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ABSTRACT 
Flexural Behavior of Interlocking Compressed Earth  

Block Shear Walls Subjected to In-Plane Loading  

 

Bradley James Stirling 

 

This thesis investigates the flexural behavior of interlocking compressed earth block 

(ICEB) shear walls. In-plane cyclic tests were conducted to evaluate the performance of 

three flexure dominant large scale ICEB specimens: a slim wall with a 2:1 height to 

width aspect ratio, a flanged wall, and a wall with an opening at the center. Following the 

experimental investigation, two types of analyses were conducted for calculating the 

ultimate strength of flexure dominant ICEB walls: a nonlinear static analysis model 

assuming lumped plasticity and a plastic analysis model.  In addition, incremental 

dynamic analysis was conducted to address the seismic performance of flexure dominant 

ICEB buildings. Based on the database from the incremental dynamic analysis, the 

collapse potential of demonstration ICEB buildings were compared for the countries of 

interest. 

 

 

Keywords: interlocking compressed earth block, flexural behavior, cyclic testing; 

nonlinear analysis. 

 



v 

 

ACKNOWLEDGEMENTS 
 

 The completion of this project would not have been possible without the help and 

support of countless individuals who dedicated their time, expertise, and support for 

which I am extremely grateful. 

 A special thanks to my fellow students who have helped make this project a 

success, in particular, David Bland and Clayton Proto for the countless hours dedicated to 

forming the groundwork for this project. Your friendship and dedication to this project 

have been extraordinary. Also thank you to the students of CE 557 who helped in the 

seismic analysis of the project, with a particular thanks to Anthony Trgovcich for his help 

interfacing Matlab with structural analysis software used in this thesis. 

 I cannot thank my advisor Bing Qu enough for the amount of time and hard work 

he has dedicated to ensuring that this project was a success.  Your continuous guidance, 

enthusiasm and encouragement have helped take this project from concept phase to 

completion. It has been both an honor and pleasure to work with you. I would also like to 

thank Dan Jansen for his guidance throughout the testing process and insight into the 

proper specimen instrumentation. Your professionalism and commitment to excellence 

are appreciated. Much thanks to Peter Laursen for the insight shared into masonry 

construction and analysis that accompanied this project. 

 To my friends and family who have seen me thought all the ups and downs of this 

project, thank you! Your love and encouragement have helped me in ways you cannot 

fathom and will forever be remembered and appreciated.   



vi 

 

TABLE OF CONTENTS 
LIST OF TABLES ............................................................................................................. xi 

LIST OF FIGURES ......................................................................................................... xiii 

1  INTRODUCTION ...................................................................................................... 1 

1.1  Background .......................................................................................................... 1 

1.2  Scope .................................................................................................................... 4 

1.3  Organizational of Contents ................................................................................... 5 

2  LITERATURE REVIEW ........................................................................................... 7 

2.1  Pioneering ICEB Research ................................................................................... 7 

2.2  Earth Construction ................................................................................................ 9 

2.3  Design Recommendations .................................................................................. 11 

2.4  Slender Masonry Walls ...................................................................................... 12 

2.5  Flanged Masonry Walls ..................................................................................... 14 

2.6  Masonry Shear Walls with Opening .................................................................. 15 

3  MATERIAL PROPERTIES ..................................................................................... 18 

3.1  Introduction ........................................................................................................ 18 

3.2  Interlocking Compressed Earth Blocks .............................................................. 18 

3.3  Rebar Testing ..................................................................................................... 21 

3.4  Masonry Prism Testing ...................................................................................... 22 

3.5  Models for Masonry ........................................................................................... 24 

4 SPECIMEN DESIGN AND CONSTRUCTION .......................................................... 27 



vii 

 

4.1  Introduction ........................................................................................................ 27 

4.2  Construction of the Slim Wall (W4) .................................................................. 30 

4.3  Construction of the T Wall (W5) ....................................................................... 38 

4.4  Construction of the Window Wall (W6) ............................................................ 48 

5  INSTRUMENTATION AND TEST SET-UP.......................................................... 58 

5.1  Wall Relocation .................................................................................................. 58 

5.2  Laboratory Set-up ............................................................................................... 59 

5.3  Instrumentation................................................................................................... 62 

