a function
V : E → [1,∞) such that

PV ≤ V − κ1V
γ + κ21C .

Then there exists a probability measure π on (E, E) such that

(n + 1)
γ

1−γ ‖P(x, ·) − π(·)‖T V → 0 as n → ∞ for all x ∈ E .

The next series of lemmas and propositions are used to show that we can construct
a function V satisfying the assumptions of Theorem A.1.

Lemma A.1 For any T > 0, there exists an open set N0 ⊂ R
n,◦
+ such that the Markov

chain {(Y(kT ), S(kT )), k ∈ N} on �× (0,∞) is ϕ-irreducible and aperiodic, where
ϕ(·) = m(· ∩ N0) and m(·) is Lebesgue measure. Moreover, every compact set K ⊂
� × (0,∞) is petite. Similarly, � is a petite set of the Markov chain {Ỹ(kT ), k ∈ N}.
Proof To prove this lemma, it is more convenient to work with the process X(t) that
lives onRn+\{0}. Since (X(t))t≥0 is a nondegenerate diffusionwith smooth coefficients
in R

n,◦
+ , by Rey-Bellet (2006, Corollary 7.2), the transition semigroup PX(t, x, ·) of

(X(t))t≥0 has a smooth, positive density (0,∞)×R
2n,◦
+ � (t, x, x′)) �→ pX(t, x, x′) ∈

[0,∞). Fix a point x0 ∈ R
n,◦
+ . Since

∫
R
n,◦
+ p(t, x0, x)dx = 1 there exists x1 ∈ R

n,◦
+

such that pX
( T
2 , x0, x1

)
> 0. There exist bounded open sets N0 � x0, N1 � x1

satisfying

p̂ := inf

{

pX

(
T

2
, x, x′

)

> 0 : x ∈ N0, x′ ∈ N1

}

> 0. (A.8)

Slightly modifying the proof of Evans et al. (2013, Proposition 3.1) (the part proving
the irreducibility of the solution process), we have that p̃x := PX

( T
2 , x, N0

)
> 0

for all x ∈ R
n+\{0}. Since (X(t))t≥0 has the Feller property, there is a neighborhood

Nx � x such that

PX

(
T

2
, x′, N0

)

>
p̃x
2

, x′ ∈ Nx. (A.9)
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For any compact set K ∈ R
n+\{0}, there are finite x2, . . . , xk such that K ⊂ ⋃k

i=2 Nxi .
As a result,

PX

(
T

2
, x′, N0

)

> p̃K := min

{
p̃xi
2

, i = 2, . . . , k

}

. (A.10)

In view of (A.8), (A.9), and (A.10), an application of the Chapman-Kolmogorov
equations yields that for any x ∈ K and any measurable set A ⊂ R

n,◦
+ ,

PX
(
T, x, A

) ≥
∫

N0

PX

(
T

2
, x, dx′

)

PX

(
T

2
, x′, A

)

≥ p̃K p̂m(A ∩ N1),

wherem(·) is Lebesgue measure onRn,◦
+ . Since the measure ν(·) = m(· ∩ N1) is non-

trivial, we can easily obtain that K is a petite set of theMarkov chain {(X(kT )), k ∈ N}.
Moreover, K can be chosen arbitrarily. Hence, for any x ∈ R

n+\{0} there is px > 0
such that

PX
(
T, x, ·) ≥ pxm(· ∩ N1), (A.11)

which means that {(X(kT )), k ∈ N} is irreducible.
Suppose that {(X(kT )), k ∈ N} is not aperiodic. Then there are disjoint subsets of

R
n+\{0}, denoted by A0, . . . , Ad−1 with d > 1 such that for any x ∈ Ai ,

PX(T, x, A j ) = 1 where j = i + 1 (mod d).

Since P(T, x, ·) has a density,m(Ai ) > 0 for i = 0, . . . , d −1. In view of (A.11), we
must have m(N0 ∩ Ai ) = 0 for any i = 0, . . . , d − 1. This contradicts the fact that

m

(

N0

⋂
(

E\
d−1⋃

i=0

Ai

))

= 0.

This contradiction implies that {X(kT ), k ∈ N} is aperiodic. In the same manner, we
can prove that Ỹ(t) is irreducible, aperiodic and its state space, �, is petite. ��
Lemma A.2 There exists a positive constant K1 such that

ESy,s(t) ≤ e−γbt s + K1, (y, s) ∈ � × (0,∞), t ≥ 0. (A.12)

Moreover, for any H > 0, T > 0, and ε > 0, there is a k̃ = k̃(H, T, ε) > 0 such that

P{Sy,s(t) < k̃, t ∈ [0, T ]} > 1 − ε, (y, s) ∈ � × (0, H ]. (A.13)
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Proof In view of (2.2), if s ≥ Mb then −[b(sy)]
y + a
y + γb ≤ 0. Let

K̃1 = sup
y∈�,s≤Mb

{
s(−[b(sy)]
y + a
y + γb)

}
< ∞.

For k ∈ N, define the bounded stopping time

η
y,s
k = inf{t ≥ 0 : Sy,s(t) ≥ k}. (A.14)

Dynkin’s formula for the function f (t, s) := eγbt s and the bounded stopping time
t ∧ η

y,s
k yield

E[eγbt∧η
y,s
k Sy,s(t ∧ η

y,s
k )] = s + E

∫ t∧η
y,s
k

0
eγbu Sy,s(u)

(
γb + [a − b(Sy,s(u)Yy,s(u)]
Yy,s(u)

)
du

≤ s + E

∫ t∧η
y,s
k

0
K̃1e

γbudu ≤ s + K̃1

γb
(eγbt − 1).

(A.15)

The claim (A.13) follows directly from (A.15).Moreover, by letting k → ∞ in (A.15),
we obtain from Fatou’s lemma that

Eeγbt Sy,s(t) ≤ s + K1e
γbt for K1 = K̃1

γb
, (A.16)

which implies (A.12). ��
Proposition A.2 For any ε > 0 and T > 0, there is a δ = δ(ε, T ) > 0 such that

P

{
‖(Yy,s(t), Sy,s(t)) − (Ỹy(t), 0)‖ ≤ ε, 0 ≤ t ≤ T

}
> 1 − ε

given that (y, s) ∈ � × (0, δ).

Proof In view of (A.13), for any ε > 0, T > 0, there is k̃ = k̃(ε, T ) > 0 such that

P{ηy,s
k̃

< T } ≥ 1 − ε

3
, (y, s) ∈ � × (0, ε) (A.17)

where η
y,s
k is defined by (A.14). Since the coefficients of equation (2.4) are locally

Lipschitz, using the arguments from Mao (1997, Lemma 9.4) and noting Sy,0(t) ≡ 0,
we obtain for any (y, s) ∈ � × (0, ε) that

E

⎛

⎝ sup
0≤t≤T∧η

y,s
k̃

∧η
y,0
k̃

∥
∥
∥
(
Yy,s(t), Sy,s(t)

)−
(
Yy,0(t), 0

)∥
∥
∥
2

⎞

⎠ ≤ Cs2, (A.18)
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where C is a constant that depends on H, T, k̃. Applying Chebyshev’s inequality to
(A.18), there is a δ ∈ (0, ε) such that for all (y, s) ∈ � × (0, δ)

P

⎧
⎨

⎩
sup

0≤t≤T∧η
y,s
k̃

∧η
y,0
k̃

∥
∥
∥
(
Yy,s(t), Sy,s(t)

)−
(
Yy,0(t), 0

)∥
∥
∥ < ε

⎫
⎬

⎭
> 1 − ε

3
.

(A.19)

Combining (A.18) and (A.19) yields

P

{

sup
0≤t≤T

∥
∥
∥
(
Yy,s(t), Sy,s(t)

)−
(
Yy,0(t), 0

)∥∥
∥ < ε

}

> 1 − ε. (A.20)

for any (y, s) ∈ � × (0, δ). The desired result is obtained by noting that Yy,0(t) =
Ỹy(t), t ≥ 0. ��
Lemma A.3 There are positive constants K2 and K3 such that for any (y, s) ∈ � ×
(0,∞), T ≥ 0, one has

E

(
[ln Sy,s(T )]2

)
≤ ((ln s)2 + 1)K2 exp{K3T }, (A.21)

Proof In view of Itô’s formula,

d ln2 S(t) =
(
Y(t)
�Y(t) + 2 ln S(t)

(
a
Y(t) − [b(S(t)Y(t))]


Y(t) − 1

2
Y(t)
�Y(t)

))

dt + 2 ln S(t)Y(t)
dE(t).
(A.22)

Now, we estimate g(y, s) = y
�y+2 ln s
(
a
y − b(sy) − 1

2y

�y

)
for (y, s) ∈ �×

(0,∞). LetMb be as in (2.2). If s > Mb then ln s > 0 and
(
a
y − b(sy) − 1

2y

�y

)
<

0. Letting

M1 := sup
{(y,s)∈�×(0,Mb]}

{∣∣
∣
∣

(

a
y − b(sy) − 1

2
y
�y

)∣∣
∣
∣

}

< ∞

and

‖�‖ := sup{y
�y : y ∈ �},
g(y, s) ≤ ‖�‖ + M1| ln s| ≤ M1 ln

2 s + 2M1

+‖�‖ for all (y, s) ∈ � × (0,∞).