5.3.1  W4 Instrumentation .................................................................................... 63 

5.3.2  W5 Instrumentation .................................................................................... 64 

5.3.3  W5 Retest Instrumentation ......................................................................... 65 

5.3.4  W6 Instrumentation .................................................................................... 66 

5.4  In Plane Loading Protocol .................................................................................. 67 

5.5  Vertical Loading ................................................................................................. 69 

6  OBSERVATIONS FROM THE TESTS .................................................................. 70 

6.1  Testing of W4 ..................................................................................................... 70 

6.1.1  Overview ..................................................................................................... 70 

6.1.2  W4: Cycles 1 through 8 .............................................................................. 72 

6.1.3  W4: Cycles 9 and 12 ................................................................................... 74 

6.1.4  W4: Cycles 13 through 20 .......................................................................... 75 



viii 

 

6.1.5  W4: Cycles 21 through 24 .......................................................................... 78 

6.1.6  W4: Cycles 25 through 28 .......................................................................... 83 

6.1.7  W4: Cycles 29 and 32 ................................................................................. 84 

6.2  Testing of W5 ..................................................................................................... 86 

6.2.1  W5 -Phase I ................................................................................................. 86 

6.2.2  W5 -Phase II ............................................................................................... 93 

6.2.3  W5-Phase II: Cycles 1 through 8 ................................................................ 94 

6.2.4  W5-Phase II: Cycles 9 through 12 .............................................................. 96 

6.2.5  W5-Phase II: Cycles 13 Through 16 ........................................................... 98 

6.2.6  W5-Phase II: Cycles 17 through 20 .......................................................... 100 

6.2.7  W5-Phase II: Cycles 21 through 24 .......................................................... 102 

6.2.8  W5-Phase II: Cycles 25 and 28 ................................................................. 106 

6.2.9  Overview ................................................................................................... 108 

6.2.10  W6: Cycles 1 through 8 ............................................................................ 109 

6.2.11  W6: Cycles 9 through 12 .......................................................................... 110 

6.2.12  W6: Cycles 13 through 16 ........................................................................ 111 

6.2.13  W6: Cycles 17 through 20 ........................................................................ 114 

6.2.14  W6: Cycles 21 through 24 ........................................................................ 117 

7  DISCUSSION OF TESTING RESULTS ............................................................... 120 

7.1  Hysteretic Curves ............................................................................................. 120 



ix 

 

7.2  Hysteretic Enegry Disipation ........................................................................... 122 

7.2.1  W4 Energy Dissipation ............................................................................. 124 

7.2.2  W5 Energy Dissipation ............................................................................. 125 

7.2.3  W6 Energy Dissipation ............................................................................. 125 

7.3  Ductility ............................................................................................................ 125 

7.4  Wall Displacements .......................................................................................... 127 

7.4.1  W4 ............................................................................................................. 130 

7.4.2  W5 ............................................................................................................. 130 

7.4.3  W6 ............................................................................................................. 132 

7.5  Plastic Moment Resistance and Lateral Strength of Specimens ...................... 133 

7.6  Nonlinear Static Analyses ................................................................................ 138 

8  SEISMIC PERFORMANCE OF FLEXURE DOMINANT ICEB WALLS ......... 143 

8.1  Description and Validation of the Computer Model ........................................ 143 

8.2  Demonstration Building ................................................................................... 144 

8.2.1  Geometries and Materials of the Demonstration Buildings ...................... 145 

8.2.2  Determination of Fundamental Period ...................................................... 146 

8.3  Incremental dynamic analysis .......................................................................... 149 

8.3.1  Ground Motions ........................................................................................ 150 

8.3.2  Probability of collapse .............................................................................. 151 

8.4  Discussion of ICEB structures at different sites ............................................... 154 



x 

 

9  CONCLUDING REMARKS AND FUTURE WORK .......................................... 158 

9.1  Summary .......................................................................................................... 158 

9.2  Concluding Remarks ........................................................................................ 159 

9.2.1  Findings from Experimental Results ........................................................ 159 

9.2.2  Findings from Analytical Results ............................................................. 160 

9.3  Future Research ................................................................................................ 160 

REFFERENCES ............................................................................................................. 162 

APPENDIX A………………………………………………………………………...…A1 

APPENDIX B………………………………………………………………………...…B1 

APPENDIX C………………………………………………………………………...…C1 

 

 

  



xi 

 

LIST OF TABLES 
 

Table 3-1: ICEB mixture proportion for an 8 block mix (Proto et al., 2010) ................... 20 

Table 3-2: ICEB produced for specimen construction ..................................................... 20 

Table 3-3: Rebar strength .................................................................................................. 21 

Table 3-4: Average Prism Compressive Strength ............................................................. 24 

Table 5-1: loading protocol used on specimens ................................................................ 68 

Table 5-2: Applied vertical loads to specimens ................................................................ 69 

Table 7-1 Maximum displacement and forces of specimens .......................................... 121 

Table 7-2: Wall Energy Dissipation ............................................................................... 123 

Table 7-3: Ductility Comparison .................................................................................... 126 

Table 7-4: Instrument distances for W4 and W5 retest .................................................. 131 

Table 7-5: Instrument distances for W6 .......................................................................... 133 

Table 7-6: Fiber components of ICEB walls .................................................................. 140 

Table 8-1: Properties of demonstration buildings ........................................................... 148 

Table 8-2: PSA values for 50% collapse probability ...................................................... 154 

Table 8-3: Maximum DBE and MCE values .................................................................. 156 

Table 8-4: CMR ratio ...................................................................................................... 156 

Table A-1: ICEB prism compressive strength…………………………………….........A-2 

Table A-2: ICEB compressive strength………………………...………………….….  A-2 

Table A-3: Rebar tensile test data………………………………………...…...……... ..A-3 

Table A-4: Grout and Mortar Proportions …………...………...………………….….  A-4 

Table B-1: Far Field Earthquake Records………………………………...……………B-3 



xii 

 

Table B-2: Near Field Earthquake Records…………………………………………… B-4 

Table C-1: Thailand Seismic Design Factors……………………...…………………...C-2 

Table C-2: Seismic Factor for each Zone………………………………………………C-2 

Table C-3: Structural Factor for Different Type Buildings…………………………….C-2 

Table C-4: Resonance Coefficient as a function of Soil Type……………………..…...C-3 

Table C-5: Seismic Importance factor based on Structure use…………………............C-3 

Table C-6: Summary of Spectral Acceleration values of the sites in Thailand……….. C-5  

Table C-7: Indonesia Seismic Design Factors………………………………………….C-6 

Table C-8: Importance factors for Buildings in Indonesia…………………………..…C-7 

Table C-9: Structural factor for Indonesian Building…………………………………..C-8 

Table C-10: Location based design factors…………………………………………......C-9 

 

 

  



xiii 

 

LIST OF FIGURES 
 

Figure 1-1: ICEB “Rhino” block (Wheeler, 2005) ............................................................. 2 

Figure 1-2: Soeng Thai BP6 Block press ............................................................................ 2 

Figure 1-3: Various forms of ICEBs used in building construction ................................... 3 

Figure 2-1: Compressed Earth Blocks produced by Aurum press 3000  ............................ 9 

Figure 2-2: Failure Mechanism for Shear walls with openings ........................................ 17 

Figure 3-1: The six types of blocks used in wall construction ......................................... 19 

Figure 3-2: Rebar testing facility ...................................................................................... 22 

Figure 3-3: Masonry prism test setup ............................................................................... 24 

Figure 3-4: Stress vs. Strain Data from Masonry Prism Tests .......................................... 26 

Figure 4-1: W4 reinforcing pattern ................................................................................... 28 

Figure 4-2: W5 reinforcing pattern ................................................................................... 29 

Figure 4-3: W6 Reinforcing Pattern ................................................................................. 30 

Figure 4-4: Rebar Anchored Footing of W4 ..................................................................... 32 

Figure 4-5: Grout used in specimen construction ............................................................. 34 

Figure 4-6: Plywood confinements for grout keys ........................................................... 36 

Figure 4-7: Vertical rebar layout of W5 ........................................................................... 39 

Figure 4-8: Modification of end blocks for reinforcement ............................................... 40 

Figure 4-9: W5 after the first course was laid. .................................................................. 41 

Figure 4-10:  Course 1 of W5 with shear reinforcement placed. ...................................... 42 