With this estimate, we can apply Dynkin’s formula to (A.22) and use standard argu-
ments (e.g., Mao 1997, Theorem 2.4.1) to obtain

E

(
[ln Sy,s(T )]21A

)
≤ K2(ln s)

2 exp{K3T } for all (y, s) ∈ � × (0,∞)
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for some positive constants K2 and K3. ��

Lemma A.4 There is a positive constant K4 such that for any (y, s) ∈ � × (0, 1),
and A ∈ F ,

E

(
[ln Sy,s(T ∧ ζ y,s)]2−

)
≤ (ln s)2 + K4

√
P(A)(T + 1)[ln s]− + K4T

2,

(A.23)

where [ln x]− := max{0,− ln x}, and

ζ y,s := inf{t ≥ 0 : Sy,s(t) = 1}. (A.24)

Proof Let

M2 = sup
{(y,s)∈�×(0,1)}

{

(−a
y + 1

2
y
�y + b(sy)
y

}

< ∞.

Using Dynkin’s formula,

− ln Sy,s(T ∧ ζ y,s) = − ln s − My,s(T ∧ ζ y,s)

+
∫ T∧ζ y,s

0

(
−a
Yy,s(t) + b(Sy,s(t)Yy,s(t))TYy,s(t)

+1

2
Yy,s(t)
�Yy,s(t)

)

dt

≤ [ln s]− + M2T + |My,s(T ∧ ζ y,s)|,

(A.25)

where

My,s(t) =
∫ t

0
Y(t)
dE(t) =

∫ t

0
Y(t)
	dB(t). (A.26)

It follows from (A.25) that

[ln Sy,s(T ∧ ζ y,s)]2−1A ≤ ([ln s]− + M2T + |My,s(T ∧ ζ y,s)|)2 1A
≤
(
[ln s]2− + 2(M2T + |My,s(T ∧ ζ y,s)|)[ln s]−

)
1A

+
(
2(M2T )2 + 2|My,s(T ∧ ζ y,s)|2

)
1A (A.27)

An application of Itô’s isometry yields

E[|Mz,y(T ∧ ζ y,s)|21A] ≤ E|Mz,y(T ∧ ζ y,s)|2 ≤ ‖�‖T . (A.28)
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By a straightforward use of Hölder’s inequality and (A.28),

E[|Mz,y(T ∧ ζ y,s)|1A] ≤
(
P(A)E|Mz,y(T ∧ ζ y,s)|2

)1/2

≤√P(A)
√‖�‖T ≤ √

P(A)‖�‖(T + 1).
(A.29)

Taking expectation on both sides of (A.27) and using the estimates from (A.28) and
(A.29), we have

E

[
[ln Sy,s(T ∧ ζ y,s)]2−1A

]
≤ [ln s]2−P(A) + K4(T + 1)

√
P(A)[ln s]− + K4T

2,

for some positive constant K4. ��
Let M3 be a positive constant such that

∣
∣
∣
∣a


y − 1

2
y
�y − a
y′ − 1

2
y′
�y′

∣
∣
∣
∣ ≤ M3‖y′ − y|, y, y′ ∈ �. (A.30)

Fromnowon,we assume that ε ∈ (0, 1) is chosen small enough to satisfy the following

(M3 + 2) ε + sup
{0≤s≤ε,y∈�}

{b(sy)
y} <
r

4

− 3r

2
(1 − 3ε) + 2K4

√
ε < −r

(A.31)

Lemma A.5 For ε satisfying (A.31), there is δ(ε) = δ ∈ (0, 1) and T ∗(ε) = T ∗ > 1
such that

P

{

ln s + 3rT ∗

4
≤ ln Sy,s(T ∗) < 0

}

≥ 1 − 3ε (A.32)

for all (y, s) ∈ � × (0, δ).

Proof Since � is a petite set of {Ỹ(t) : t ≥ 0}, in view of Meyn and Tweedie (1993,
Theorem 6.1), there are γ1 and γ2 > 0 such that

‖P̃(t, y, ·) − ν∗‖T V ≤ γ1 exp(−γ2t), y ∈ �, t ∈ [0,∞). (A.33)

where P̃(t, y, ·) is the transition probability of {Ỹ(t) : t ≥ 0}. Let M4 = max
y∈�

{|a
y−
1
2y


�y|} < ∞. In view of (2.8) and (A.33), we have

1

T
E

∣
∣
∣
∣

∫ T

0

(

a
Ỹy(t) − 1

2
Ỹy(t)



�Ỹy(t)

)

dt − rT

∣
∣
∣
∣

≤ 1

T

∫ T

0

∫

�

∣
∣
∣
∣

(

a
y′ − 1

2
y′
�y′

)(
P̃(t, y, dy′) − ν∗(dy′)

)∣∣
∣
∣

≤ M4

T

∫ T

0
‖P̃(t, y, ·) − ν∗‖T V dt ≤ M4γ1

T
.

(A.34)
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On one hand, letting My,s(T ) be defined as (A.26), we have from Itô’s isometry that

E

[
My,s(T )

T

]2
= 1

T 2E

∫ T

0
Yy,s(t)
�Yy,s(t)dt ≤ ‖�‖

T
. (A.35)

With standard estimation techniques, it follows from (A.34) and (A.35) that for any
ε > 0, there is a T ∗ = T ∗(ε) such that

P

{∣∣
∣
∣
∣
1

T ∗

∫ T ∗

0

(

a
Ỹy(t) − 1

2
Ỹy(t)



�Ỹy(t)

)

dt − r

∣
∣
∣
∣
∣
< ε

}

> 1 − ε, y ∈ �,

(A.36)

and

P

{∣∣
∣
∣
My,s(T ∗)

T ∗

∣
∣
∣
∣ < ε

}

> 1 − ε, (y, s) ∈ � × (0,∞). (A.37)

By virtue of Proposition A.2, (A.30), and (A.36), there is δ = δ(ε, T ∗) ∈ (0, ε)
such that

P(�
y,s
1 ) > 1 − 2ε, (y, s) ∈ � × (0, δ)

where

�
y,s
1 :=

{∫ T ∗

0

(

a
Yy,s(t) − 1

2
Yy,s(t)
�Yy,s(t)

)

dt > T ∗(r − (M3 + 1)ε)

}

∩ {Sy,s(t) < ε, t ∈ [0, T ∗]} .

Using y
b(sy) < r
4 for all (y, s) ∈ � × (0, ε) from (A.31) we have that on the set

�
y,s
2 := �

y,s
1

⋂
{∣∣
∣
∣
My,s(T )

T

∣
∣
∣
∣ < ε

}

the following holds

0 > ln ε ≥ ln Sy,s(T ∗) = ln s + My,s(T ∗) −
∫ T ∗

0
Yy,s(t)
b(Sy,s(t)Yy,s(t))dt

+
∫ T ∗

0

(

a
Yy,s(t) − 1

2
Yy,s(t)
�Yy,s(t)

)

dt

≥ ln s +
(

r − (M3 + 2)ε − sup
{0≤s≤ε,y∈�}

{b(sy)
y}
)

T ∗

≥ ln s + 3r

4
T ∗.

(A.38)

Noting

P
(
�

y,s
2

) ≥ 1 − 3ε for all (y, s) ∈ � × (0, δ),

the proof is complete. ��
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Proposition A.3 Assume r > 0. Let δ and T ∗ be as in Lemma A.5. There exists a
positive constant K ∗ = K ∗(δ, T ∗) such that

E[ln Sy,s(T ∗)]2− ≤ [ln s]2− − rT ∗[ln s]− + K ∗ (A.39)

for any (y, s) ∈ � × (0,∞).

Proof We look at three cases of the initial data (y, s).

Case I s ∈ (0, δ). We have from Lemma A.5 that P(�
y,s
2 ) ≥ 1 − 3ε where �

y,s
2 is

defined as in the proof of Lemma A.5. On �
y,s
2 , we have

− ln s − 3rT ∗

4
≥ − ln Sy,s(T ∗) > 0.

Hence,

0 ≤ [ln Sy,s(T ∗)]− ≤ [ln s]− − 3rT ∗

4
.

Squaring both sides yields

[ln Sy,s(T ∗)]2− ≤ [ln s]2− − 3rT ∗

2
[ln s]− + 9r2T ∗2

16
,

which implies that

E

[
1�

y,s
2

[ln Sy,s(T ∗)]2−
]

≤ P(�
y,s
2 )[ln s]2− − 3rT ∗

2
P(�

y,s
2 )[ln s]−

+9r2T ∗2

16
P(�

y,s
2 ). (A.40)

On �
y,s
3 := {ζ y,s < T ∗} with ζ y,s defined in (A.24), since ln Sy,s(ζ y,s) = 0, we have

from Lemma A.3 and the strong Markov property of (Y(t), S(t)) that

E

[
1�

y,s
3

[ln Sy,s(T ∗)]2−
]

≤ P(�
y,s
3 )K2 exp(K3T

∗). (A.41)

On the set �y,s
4 := �\(�y,s

2 ∪ �
y,s
3 ), applying Lemma A.4 and noting that ζ y,s > T ∗

in �
y,s
4 and T ∗ > 1, we obtain

E

[
1�

y,s
4

[ln Sy,s(T ∗)]2−
]

≤ [ln s]2−P(�
y,s
4 )

+2K4T
∗
√
P(�

y,s
4 )[ln s]− + K4T

∗2. (A.42)
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Adding (A.40), (A.41), and (A.42) side by side, we get

E[ln Sy,s(T ∗)]2− ≤ [ln s]2− +
(

− 3r

2
(1 − 3ε) + 2K4

√
ε
)
T ∗[ln s]− + K ∗

5 (T ∗)

≤ [ln s]2− − rT ∗[ln s]− + K ∗
5 (T ∗), (A.43)

where K ∗
5 (T ∗) is a positive constant independent of (y, s) ∈ � × (0, δ).

Case II s ∈ [δ, 1]. We have from Lemma A.3 that

E[ln Sy,s(T ∗)]2− ≤E[ln Sy,s(T ∗)]2 ≤ [ln s]2 + K2 exp(K3T
∗)

≤ ([ln δ]2 + 1)K2 exp(K3T
∗).

(A.44)

Case III s ∈ (1,∞). Note that if ζ y,s > T ∗, then [ln Sy,s(T ∗)]2− = 0. Thus, using
Lemma A.3 and the strong Markov property of (Y(t), S(t)) once more, we obtain

E[ln Sy,s(T ∗)]2− = E

(
1{ζ y,s<T ∗}[ln Sy,s(T ∗)]2−

)
≤ K2 exp(K3T

∗). (A.45)

Combing (A.43), (A.44), and (A.45), and setting K ∗ = max{K ∗
5 (T ∗), ([ln δ]2 +

1)K2 exp(K3T ∗)}, the proof is concluded. ��

Theorem A.2 Suppose that Assumptions 2.2 and 2.3 hold and that r > 0. Let
P(t, (y, s), ·) be the semigroup of the process ((Y(t), S(t))t≥0. Then, there exists
an invariant probability measure π∗ of the process ((Y(t), S(t))t≥0 on � × (0,∞).
Moreover, π∗(�◦ × (0,∞)) = 1, π∗ is absolutely continuous with respect to the
Lebesgue measure on � × (0,∞) and

lim
t→∞ tq

∗‖P(t, (y, s), ·) − π∗(·)‖T V = 0, (y, s) ∈ �◦ × (0,∞), (A.46)

where ‖ · ‖T V is the total variation norm and q∗ is any positive number. In addition,
for any initial value (y, s) ∈ � × (0,∞) and any π∗-integrable function f , we have

P

{

lim
T→∞

1

T

∫ T

0
f
(
Yy,s(t), Sy,s(t)

)
dt

=
∫

�◦×(0,∞)

f (y′, s′)π∗(dy′, s′)
}

= 1. (A.47)

Proof By virtue of Lemma A.2, there is an h1 := 1 − exp (−γbT ∗) > 0 satisfying

ESy,s + 1 ≤ s + 1 − h1s + K1 ≤ s + 1 − h1
√
s + 1 + K1

+ h1, (y, s) ∈ � × (0,∞). (A.48)
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Let V (s) = s + 1 + [ln s]2−. In view of Proposition A.3 and (A.48),

EV
(
Sy,s(T ∗)

)
≤ s + 1 − h2

(√
s + 1 + [ln s]−

)+ H2

≤ V (s) − h2
2

√
V (s) + H2 for all (y, s) ∈ � × (0,∞),

(A.49)

where h2 = min{h1, rT ∗}, H2 = H1 + h1 + K1. Let κ > 1 such that

√
V (s)

2
≥ H2 for all s /∈ [κ−1, κ]. (A.50)

Combining (A.49) and (A.50), we arrive at

EV
(
Sy,s(T ∗)

)
≤ V (s) − h2

4

√
V (s) + H21{(y,s)∈�×[κ−1,κ]}

for all (y, s) ∈ � × (0,∞). (A.51)

Using the estimate (A.51), Lemma A.1, and Theorem A.1, the Markov chain
(Y(kT ∗), S(kT ∗))k≥0 has a unique invariant probability measure π∗ and

k‖P(kT ∗, (y, s), ·) − π∗‖T V → 0 as k → ∞. (A.52)

As a direct consequence, for fixed y0, s0, the family {P(kT ∗, (y0, s0), ·), k ∈ N} is
tight, that is, for any θ > 0, there is a compact set Kθ ⊂ � × (0,∞) such that

P(kT ∗, (y0, s0), Kθ ) > 1 − θ for all k ∈ N. (A.53)

Since s2 + ln2 s → ∞ as s → 0 or s → ∞, in view of Lemmas A.2 and A.3 and a
standard estimate, there is a κθ > 1 such that

P

{
Sy,s(t) ∈ [κ−1

θ , κθ ]
}

> 1 − θ, for all (y, s) ∈ Kθ , t ∈ [0, T ∗],

or equivalently,

P
(
t, (y, s),� × [κ−1

θ , κθ ]
)

> 1 − θ for all (y, s) ∈ Kθ , t ∈ [0, T ∗]. (A.54)

Using the Chapman-Kolmogorov relation together with (A.53) and (A.54) yields

P
(
u, (y0, s0),� × [κ−1

θ , κθ ]
)

> 1 − 2θ for all u ≥ 0,

which implies that the family of empiricalmeasures
{
1
T

∫ T
0 P(u, (y0, s0), ·)du, T > 0

}

is tight in � × (0,∞). Thus (Y(t), S(t)) has an invariant probability measure π∗ on
�×(0,∞) (see e.g., Evans et al. 2015, Proposition 6.4). As a result, theMarkov chain
(Y(kT ∗), S(kT ∗))k∈N has an invariant probability measure π∗. In view of (A.52), π∗
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must coincide with π∗. Thus, π∗ is an invariant probability measure of the process
(Y(t), S(t))t≥0 on � × (0,∞).

In the proofs, we used the function [ln s]2− for the sake of simplicity. In fact, we can

treat [ln s]1+q
− for any small q ∈ (0, 1) in the same manner. We can show that there

are hq , Hq > 0, and a compact set Kq ⊂ � × (0,∞) satisfying

EVq(S
y,s(T ∗)) ≤ Vq(s) − hq [Vq(s)]

1
1+q + Hq1{(y,s)∈Kq },

(y, s) ∈ � × (0,∞), (A.55)

where Vq(s) := s + 1 + [ln s]1+q
− . Then applying Theorem A.1, we obtain

k1/q‖P(kT ∗, (y, s), ·) − π∗‖ → 0 as k → ∞. (A.56)

Let f : � × (0,∞) �→ [−1, 1] be a measurable function. Since π∗ is an invariant
measure, then for any u ≥ 0,

∫

�×(0,∞)

f (y′, s′)π∗(dy′, ds′)

=
∫

�×(0,∞)

π∗(dy1, ds1)
∫

�×(0,∞)

P(u, (y1, s1), (y′, ds′)) f (y′, s′).