Figure 4-11: Cobraand Peacock  Pattern for intersecting Walls   ..................................... 43 

Figure 4-12: Adapted cobra pattern for W5 ...................................................................... 44 



xiv 

 

Figure 4-13: Courses 1 through 5 of W5 after grouting, .................................................. 45 

Figure 4-14: Courses 17 and 18 in the flange and web of W5 ......................................... 47 

Figure 4-15: proposed method for Window reinforcement .............................................. 48 

Figure 4-16: Revised method for window reinforcement to prevent corner tearing ........ 48 

Figure 4-17: Vertical rebar layout for W6 ........................................................................ 49 

Figure 4-18: Transverse reinforcement hooked around vertical rebar of W6 .................. 51 

Figure 4-19: Courses 1-4 of W6 being grouted ................................................................ 52 

Figure 4-20: Schematic of the timber frame for the window ............................................ 54 

Figure 4-21: shear reinforcement design of W6 header .................................................... 55 

Figure 4-22: Setting the shear reinforcement for the lintel of W6 .................................... 56 

Figure 5-1: W4 being lifted into place with a crane ......................................................... 59 

Figure 5-2: Test set-up for testing of W4 and W6 (Out-of-plane) .................................... 60 

Figure 5-3: Test Set-up for W5 (Out-of-plane) ................................................................. 61 

Figure 5-4: Steel loading beam used for load transfer from the actuator to wall ............. 62 

Figure 5-5: Instrumentation configuration of W4 ............................................................. 63 

Figure 5-6: Instrumentation configuration of W5 ............................................................. 65 

Figure 5-7: Instrumentation configuration of W5 after reinforced concrete retrofit ........ 66 

Figure 5-8: Instrumentation configuration of W6 ............................................................. 67 

Figure 5-9: Graphical representation of the loading protocol ........................................... 68 

Figure 6-1: W4 footing slip vs. lateral displacement of actuator ...................................... 70 

Figure 6-2: Hysteresis of W4 ............................................................................................ 72 

Figure 6-3: Hysteresis of W4 Cycles 1 through 8 ............................................................. 73 

Figure 6-4: Hysteresis of W4: Cycles 1 through 12 ......................................................... 74 



xv 

 

Figure 6-5: Cracking at the base of W4 during Cycle 10 ................................................. 75 

Figure 6-6: Hysteresis of W4: Cycles 1 thought 20 .......................................................... 76 

Figure 6-7: Cracking around the base of W4 .................................................................... 77 

Figure 6-8: W4 cracking around the grout channel and the loading beam ....................... 78 

Figure 6-9: Shearing between courses of W4 and the mortar in the footing .................... 79 

Figure 6-10: Shear cracking along the bottom of W4 ....................................................... 80 

Figure 6-11: Hysteresis of W4: Cycles 1 through 24 ....................................................... 81 

Figure 6-12: Cracks in W4 in Cycles 21 thought 24 ........................................................ 82 

Figure 6-13: Toe cracking of W4 in Cycle 24 .................................................................. 82 

Figure 6-14: Hysteresis of W4: Cycles 1 through 28 ....................................................... 84 

Figure 6-15: Hysteresis of W4: Cycles 1 through 31 ....................................................... 84 

Figure 6-16: Complete degradation of toe due to Cycle 31 .............................................. 85 

Figure 6-17: Force vs. Displacement of W5-Phase I ........................................................ 87 

Figure 6-18: Damages in W5 Web resulting from mechanical failure of actuator ........... 88 

Figure 6-19: Compression failure at the intersection of the web and flange .................... 89 

Figure 6-20: Shear Failure of the web and flange. ............................................................ 89 

Figure 6-21: Repair of the web of W5 before reinforced concrete was cast .................... 91 

Figure 6-22:  Repair of the flange of W5 before reinforced concrete was cast ................ 91 

Figure 6-23: Web of W5 after removal of the reinforced concrete formwork ................. 92 

Figure 6-24: Flange of W5 after removal of the reinforced concrete formwork .............. 93 

Figure 6-25: Hysteresis of W5-Phase II ............................................................................ 94 

Figure 6-26:  Crack in W5 at zero displacement .............................................................. 95 

Figure 6-27: Crack in the W5 at maximum displacement of cycle 8 ............................... 95 



xvi 

 

Figure 6-28: Hysteresis of W5- Phase II: Cycles 1 thought 8 .......................................... 96 

Figure 6-29: Hysteresis of W5: Phase II Cycles 1 through 12 ......................................... 97 

Figure 6-30: Tension cracks at the base of the toe of W5 web ......................................... 97 

Figure 6-31: Hysteresis of W5-Phase II: Cycles 1 through 16 ......................................... 98 

Figure 6-32: Spalling of the outer grout channel of the W5 web during Cycle 16 ........... 99 

Figure 6-33: Cracking of W5 web at zero displacement after Cycle 16 ......................... 100 

Figure 6-34: Hysteresis of W5-Phase II: Cycles 1 through 20 ....................................... 101 

Figure 6-35: W5 cracking around the bottom toe of the web ......................................... 101 

Figure 6-36: Spalling of the ICEBs and grout around the toe of W5 web ...................... 102 

Figure 6-37: Buckling of unconfined rebar  subjected to compressive force. ................ 103 

Figure 6-38: Unconfined rebar in tension during the push. ............................................ 103 

Figure 6-39: External spalling of ICEBs at the web toe of W5. ..................................... 104 

Figure 6-40: Cracking at the base of the flange of W5 ................................................... 104 

Figure 6-41: Hysteresis of W5-Phase II: Cycles 1 through 24 ....................................... 105 

Figure 6-42: Hysteresis of W5-Phase II: Cycles 1 through 28 ....................................... 107 

Figure 6-43: Degradation of W5 web ............................................................................. 107 

Figure 6-44: Hysteresis of W6 ........................................................................................ 109 

Figure 6-45: Hysteresis of W6: Cycles 1 to 8 ................................................................. 110 

Figure 6-46: Hysteresis of W6: Cycles 1 through 12 ..................................................... 111 

Figure 6-47: W6 cracking around the sill of the windows following Cycle 14 .............. 112 

Figure 6-48: W6 diagonal cracking observed in the left pier after Cycle 16 .................. 113 

Figure 6-49: Hysteresis of W6: Cycles 1 through 16 ..................................................... 114 

Figure 6-50: New cracks observed in W6 during Cycles 9 and 10 ................................ 115 



xvii 

 

Figure 6-51: Hysteresis of W6: Cycles 1 through 20 ..................................................... 116 

Figure 6-52: Hysteresis of W6: Cycles 1 though 24 ....................................................... 117 

Figure 6-53: Cracking pattern of W6 prior to Cycle 21 .................................................. 118 

Figure 6-54: Cracking pattern of W6 following Cycle 22 .............................................. 118 

Figure 6-55: Damage in W6 following Cycle 24 ............................................................ 119 

Figure 7-1: Force displacement curves from tests .......................................................... 121 

Figure 7-2: Envelopes of the hysteretic curves ............................................................... 122 

Figure 7-3: Cumulative energy dissipation comparison ................................................. 123 

Figure 7-4: Normalized cumulative energy dissipation comparison .............................. 124 

Figure 7-5: ductility criteria (Bland, 2011) ..................................................................... 126 

Figure 7-6: Arrangement for rocking deformation instruments  .................................... 128 

Figure 7-7: Arrangement for shear deformation instruments (from Voon,2007) ........... 129 

Figure 7-8: W4 deformation components ....................................................................... 130 

Figure 7-9: W5 deformation components ....................................................................... 131 

Figure 7-10: W6 deformation components ..................................................................... 132 

Figure 7-11: W6 shear and bending instrumentation ...................................................... 132 

Figure 7-12: Idealized normal stress and strain relations (Bland, 2011) ........................ 134 

Figure 7-13: Lateral force resistance determination for W6 ........................................... 136 

Figure 7-14: Lateral force resistance comparisons: Analytical vs. Testing Data ........... 137 

Figure 7-15: Generic Fiber from SAP 2000 model ........................................................ 139 

Figure 7-16: Lateral force resistance comparisons: SAP 2000 vs Test Data .................. 141 

Figure 7-17: Lateral force resistance comparisons: Analytical vs SAP ......................... 142 