Using this equality and the Chapman–Kolmogorov equation, we have

| f (y′, s′)(P(t + u, (y, s), dy′, ds′) − π∗(dy′, ds′)|
=
∣
∣
∣
∣

∫

�×(0,∞)

(
P(t, (y, s), dy1, ds1) − π∗(dy1, ds1)

)

×
∫

�×(0,∞)

( f (y′, s′)P(t, (y1, s1), (dy′, ds′))
∣
∣
∣
∣

≤ ‖P(t, (y, s), ·) − π∗‖T V
(

since
∣
∣
∣

∫

�×(0,∞)

( f (y′, s′)P(t, (y1, s1), (dy′, ds′)
∣
∣
∣ ≤ 1 for all y1, s1

)

,

which means that ‖P(t, (y, s), ·) − π∗‖T V is decreasing in t . As a result, we deduce
from (A.55) that

tq
∗‖P(t, (y, s), ·) − π∗‖T V → 0 as t → ∞,

where q∗ = 1/q ∈ (1,∞).
In view of Proposition A.1, for any t > 0,P{Yy,s(t) ∈ �◦} = 1. Thus,

π∗(�◦ × (0,∞)) =
∫

�×(0,∞)

P{Yy,s(t) ∈ �◦}π∗(dy, ds) = π∗(� × (0,∞)) = 1.
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By Kallenberg (2002, Theorem 20.17), our process (Y(t), S(t))t≥0 is either Harris
recurrent or uniformly transient on �◦ × (0,∞). Using Kallenberg (2002, Theorem
20.21), our process cannot be uniformly transient and also have an invariant probabil-
ity measure. Therefore, our process is Harris recurrent. Kallenberg (2002, Theorem
20.17) further indicates that any Harris recurrent Feller process on �◦ × (0,∞) with
strictly positive transition densities has a locally finite invariant measure that is equiv-
alent to Lebesgue measure and is unique up to normalization. Since we already know
that (Y(t), S(t))t≥0 has a unique invariant probability measure, this probability mea-
sure has an almost everywhere strictly positive density with respect to the Lebesgue
measure. ��

Appendix B: The case r < 0

Theorem B.1 Suppose that r < 0. Then for any i = 1, . . . , n and any x =
(x1, . . . , xn) ∈ R

n+,

P

{

lim
t→∞

ln Xx
i (t)

t
= r

}

= 1. (B.1)

In particular, for any i = 1, . . . , n and any x = (x1, . . . , xn) ∈ R
n+

P

{
lim
t→∞ Xx

i (t) = 0
}

= 1.

Proof Let θ > 0 and ǎi = ai + θ , and define the process X̌x(t) = (X̌x
1(t), . . . , X̌

x
n(t))

as the solution to

d X̌i (t) =
⎛

⎝X̌i (t)(ǎi ) +
n∑

j=1

Dji X̌ j (t)

⎞

⎠ dt + X̌i (t)dEi (t), i = 1, . . . , n (B.2)

started at x = (x1, . . . , xn) ∈ R
n+. Letting Š(t) = ∑

X̌i (t) and Y̌(t) = X̌(t)

S(t)
, we

have

dY̌(t) =
(
diag(Y̌(t)) − Y̌(t)Y̌
(t)

)
	
dB(t)

+ D
Y̌(t)dt +
(
diag(Y̌(t)) − Y̌(t)Y̌
(t)

)
(ǎ − �Y̌(t))dt

d ln Š(t) =
(

ǎ
Y̌(t) − 1

2
Y̌(t)



�Y̌(t)

)

dt + Y̌(t)


	
dB(t)

(B.3)
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Let (Y̌y(t), Šy,s(t)) be the solution to (B.3) with initial condition (y, s). Note that
Y̌y(t) does not depend on s. First, fix y0 ∈ �. We have that

lim
t→∞

1

t

(∫ t

0

(

ǎ
Y̌y0(u) − 1

2
Y̌y0(u)



�Y̌y0(u)

)

du +
∫ t

0
Y̌y0(u)



	
dB(u)

)

= ř :=
∫

�

(

ǎ
y − 1

2
y
�y

)

ν̌∗(dy),P − a.s., (B.4)

where ν̌∗ is the unique invariant probability measure of (Y̌(t))t≥0. By the continuous
dependence of r on the coefficients (established in the Proposition D.1), there is θ > 0
such that ř < r

2 < 0. Let δ > 0 such that sup{−bi (x) : x < δ, i = 1, . . . , n} < θ (this
is possible since the bi ’s are continuous and vanish at 0). Because ř < 0, it follows
from (B.4) that

sup
t∈[0,∞)

(∫ t

0

(

ǎ
Y̌y0(s) − 1

2
Y̌y0(s)



�Y̌y0(s)

)

ds

+
∫ t

0
Y̌y0(s)



	
dB(s)

)

< ∞ P − a.s..

As a result, for any ε > 0, there is an Hε > 0 satisfying

P

{

sup
t∈[0,∞)

(∫ t

0

(

ǎ
Y̌y0(u) − 1

2
Y̌y0(u)



�Y̌y0(u)

)

du

+
∫ t

0
Y̌y0(u)



	
dB(u)

)

< Hε

}

> 1 − ε,

which combined with (B.3) implies that

P

{

sup
t∈[0,∞)

Šy0,s0(t) < δ

}

> 1 − ε if s0 < δ exp(−Hε). (B.5)

Then, a comparison argument shows (see Remark A.2) that for x0 = s0y0 ∈ R
n+ and

i = 1, . . . , n

P

{
Xx0
i (t) ≤ X̌x0

i (t), t ∈ [0, ξx0)
}

= 1 (B.6)

where ξx0 = inf{t ≥ 0 : ∑n
i=1 X̌

x0
i (t) ≥ δ}. By virtue of (B.5), P{ξx0 = ∞} > 1− ε

if s0 < δ exp(−Hε). Using (B.4) and (B.6) yields that

P

{

lim sup
t→∞

ln Sy0,s0

t
≤ ř < 0

}

> 1 − ε if s < δ exp(−Hε). (B.7)
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Thus, the process (Y(t), S(t))t≥0 is not a recurrent diffusion process in � × (0,∞).
Hence, it must be transient with probability 1, that is, for any compact K ∈ (0,∞)

and any initial value (y, s) ∈ � × (0,∞) we have

P

{
lim
t→∞ 1{Sy,s (t)∈K } = 0

}
= 1. (B.8)

In view of Lemma A.2,

P
{
limt→∞ Sy,s(t) = ∞} = 0. (B.9)

It follows from (B.8) and (B.9) that P {limt→∞ Sy,s(t) = 0} = 1 for any (y, s) ∈
� × (0,∞). Moreover, since (Ỹ(t)){t≥0} has a unique invariant probability measure
ν∗, on the boundary � × {0}, (Y(t), S(t)) has a unique invariant probability measure
ν∗ × δ∗

0 , where δ∗
0 is the Dirac measure concentrated on {0}. Fix (y, s) ∈ � × (0,∞),

and define the normalized occupation measures,

�t (·) = 1

t

∫ t

0
1{(Yy,s (u),Sy,s (u))∈·}du.

Since P
{
lim
t→∞ Sy,s(t) = 0

}
= 1, the family {�k(·), k ∈ N} is tight in the space � ×

[0,∞) for almost everyω. In view of the proofs of Evans et al. (2015, Theorem 4.2) or
Schreiber et al. (2011, Theorems 4, 5) the set of weak∗ limit points of {�k, k ∈ N} is a
nonempty set of invariant probability measures of the process (Y(t), S(t)). As pointed
out above, the process (Y(t), S(t)) has only one invariant probabilitymeasure, namely,
ν∗ ×δ∗

0 . Thus, for almost everyω ∈ �, {�k(·), k ∈ N} converges weakly to ν∗ ×δ∗
0 as

k → ∞. As a result, for any bounded continuous function g(·, ·) : � × [0,∞) �→ R

we have lim
k→∞

1
k

∫ k
0 g(Yy,s(t), Sy,s(t))dt = ∫

�
g(y′, 0)ν∗(dy′) P-a.s. Since g(·, ·) is

bounded, we easily obtain

lim
T→∞

1

T

∫ T

0
g(Yy,s(t), Sy,s(t))dt =

∫

�

g(y′, 0)ν∗(dy′) P-a.s. (B.10)

Consequently,

lim
T→∞

1

T

∫ T

0

(

a
Yy,s(t) − 1

2
Yy,s(t)
�Yy,s(t)

)

dt = r P-a.s (B.11)

Since P {limt→∞ Sy,s(t) = 0} = 1 and bi (0) = 0, i = 1, . . . , n, we have by Domi-
nated Convergence that

lim
T→∞

1

T

∫ T

0
Yy,s(t)
b(Sy,s(t)Yy,s(t))dt = 0 P-a.s. (B.12)
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Applying the strong law of large numbers for martingales to the process (My,s(t))t≥0
defined by (A.26), we deduce

lim
T→∞

My,s(T )

T
= 0 P-a.s. (B.13)

Note that
ln Sy,s(T )

T
= ln s

T
+ My,s(T )

T
− 1

T

∫ T

0
Yy,s(t)
b(Sy,s(t)Yy,s(t))dt

+ 1

T

∫ T

0

(

a
Yy,s(t) − 1

2
Yy,s(t)
�Yy,s(t)

)

dt

(B.14)

Applying (B.11), (B.12), and (B.13) to (B.14), we obtain

lim
T→∞

ln Sy,s(T )

T
= r, P-a.s. (B.15)

In light of (B.15), to derive P

{
limT→∞

ln Xx
i (T )

T = r
}

= 1, it suffices to show

P

{

limT→∞
ln Y y,s

i (T )

T = 0

}

= 1 for each i = 1, . . . , n. In view of Itô’s lemma,

ln Y y,s
i (T )