Figure 8-1: Comparison of results from test and IDARC ............................................... 144 



xviii 

 

Figure 8-2: Demonstration Building for Nonlinear Dynamic Analysis .......................... 145 

Figure 8-3: Estimated stiffness and hysteretic curves of W4 ......................................... 149 

Figure 8-4: Results from IDA ......................................................................................... 151 

Figure 8-5: Fragility curves of near field ground motions .............................................. 153 

Figure 8-6: Fragility curves of far field ground motions ................................................ 153 

Figure A-1: Stress-Strain data for rebar…… ………..……………………..………….A-4  

Figure C-1: Thailand Seismic Regions (from IISEE)…………………………….….....C-4 

Figure C-2: Seismic Zones for Indonesia………………………………………………C-6 

Figure C-3: Indonesia zone based Seismic Design Spectra………………………….....C-7 

Figure C-4: Design Spectra for Cal Poly assuming site class B………………..…......C-10

 



1 

 

1 INTRODUCTION 

1.1 Background  

Interlocking compressed earth block (ICEB) construction is a form of dry stack 

masonry construction used as a low cost building material. The manufacturing and 

construction process of ICEB buildings requires no special skills and can be performed 

by inexperienced labors making it an attractive building material for developing 

countries. 

Earth is one of the oldest building materials, and is still widely used around the 

world. It is estimated that more than 30 percent of the world’s building materials are 

made of various forms of earth construction (Bei and Papayianni, 2003), with the most 

common forms of earth construction being adobe, rammed earth and compressed earth 

masonry. Having gained popularity as an aesthetically pleasing, low cost, and sustainable 

building material, earth masonry construction is becoming more widely used as a form of 

housing around the world. In 1995 it was estimated that approximately one third of the 

world’s population was housed by unbaked earth wall building (Walker, 1999). 

Earth masonry construction can be subdivided into two distinct categories, 

mortared masonry, and dry stacked masonry. The most common type of dry stacked earth 

masonry is cement stabilized mechanically compacted earth blocks produced from local 

soils, sand and cement. Cement contents typically range from 5 to 10 percent, by weight, 

but can be substituted or supplemented with various types of cementitious materials 

including but not limited to lime, gypsum, and calcite (Walker 1999). 
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The rhino block, shown in Figure 1-1, is a 10 cm high, 15 cm wide, and 30 cm long 

interlocking compressed earth blocks produced from the Soeng Thai BP6 block press, 

shown in Figure 1-2. Originally developed in Thailand, the Soeng Thai BP6 is a modern 

descendant of the smaller CINVA ram block press, used to create the TISTR blocks 

(Wheeler, 2005). The Soeng Thai BP6 block press uses a combination of removable steel 

inserts and vertical compression to create blocks of different shapes. As shown in Figure 

1-1, these blocks have a top and bottom interlocking dowels which join together in a form 

of dry stacked masonry adapted for both vertical and horizontal reinforcement. The wall 

constructed from “rhino” ICEBs can be used as infill panels for frame structures, but 

typically as load bearing walls in residential construction, shown in Figure 1-3. 

 

Figure 1-1: ICEB “Rhino” block 
(Wheeler, 2005) 

 
Figure 1-2: Soeng Thai BP6 Block press 

 

This form of dry stack masonry has several advantages in building construction in 

developing countries. The interlocking dowels easily align adjacent blocks allowing 

relatively untrained labors to efficiently construct their own dwellings. Not requiring 

mortar saves construction time, labor and cement used in construction.  

*Dimensionsgiven in cm
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Figure 1-3: Various forms of ICEBs used in building construction (Wheeler, 2005) 

 

The research presented in this thesis builds on a long standing relationship between 

the Cal Poly San Luis Obispo chapter of Engineers Without Borders chapter and the 

Center for Vocational Building Technology (CVBT) located in Thailand. Past 

collaborations with CVBT have resulted in:  

• Internships at the CVBT where students preformed design calculations and 

monitored production efficiency of ICEBs and clay roof tiles. 

• A student-led project to design low cost pocket penetrometes used to 

determine optimal ICEB compaction during the manufacturing process. 

• The redesign of the handle latching mechanism of the Soeng Thai BP6 

block press used in the production of ICEB. 
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• The optimization of Soeng Thai BP6 soil pulverizer, used for soil 

preparation of ICEBs.   