T
= ln yi

T
+ 1

T

∫ T

0

⎛

⎝ai −
n∑

j=1

a jY
y,s
j (t) − Dii − σi i

2

+
n∑

j,k=1

σk j

2
Y y,s
k (t)Y y,s

j (t))

⎞

⎠ dt

+ 1

T

∫ T

0

⎛

⎝−bi (S
y,s(t)Y y,s

i (t)) +
n∑

j=1

Y y,s
j (t)b j (S

y,s(t)Y y,s
j (t))

⎞

⎠ dt

+ 1

T

∫ T

0

⎛

⎝
n∑

j=1, j �=i

D ji
Y y,s
j (t)

Y y,s
i (t)

⎞

⎠ dt

+ 1

T

∫ T

0

⎡

⎣dEi (t) −
n∑

j=1

Y y,s
j (t)dE j (t)

⎤

⎦ , (B.16)

and

ln Ỹ y
i (T )

T
= ln yi

T
+ 1

T

∫ T

0

⎛

⎝ai −
n∑

j=1

a j Ỹ
y
j (t) − Dii

−σi i

2
+

n∑

j,k=1

σk j

2
Ỹ y
k (t)Ỹ y

j (t))

⎞

⎠ dt
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+ 1

T

∫ T

0

⎛

⎝
n∑

j=1, j �=i

D ji
Ỹ y
j (t)

Ỹ y
i (t)

⎞

⎠ dt

+ 1

T

∫ T

0

⎡

⎣dEi (t) −
n∑

j=1

Ỹ y
j (t)dE j (t)

⎤

⎦ . (B.17)

By the strong laws of large numbers for martingales,

lim
T→∞

1

T

∫ T

0

⎡

⎣dEi (t) −
n∑

j=1

Ỹ y
j (t)dE j (t)

⎤

⎦ = 0, P-a.s. (B.18)

Let Gi = sup
y∈�

{∣∣
∣ai −∑n

j=1 a j y j − Dii − σi i
2 +∑n

j,k=1
σk j
2 yk y j

∣
∣
∣
}

< ∞. As a result

of (B.17) and (B.18) and the fact that lim supT→∞
ln Ỹ y

i (T )

T
≤ 0 almost surely, we

obtain

lim sup
T→∞

1

T

∫ T

0

⎛

⎝
n∑

j=1, j �=i

D ji
Ỹ y
j (t)

Ỹ y
i (t)

⎞

⎠ dt ≤ Gi , P-a.s. (B.19)

For any k > 0, it follows from (B.18) and the strong law of large numbers that

∫

�

k ∧
⎛

⎝
n∑

j=1, j �=i

D ji
y j
yi

⎞

⎠ ν∗(dy) = lim
T→∞

1

T

∫ T

0
k ∧

⎛

⎝
n∑

j=1, j �=i

D ji
Ỹ y
j (t)

Ỹ y
i (t)

⎞

⎠ dt

≤ Gi

Letting k → ∞ we have

ρi :=
∫

�

n∑

j=1, j �=i

D ji
y j
yi

ν∗(dy) ≤ Gi ,

which implies

lim
T→∞

1

T

∫ T

0

⎛

⎝
n∑

j=1, j �=i

D ji
Ỹ y
j (t)

Ỹ y
i (t)

⎞

⎠ dt = ρi . (B.20)

Using (B.18), (B.20), and applying the strong law of large numbers for the process
(Ỹ(t))t≥0, we arrive at

lim
T→∞

ln Ỹ y
i (T )

T
= βi + ρi ≤ 0, P-a.s., (B.21)
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where

βi :=
∫

�

⎛

⎝ai −
n∑

j=1

a j y j − Dii − σi i

2
+

n∑

j,k=1

σk j

2
yk y j

⎞

⎠ ν∗(dy).

If βi + ρi < 0, then Ỹ y
i (T ) → 0 almost surely as T → ∞, which contradicts the fact

that Ỹy(T ) converges weakly to ν∗ that is concentrated on�◦. As a result, βi +ρi = 0.
For any θ > 0, there is kθ > 0 such that

∫

�

kθ ∧
⎛

⎝
n∑

j=1, j �=i

D ji
y j
yi

⎞

⎠ ν∗(dy) > ρi − θ.

Using (B.10), we have with probability 1 that

lim inf
T→∞

1

T

∫ T

0

⎛

⎝
n∑

j=1, j �=i

D ji
Y y,s
j (t)

Y y,s
i (t)

⎞

⎠ dt

≥ lim
T→∞

1

T

∫ T

0
kθ ∧

⎛

⎝
n∑

j=1, j �=i

D ji
Y y,s
j (t)

Y y,s
i (t)

⎞

⎠ dt

≥ ρi − θ. (B.22)

and

lim
T→∞

1

T

∫ T

0

⎛

⎝ai −
n∑

j=1

a jY
y,s
j (t) − Dii − σi i

2

+
n∑

j,k=1

σk j

2
Y y,s
k (t)Y y,s

j (t))

⎞

⎠ dt = βi . (B.23)

Applying (B.22), (B.23), and the fact P

{

lim
T→∞ Sy,s(T ) = 0

}

= 1 to (B.16), we obtain

that

lim inf
T→∞

ln Y y,s
i (T )

T
≥ βi + ρi − θ = −θ, P-a.s.

Since it holds for any θ > 0, we have

lim
T→∞

ln Y y,s
i (T )

T
= 0, P-a.s.
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The above equality combined with (B.15) and Xi (T ) = Yi (T )S(T ) yield the desired
result. ��

Appendix C: Degenerate diffusion in R
n

If the correlation matrix � is degenerate, the diffusion Ỹ(t) from (2.6) still has an
invariant probability measure ν∗ since it is a Feller-Markov process in a compact

set. Moreover, ν∗(�◦) = 1 because the property that P
{
Ỹ(t) ∈ �◦, t > 0

}
= 1

is satisfied as long as Assumption 2.2 holds, that is, the dispersion matrix (Di j ) is
irreducible. It is readily seen that the following is true.

Theorem C.1 Assume that Ỹ(t) has a unique invariant probability measure ν∗.
Define r by (2.8). Suppose that r < 0. Then for any i = 1, . . . , n and any
x = (x1, . . . , xn) ∈ R

n+

P

{

lim
t→∞

ln Xx
i (t)

t
= r

}

= 1. (C.1)

In particular, for any i = 1, . . . , n and any x = (x1, . . . , xn) ∈ R
n+

P

{
lim
t→∞ Xx

i (t) = 0
}

= 1.

Remark C.1 The Markov process {Ỹ(t), t ≥ 0} has a unique invariant probability
measure if it is irreducible. Moreover, since P{Ỹy(t) > 0 for all t > 0} = 1 for
any y ∈ �, we need only check its irreducibility in �◦. To prove that the diffusion
{Ỹ(t), t ≥ 0} is irreducible in �◦, we pursue the following approach:

• First, we show that the process {Ỹ(t), t ≥ 0} verifies Hörmander’s condition. As
a result, the process {Ỹ(t), t ≥ 0} has a smooth density function for any t > 0;
see e.g., Rey-Bellet (2006).

• Next, we show that there is an open set N ⊂ �◦ such that for any open set N0 ⊂ N ,
and y ∈ �◦, there is a t0 > 0 such that P{Ỹy(t0) ∈ N0} > 0. This claim is usually
proved by analyzing the control systems corresponding to the diffusion and using
the support theorem.We refer to Kliemann (1987) and Rey-Bellet (2006) for more
details. This then shows that the process {Ỹ(t), t ≥ 0} is irreducible in �◦.

Now we consider the case r > 0. We still assume that {Ỹ(t) : t ≥ 0} has a unique
invariant probability measure. In order to obtain Theorem 2.1 for our degenerate
process, we have to show that there is a sufficiently large T > 0 such that the Markov
chain (Y(kT ), S(kT ))k∈N is irreducible and aperiodic and every compact subset of
�◦ × (0,∞) is petite for this Markov chain. Note that if every compact subset of
�◦ × (0,∞) is petite with respect to (Y(kT ), S(kT ))k∈N, then any compact subset
of � × (0,∞) is petite with respect to (Y(kT ), S(kT ))k∈N by the arguments in the
proof of Lemma A.1.
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Sufficient conditions for the above properties can be obtained by verifying the well-
known Hörmander condition as well as investigating the control systems associated
with the diffusion (2.4). Once we have the Markov chain (Y(kT ), S(kT ))k∈N being
irreducible and aperiodic, and every compact subset of �◦ × (0,∞) being petite for
sufficiently large T , we can follow the steps from Appendix A to obtain the following
result.