• Experimental research quantifying the structural properties associated with 

ICEBs as they relate to conventional masonry. These tests included 

durability testing, compressive testing, and bond strength testing (Bales et 

al., 2009). 

• Development of ICEB manufacturing and construction manual aimed at 

developing safe and practical methods of construction with ICEB masonry 

products (Proto et al., 2010). 

• Investigation of the performance of large scale ICEB shear walls subjected 

to cyclic loading (Bland, 2011). 

1.2 Scope  

The ICEB shear wall testing program was initially developed as a two-phase 

experimental investigation, in which six large-scale specimens were to be tested. Phase 1 

was completed in a companion thesis (Bland, 2011), in which three 1:1 aspect ratio shear 

walls were tested, and the shear behavior was investigated. Phase 2, reported in this 

thesis, focuses on the experimental investigation of the flexural behavior of another three 

large-scale ICEB specimens with different shapes. In addition, analytical models for 

estimating the ultimate strength of the flexure dominant ICEB walls will be addressed 

together with a seismic evaluation of ICEB demonstration buildings for the countries of 

interest.  
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1.3 Organizational of Contents 

This thesis includes nine individual chapters which will provide a brief review of 

previous research, tested material properties, specimen design and construction, 

instrumentation and test set-up, experimental observations, testing results and 

comparison, seismic analysis and conclusions. 

Chapter 2 presents a review of previous research relating to the structural properties 

of compressed earth as well as previous research relating to the testing of masonry shear 

walls.  

Chapter 3 presents the material properties jointly tested in both the companion 

thesis (Bland, 2011) and this thesis. The results from the materials testing presented in 

this chapter are later used in the modeling and analysis of the three tested specimens.   

Chapter 4 presents the design and construction of the three ICEB specimens tested 

in this thesis. This chapter covers the reinforcement arraignments, the method of 

construction, methods for proper grouting, course alignment, design considerations for 

construction and post construction curing procedures for each specimen. 

Chapter 5 presents the laboratory test set-up and procedure for testing each 

specimen. The relocation of the specimens, instrumentation of the individual specimen 

and application of the vertical and lateral loads are discussed. 

Chapter 6 discusses the failure mode, formation of crack, and accounts of both 

visual observations and instruments readings throughout the test.  

Chapter 7 compares the results from each specimen including hysteric response, 

energy dissipation capacity, displacement components, ductility, and strength.  
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Chapter 8 presents a seismic evaluation of the two demonstration ICEB buildings 

with flexure dominant behavior. Each building is analyzed using the incremental dynamic 

analysis procedure. The collapse probabilities of these buildings are discussed for the 

construction sites of interest.  

Chapter 9 presents a summary of the conclusions derived from this thesis together 

with design recommendations and suggestions of futures research.    
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2 LITERATURE REVIEW 
 

This thesis focuses on the flexural behavior of ICEB structures. As described in 

detail in a later chapter, the systems considered here include a slender ICEB wall with 

relatively large height-to-width aspect ratio; an ICEB wall with a flange at one end; and 

an ICEB wall with a window opening. This chapter briefly reviews the recent research 

development and outcomes related to the considered ICEB constructions.  

2.1 Pioneering ICEB Research 

Bales et al. (2009) conducted significant research with the “Rhino” interlocking 

compressed earth block, produced using the Soeng Thai BP6 press. For determination of 

an optimum earth block mix, they focused on the impacts of different soil types, cement 

content, and water content on ICEB durability, compressive strength, and compaction.  

ICEBs produced using a design mix formulated by the authors were tested to 

determine the associated block compressive strength, grouted and ungrouted prism 

strength, lateral shear strength, and pullout strength with both steel and bamboo 

reinforcement. Although much of the research remained inconclusive regarding its effect 

on system performance, significant knowledge was gained about the strength of ICEBs 

from the ICEB compressive testing and the grouted versus ungrouted prism testing. 