Theorem C.2 Assume that Ỹ(t) has a unique invariant probability measure ν∗.
Define r by (2.8). Suppose that Assumption 2.2 holds and that r > 0. Assume further
that there is a sufficiently large T > 0 such that the Markov chain (Y(kT ), S(kT ))k∈N
is irreducible and aperiodic, and that every compact set in �◦ × (0,∞) is petite for
this Markov chain.

The process X(t) = (X1(t), . . . , Xn(t))t≥0 has a unique invariant probability
measure π onRn,◦

+ that is absolutely continuous with respect to the Lebesgue measure
and for any q∗ > 0,

lim
t→∞ tq

∗‖PX(t, x, ·) − π(·)‖TV = 0, x ∈ R
n,◦
+ , (C.2)

where ‖·, ·‖TV is the total variation norm and PX(t, x, ·) is the transition probability of
(X(t))t≥0. Moreover, for any initial value x ∈ R

n+\{0} and any π -integrable function
f , we have

P

{

lim
T→∞

1

T

∫ T

0
f
(
Xx(t)

)
dt =

∫

R
n,◦
+

f (u)π(du)

}

= 1. (C.3)

C.1: Case study: n = 2

In what follows, we show that if r > 0, there is a sufficiently large T > 0 such
that the Markov chain (Y(kT ), S(kT ))k∈N is irreducible and aperiodic, and that every
compact set in �◦ × (0,∞) is petite for the Markov chain.

For simplicity of presentation, we restrict ourselves to the n = 2 case, and
assume that bi (x) = bi x, x ≥ 0, i = 1, 2 for some b1, b2 > 0. As a result, (2.1)
becomes

⎧
⎨

⎩

dX1(t) = (
X1(t)(a1 − b1X1(t)) − αX1(t) + βX2(t)

)
dt + σ1X1(t)dB(t)

dX2(t) = (
X2(t)(a2 − b2X2(t)) + αX1(t) − βX2(t)

)
dt + σ2X2(t)dB(t),

(C.4)

where σ1, σ2 are non-zero constants and (B(t))t≥0 is a one dimensional Brownian
motion.
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Setting S(t) = X1(t)+ X2(t) and Yi (t) = Xi (t)/S(t), i = 1, 2, we have from Itô’s
Lemma,

dYi (t) = Yi (t)

⎛

⎝ai −
2∑

j=1

a jY j − bi S(t)Yi (t) + S(t)
2∑

j=1

b jY
2
j (t))

⎞

⎠ dt

+ (−1)i (αY1(t) − βY2(t)) dt

+ Yi (t)

⎛

⎝
2∑

j,k=1

σkσ j Yk(t)Y j (t)) −
2∑

j=1

σiσ j Y j (t)

⎞

⎠ dt

+ (−1)i (σ2 − σ1)Y1(t)Y2(t)dB(t)

dS(t) = S(t)

(
2∑

i=1

(aiYi (t) − Yi (t)bi S(t)Yi (t)

)

dt

+ S(t)(σ1Y1(t) + σ2Y2(t))dB(t).

(C.5)

We use the process (Y1(t),Y2(t), S(t))t≥0 to construct a Lyapunov function for a
suitable skeleton (Y1(kT ∗),Y2(kT ∗), S(kT ∗))k∈N as we have done in Appendix A.
However, to simplify the computationswhenverifying the hypotheses ofTheoremsC.1
andC.2, instead ofworkingwith (Y1(t),Y2(t), S(t)), we treat the system (Z(t), X2(t))
where Z(t) := X1(t)/X2(t). An application of Itô’s Lemma yields

dZ(t) =
(
(b2 − b1Z(t))Z(t)X2(t) + β + â1Z(t) − αZ2(t)

)
dt

+ Z(t)[σ1 − σ2]dB(t)

dX2(t) = X2(t)
(
(̂a2 − b2X2(t)) + αZ(t)

)
dt + σ2X2(t)dB(t),

(C.6)

where â1 = a1 − a2 − α + β + σ 2
2 − σ1σ2 and â2 = a2 − β.

To proceed, we first convert (C.6) to Stratonovich form to facilitate the verification
of Hörmander’s condition. System (C.6) can be rewritten as

dZ(t) =
(
(b2 − b1Z(t))Z(t)X2(t) + β +

(

â1 − (σ1 − σ2)
2

2

)

Z(t) − αZ2(t)
)
dt

+ Z(t)[σ1 − σ2] ◦ dB(t)

dX2(t) =X2(t)

((

â2 − σ 2
2

2
− b2X2(t)

)

+ αZ(t)

)

dt + σ2X2(t) ◦ dB(t).

(C.7)

Let

A0(z, y) =

⎛

⎜
⎜
⎜
⎝

(b2 − b1z)zy + β +
(

â1 − (σ1 − σ2)
2

2

)

z − αz2

y

(

â2 − σ 2
2

2
− b2y

)

+ αzy

⎞

⎟
⎟
⎟
⎠

,
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and

A1(z, y) =
(

(σ1 − σ2)z
σ2y

)

.

Recall that the diffusion (C.7) is said to satisfy Hörmander’s condition if the set
of vector fields A1, [A1, A0], [A1, [A1, A0]], [A0, [A1, A0]], . . . spans R2 at every
(z, y) ∈ R

2,◦
+ , where [·, ·] is the Lie bracket, which is defined as follows (see Rey-

Bellet 2006 for more details). If �(z, y) = (�1(z, y),�2(z, y))
 and �(z, y) =
(�1(z, y),�2(z, y))
 are vector fields on R

2 (where z
 denotes the transpose of z),
then the Lie bracket [�,�] is a vector field given by

[�,�] j (z, y) =
(

�1(z, y)
∂� j

∂z
(z, y) − �1(z, y)

∂� j

∂z
(z, y)

)

+
(

�2(z, y)
∂� j

∂y
(z, y) − �2(z, y)

∂� j

∂y
(z, y)

)

, j = 1, 2.

Proposition C.1 Suppose that σ1 �= σ2 or β + (b2/b1)(a1 − a2) − α(b2/b1)2 �= 0.
Then Hörmander’s condition holds for the diffusion (Z(t), X2(t))t≥0 given by (C.7).
As a result, the transition probability P(t, (z, y), ·) of (Z(t), X2(t))t≥0 has a smooth
densityR+×R

4+ � (t, z, y, z′, y′) �→ p(t, z, y, z′, y′) ∈ R+ with respect to Lebesgue
measure.

Proof Set σ := σ1 − σ2

σ2
. By a direct calculation,

A2(z, y) := 1

σ2
[A0, A1](z, y) =

(
σ(β + αz2) + (σ + 1)b1z2y − zyb2

−σαzy + b2y2

)

,

and for k > 2, we have

Ak(z, y) := 1

σ2
[A1, Ak−1](z, y)

=
(

σ k−1(β + (−1)kαz2) + (−1)k(σ + 1)2b1z2y + (−1)k+1zyb2
(−1)k+1σ 2αzy + (−1)kb2y2.

)

.

If σ �= 0 or equivalently σ1 �= σ2, a straightforward but tedious computation shows
that the rank of the matrix with columns A1, A2, A3, A4 is always 2 for any (z, y) ∈
R
2,◦
+ . As a result, if σ1 �= σ2, Hörmander’s condition is satisfied for the diffusion

(C.7). Therefore, the transition probability P(t, (z, y), ·) of (Z(t), X2(t)) has a smooth
density function, denoted by p(t, z, y, z′, y′); see Rey-Bellet (2006, Corollary 7.2).

Now, we show that Hörmander’s condition holds if σ1 = σ2 and β + (b2/b1)(a1 −
a2 − α + β) − α(b2/b1)2 �= 0. In this case,

A2(z, y) = [A0, A1](z, y) =
(−αyz(b2 − b1z)

αb2y2

)

,
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746 A. Hening et al.

and

C(z, y) =
(
C1(z, y)
C2(z, y)

)

:=
[

A0,
1

αb2
A2

]

(z, y),

where

C1(z, y) = y(2b1z/b2 − 1)A0,1(z, y) + yz(1 − zb1/b2)
∂A0,1(z, y)

∂z

+ z(zb1/b2 − 1)A0,2(z, y) + y2z(zb1/b2 − 1).

With A0,i (z, y) denoting the i-th component of A0(z, y). Observe that A1(x, y),
A2(z, y) span R

2 for any (z, y) ∈ R
2,◦
+ satisfying z �= b2/b1. If z = b2/b1 we have

C1(b2/b1, y) = yA0,1(b2/b1, y) = y
[
β+(b2/b1)(a1−a2−α+β)−α(b2/b1)2

] �= 0
hence C(b2/b1, y) and A2(b2/b1, y) span R2 for all y > 0. As a result, we obtain the
desired result.

��

To proceed, we consider the following control system, which is associated with
(C.7).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dzφ(t) = (b2 − b1zφ(t))zφ(t)yφ(t) + β

+
(

â1 − (σ1 − σ2)
2

2

)

zφ(t) − αz2φ(t) + (σ1 − σ2)zφφ(t)

dyφ(t) = yφ(t)

(

â2 − σ 2
2

2
− b2yφ(t)

)

+ αzφ(t)yφ(t) + σ2yφ(t)φ(t)

(C.8)

Let (zφ(t, z, y), yφ(t, z, y)) be the solution to equation (C.8) with control φ and
initial value (z, y). Denote byO+

1 (z, y) the reachable set from (z, y), that is the set of

(z′, y′) ∈ R
2,◦
+ such that there exists a t ≥ 0 and a control φ(·) satisfying zφ(t, z, y) =

z′, yφ(t, z, y) = z′. We first recall some concepts introduced in Kliemann (1987). Let

U be a subset of R2,◦
+ satisfying u2 ∈ O+

1 (u1) for any u1, u2 ∈ U . Then there is a
unique maximal set V ⊃ U such that this property still holds for V . Such V is called

a control set. A control set C is said to be invariant if O+
1 (w) ⊂ C for all w ∈ C .

Finding invariant control sets for (C.8) is facilitated by using a change of variables
argument. Put wφ(t) = zφ(t)yr+1

φ (t) with r = −σ1
σ2

. We have

⎧
⎪⎨

⎪⎩

dwφ(t) = h(wφ(t), yφ(t))dt

dyφ(t) = yφ(t)

(

â2 − σ 2
2

2
− b2yφ(t)

)

+ αwφ(t)y−r
φ (t) + σ2yφ(t)φ(t),

(C.9)
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where

h(w, y) = w

(

a1 − σ 2
1

2
+ r

(

a2 − σ 2
2

2

)

+ rβ − α

−b1wyr − b2r y + βy1−rw−1 + αrwyr−1
)

.

Denote byO+
2 (w, y) the set of (w′, y′) ∈ R

2,◦
+ such that there is a t > 0 and a control

φ(·) such that wφ(t, w, y) = w′, zφ(t, w, y) = w′.

Lemma C.1 The control system (C.9) has only one invariant control set C̃ and

O+
2 (w, y) ⊃ C̃ for any (w, y) ∈ R

2,◦
+ , The set C̃ is defined by C̃ = {(w, y) ∈ R

2,◦
+ :

w < c∗}, where

c∗ = sup

{

w : sup
y>0

{h(w′, y)} ≥ 0 for all w′ < w

}

.

Consequently, the control system (C.8) has only one invariant control set C and

O+
1 (z, y) ⊃ C for any (w, y) ∈ R

2,◦
+ , where C := {(z, y) ∈ R

2,◦
+ : zyr+1 ≤ c∗}.

Moreover, by Kliemann (1987, Lemma 4.1), (Z(t), X2(t)) has at most one invariant
probability measure whose support is C.

Proof First, we need to show that c∗ is well-defined (although it can be +∞). Since

lim
w→0

h(w, y) = ∞, which implies that

{

w : sup
y>0

{h(w′, y)} ≥ 0 for all w′ ≤ w

}

is

a nonempty set. Hence c∗ is well-defined. The claim that O+
2 (w, y) ⊃ C̃ for any

(w, y) ∈ R
2,◦
+ can be proved by standard arguments. Let us explain themain ideas here.

On the phase space (w, y) ∈ R
2,◦
+ , since the control φ(t) only appears in the equation

of yφ , we can easily control vertically, that is, for any initial points y0 andw0, there is a
control so that yφ can reach any given point y1 whilewφ stays in a given neighborhood
of w0. If h(w0, y0) < 0, we can choose a feedback control such that (wφ(t), uφ(t))
reaches a point to the ‘left’ (w1, y0) with w1 < w0 as long as h(w, y0) < 0 for
w ∈ [w1, w0]. Likewise, for h(w0, y0) > 0, we can choose a feedback control such
that (wφ(t), uφ(t)) can reach a point to the ‘right’ (w1, y0) with w1 > w0 as long
as h(w, y0) > 0 for w ∈ [w0, w1]. We also have that inf

y>0
{h(w, y)} = −∞ for any

w > 0. Using these facts, we can follow the steps from Du et al. (2016, Section 3) to
obtain the desired results. ��
Lemma C.2 There is a point (z∗, y∗) ∈ C such that for any open set N∗ � (z∗, y∗)
and T > 0, there is an open neighborhood W ∗ � (z∗, y∗) and a control φ∗ such that

(zφ∗(t, z, y), yφ∗(t, z, y)) ∈ N∗ for all (z, y) ∈ W ∗, t ∈ [0, T ].
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748 A. Hening et al.

Proof To obtain the result, we work on (C.9), which is equivalent to (C.8). By the
definition of C̃ and the fact that lim

y→∞ h(w, y) = −∞ if r > 0 and lim
y→0

h(w, y) = −∞
if r < 0, there is a point (w∗, y∗) ∈ C̃ such that h(w∗, y∗) = 0. We can design a
feedback control φ∗ such that

{
dwφ∗(t) = h(wφ∗(t), y∗)dt
dyφ∗(t) = 0.

(C.10)

If wφ∗(t) = w∗ then wφ∗(t) = w∗ for all t > 0. By the continuous depen-
dence on initial data of solutions to differential equations, for any given neigh-
borhood Ñ∗ of (w∗, y∗), we can find a neighborhood W̃ ∗ of (w∗, y∗) such that
(wφ∗(t, w, y), yφ∗(t, w, y)) ∈ Ñ∗ for any t ∈ [0, T ] and (w, y) ∈ W̃ ∗, which proves
the lemma. ��

Proposition C.2 Suppose σ1 �= σ2 or β + (b2/b1)(a1 − a2) − α(b2/b1)2 �= 0. For
any T > 0, every compact set K ⊂ R

2,◦
+ is petite set with respect to the Markov chain

(Z(kT ), X2(kT ))k∈N.

Proof Let (z∗, y∗) be as in Lemma C.2. Pick (z�, y�) ∈ R
2,◦
+ such that

p(T, z∗, y∗, z�, y�) > 0. By the smoothness of p(T, ·, ·, ·, ·), there exists a neigh-
borhood N∗ and an open set N� � (z�, y�) such that

p(1, z, y, z′, y′) ≥ p� > 0 for all (z, y) ∈ N∗, (z′, y′) ∈ N�. (C.11)

Let W ∗ be a neighborhood of (z∗, y∗) satisfying

(zφ∗(t, z, y), yφ∗(t, z, y)) ∈ N∗ for all (z, y) ∈ W ∗, t ∈ [0, T ]. (C.12)

For each (z, y) ∈ R
2,◦
+ , noting that (z∗, y∗) ∈ C ⊂ O+

1 (z, y), there is a control φ and
tz,y > 0 such that

(zφ(tz,y, z, y), yφ(tz,y, z, y)) ∈ W ∗. (C.13)

Let nz,y ∈ N such that (nz,y − 1)T < tz,y ≤ nn,yT and φ̃ be defined as φ̃(t) = φ(t)
if t < tz,y and φ̃(t) = φ∗(t) if t > tz,y . Using the control φ̃, we obtain from (C.12)
and (C.13) that

(
zφ̃(nz,yT, z, y), yφ̃ (nz,yT, z, y)

)
∈ N∗. (C.14)

In view of the support theorem (see Ikeda and Watanabe 1989, Theorem 8.1, p. 518),

P(nz,yT, z, y, N∗) := 2ρz,y > 0.
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Since (Zz,y(t),Yz,y(t)) is a Markov–Feller process, there exists an open set Vz,y �
(z, y) such that P(nz,yT, z′, y′, N∗) ≥ ρu,v for all (z′, y′) ∈ Vz,y . Since K is a com-

pact set, there is a finite number of Vzi ,yi , i = 1, . . . , k0 satisfying K ⊂ ⋃k0
i=1 Vzi ,yi .

Let ρK = min{ρzi ,yi , i = 1, . . . , k0}. For each (z, y) ∈ K , there exists nzi ,yi such
that

P(nzi ,yi T, z, y, N∗) ≥ ρK . (C.15)

From (C.11) and (C.15), for all (z, y) ∈ K , there exists nzi ,yi such that

p((nzi ,yi + 1)T, z, y, z′, y′) ≥ ρK p� for all (z′, y′) ∈ N�. (C.16)

It follows from (C.16) that

1

k0

k0∑

i=1

P((nzi ,yi + 1)T, z, y, A) ≥ 1

k0
ρK p�m(N� ∩ A)

for all A ∈ B
(
R
2,◦
+
)

, (C.17)

where m(·) is the Lebesgue measure on R
2,◦
+ . Equation (C.17) implies that every

compact set K ⊂ R
2,◦
+ is petite for the Markov chain (Z(kT ), X2(kT ))k∈N. ��

We have shown in the beginning of Sect. 2.2. that Ỹ(t) has a unique invariant proba-
bility measure ν∗. Having Proposition C.2, we note that the assumptions, and therefore
the conclusions, of Theorems C.1 and C.2 hold for model (C.4). This argument proves
Theorems 2.5 and 2.6.

Appendix D: Robustness of the model

The robustness is studied from several angles, including continuous dependence of r
on the coefficients of the stochastic differential equation, robustness of persistence,
and robust attenuation against extinction. They are presented in a couple subsections.

D.1: Continuous dependence of r on the coefficients

We show that r depends continuously on the coefficients of the stochastic differential
equation (2.6). Consider the equation

dŶ(t) =
(
diag(Ŷ(t)) − Ŷ(t)Ŷ
(t)

)
	̂
dB(t)

+ D̂
Ŷ(t)dt +
(
diag(Ŷ(t)) − Ŷ(t)Ŷ
(t)

)
(̂a − �̂Ŷ(t))dt

(D.1)
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on the simplex �. Suppose that �̂ is positive definite. In this case, (Ŷ(t))t≥0 has a
unique invariant probability measure ν̂∗. Define

r̂ :=
∫

�

(

â
y − 1

2
y
�̂y

)

ν̂∗(dy) (D.2)

Fix the coefficients of 2.6.

Proposition D.1 For any ε > 0, there is a θ2 > 0 such that if

max
{‖a − â‖, ‖D − D̂‖, ‖	 − 	̂‖} < θ2

then

|r − r̂ | < ε.

Proof First, let θ1 > 0 such that if max
{‖a − â‖, ‖D − D̂‖, ‖	 − 	̂‖} < θ1, then

∣
∣
∣
∣

(

â
y − 1

2
y
�̂y

)

−
(

a
y − 1

2
y
�y

)∣
∣
∣
∣ <

ε

3
for all y ∈ �. (D.3)

Let γ1, γ2, M3, M4 be defined as in the proof of Lemma A.5. Pick T = T (ε) > 0
such that

‖P̃(T, y, ·) − ν∗‖T V ≤ γ1 exp(−γ2T ) <
ε

3M4
for all y ∈ �. (D.4)

By standard arguments, there is a θ2 ∈ (0, θ1) such that if max
{‖a − â‖, ‖D − D̂‖,

‖	 − 	̂‖} < δ2, then

P

{

‖Ỹy(T ) − Ŷy(T )‖ <
ε

6M3

}

>
ε

6M4
for all y ∈ � (D.5)

Let y∗ be a �-valued and F0-measurable random variable whose distribution is ν̂∗.
Clearly,

∫

�

(

a
y − 1

2
y
�y

)

ν̂∗(dy) = E

(

a
Ŷy∗
(T ) − 1

2
(Ŷy∗

(T ))
�Ŷy∗
(T )

)

.

(D.6)

In view of (D.4),

∣
∣
∣
∣E

(

a
Ỹy∗
(T ) − 1

2
(Ỹy∗

(T ))
�Ỹy∗
(T )

)

− r

∣
∣
∣
∣ ≤ M4 sup

y∈�

{‖P̃(t, y, ·) − μ∗‖}

≤ ε

3
. (D.7)
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It follows from (D.5) that

E

∣
∣
∣
∣a


Ŷy∗
(T ) − 1

2
(Ŷy∗

(T ))
�Ŷy∗
(T ) − a
Ỹy∗

(T ) + 1

2
(Ỹy∗

(T ))
�Ỹy∗
(T )

∣
∣
∣
∣

≤ M3
ε

6M3
P

{

‖Ỹy∗ − Ŷy∗‖ <
ε

6M3

}

+ M4P

{

‖Ỹy∗ − Ŷy∗‖ ≥ ε

6M3

}

≤ ε

3
.

(D.8)

In view of (D.2), (D.3), (D.6), (D.7), and (D.8), if

max
{‖a − â‖, ‖D − D̂‖, ‖	 − 	̂‖} < θ2

then |r − r̂ | < ε, which completes the proof. ��
Remark D.1 The continuous dependence of r on the coefficients can also be proved
by generalizing the arguments from the proof of Evans et al. (2013, Proposition 3).
Since Evans et al. (2013, Proposition 3) focuses only on the continuity for a specific
parameter rather than all parameters, we provided an alternative proof for the sake of
completeness.

D.2: Robust persistence and extinction

Sketch of proof of Theorem 2.8 As usual, we work with

dŶ(t) =
(
diag(Ŷ(t)) − Ŷ(t)Ŷ
(t)

)
	̂
(Ŝ(t)Ŷ(t))dB(t) + D̂(Ŝ(t)Ŷ(t))
Ŷ(t)dt

+
(
diag(Ŷ(t)) − Ŷ(t)Ŷ
(t)

)
(̂a − �̂(Ŝ(t)Ŷ(t))Ŷ(t) − b̂(Ŝ(t)Ŷ(t)))dt

d Ŝ(t)

= Ŝ(t)
[
â − b̂(Ŝ(t)Ŷ(t))

]

Ŷ(t)dt + Ŝ(t)Ŷ(t)



	̂
(Ŝ(t)Ŷ(t))dB(t),

(D.9)

where Ŝ(t) := ∑
i X̂i (t), Ŷ(t) := X̂(t)

Ŝ(t)
. In order to have a complete proof for this

proposition one can follow the steps from Appendix A. First, since � is positive
definite then so is �̂(x) := 	̂(x)
	̂(x) if supx∈Rn,◦

+ ‖	̂(x) − 	‖ is sufficiently small.

As a result, (X̂(t))t≥0 is a nondegenerate diffusion in R
n,◦
+ and Lemma A.1 holds for

(Ŷ(nT ), Ŝ(nT ))n∈N. We also have the following results: there exist positive constants
K̂i : i = 1, . . . , 4, which do not depend on θ as long as θ is sufficiently small, such
that

EŜy,s(t) ≤ e−γbt/2s + K̂1, (y, s) ∈ � × (0,∞), t ≥ 0. (D.10)

E

(
[ln Ŝy,s(T )]2

)
≤ ((ln s)2 + 1)K̂2 exp{K̂3T }, (y, s) ∈ � × (0,∞), T ≥ 0,

(D.11)
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and

E

(
[ln Ŝy,s(T ∧ ζ̂ y,s)]2−

)
≤ (ln s)2 + K̂4

√
P(A)(T + 1)[ln s]− + K̂4T

2

(D.12)

for all (y, s) ∈ � × (0, 1), A ∈ F where

ζ̂ y,s := inf{t ≥ 0 : Ŝy,s(t) = 1}.

On the other hand, standard arguments show that for any ε > 0, T > 0, there is a
θ = θ(ε, T ) > 0 such that

P
{∥∥(Yy,s(t), Sy,s(t)) − (Ŷy,s(t), Ŝy,s(t))

∥
∥ ≤ ε, 0 ≤ t ≤ T

}
> 1 − ε

given that (y, s) ∈ � × [0, 1]. Combining this fact with Proposition A.2, one can find
δ = δ(ε, T ) > 0 and θ = θ(ε, T ) > 0 such that

P

{∥
∥
∥(Ỹy,s(t), 0) − (Ŷy,s(t), Ŝy,s(t))

∥
∥
∥ ≤ ε, 0 ≤ t ≤ T

}
> 1 − ε

given that (y, s) ∈ � × (0, δ) and (2.20) holds. With this fact, we can use Lemma
A.5 with slight modification to show that, for any ε > 0, there is a T ∗ = T ∗(ε) and
δ = δ(ε, T ∗), θ = θ(ε, T ∗) such that

P

{

ln s + 3rT ∗

4
≤ ln Ŝy,s(T ∗) < 0

}

≥ 1 − 3ε for all (y, s) ∈ � × (0, δ)

(D.13)

given that (2.20) holds. Having (D.10), (D.11), (D.12), and (D.13), we can use the
arguments from Proposition A.3 and Theorem A.2 to finish the proof. ��

Remark D.2 If r < 0,X(t) converges to 0 with probability 1. By virtue of Propo-
sition D.1, if D̂, 	̂ are constant matrices and max

{‖a − â‖, ‖D − D̂‖, ‖	 − 	̂‖} is
sufficiently small then X̂(t) converges to 0 with an exponential rate almost surely.
We conjecture that this result holds for any θ -perturbation of X(t) defined by (2.20).
However, when D̂ := D̂(x), 	̂ := 	̂(x), comparison arguments may be not applica-
ble. Moreover, it is also difficult to analyze the asymptotic behavior of the equation
without competition terms, namely

dX̂ (t) =
(
diag(X̂ (t))̂a + D̂(X̂ (t))


X̂ (t)
)
dt

+ diag(X̂ (t))	̂(X̂ (t))


dB(t). (D.14)
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