All prisms in this investigation were tested with lateral confinement provided to 

three vertically stacked blocks with an aspect ratio of 2.0. Based on the testing results, it 

was observed that the compressive strength significantly decreased with an increase in 

aspect ratio, changing the failure mode from conical hourglass failure of the block to 

splitting of the prism. From the post testing analysis, two factors were proposed for the 
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relationship of grout and ungrouted prisms to that of individual block strength. The 

factors suggested for modifying the block strength to strength of grouted and ungrouted 

prisms were 0.43 and 0.37, respectively.   

Bland (2011) experimentally addressed the shear behavior of ICEB walls as a 

companion effort of this thesis. Two fully grouted and one partially grouted 1.8 x 1.8 

meter ICEB shear walls were tested using displacement controlled cyclic loading to 

determine the strengths and failure modes of the ICEB specimens. Material property 

testing was also conducted on ICEBs and grouted ICEB prisms for use in analytical 

work.  

The testing results showed the ICEB wall which failed in shear exhibited sudden 

and brittle failures for both fully and partially grouted walls. When horizontal shear 

reinforcement was added, a more ductile flexural failure was achieved. The failure modes 

observed in the two specimens without shear reinforcement were typical 45 degree 

cracking from the top of the wall to the bottom, and shear sliding between blocks. The 

flexural failure was characterized by the yielding vertical rebar, followed by buckling of 

the vertical reinforcing steel.  

The post testing analysis concluded the ICEB shear walls, which failed in shear, 

mimic that of wall panel constructed from conventional CMU blocks, while ICEB shear 

walls exhibiting flexural failure remained ductile until rebar in the compression zone 

began to buckle. It was found that traditional method of transformed sections 

significantly overestimates the walls stiffness. In addition, analysis showed that the 

prediction based on ACI 530-08 drastically overestimates the shear capacity of ICEB 

walls. Furthermore, it was found that the strength of flexural dominated walls can be 
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reasonably predicted from pushover analysis on ICEB wall models with distributed 

plasticity.    

2.2 Earth Construction 

Perera and Jayasinghe (2003) conducted an experimental investigation to 

determine optimal cements contents used in cement stabilized earth construction of 

compressed earth blocks. This experiment investigated both the prism strength of the 

fully grouted compressed earth block, with varying cement ratio from 2% -8% and soil 

fines content from 20%-45%, and the panel strength of compressed earth blocks with 

varying cement ratios. The compressed earth blocks used in this investigation were 

produced using the Aurum 3000 press with dimensions shown in Figure 2-1. 

 

Figure 2‐1: Compressed Earth Blocks produced by Aurum press 3000 (from Perera and 
Jayasinghe, 2003) 

From the testing results it was found that the compressive strength was affected 

by both the cement content and the fines content. The conclusion from the experiment 

indicated that fines content should not be reduced below 30% but the cement content 

could be varied between 2% and 8% depending on the desired strength. It was revealed, 

from compressive testing of the prisms, a significant drop in the compressive strength 

occurred when the height to width ratio increased beyond 0.6.   
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Jayasinghe and Mallawaarachchi (2009) explored the lateral flexural capacity 

of cement stabilized earth (CSE) panels (wallets). Four specimens were constructed from 

common CSE building materials (one rammed-earth panel, two hollow interlocking 

blocks of differing width blocks, and one-mortared CSE blocks) were loaded in 

directions both parallel and perpendicular to bed joints.  

Testing results showed that the predominant failure mode of all 4 types of walls 

was the brittle tensile cracking. Based on the testing results, it was determined that solid 

CSE mortared blocks and rammed earth have considerably higher flexural strength than 

the two types of interlocking blocks. Due to the various widths of wallets tested, flexural 

strength was given in terms of force per area of block (MPa). Post testing analysis 

showed the highest flexural strength could be expected from mortared CSE block with 

0.9MPa and 0.3MPa of strength perpendicular and parallel to bed joints, respectively. 

The flexural strength of rammed-earth specimens was calculated to be 0.463 MPa in any 

direction, and interlock block exhibited the weakest strength having 0.35 MPa both 

parallel and perpendicular to bed joints. It was the recommendation of the research that 

CSE blocks would perform comparably to burnt clay masonry with a compressive 

strength of 5 MPa.  

Cheah et al. (2008) conducted cyclic load testing on a 5.5 meter long wall with 

two openings to determine the failure modes, the locations of seismic weakness, 

interactions of panels, and the overall structural performance of earth construction 

buildings. The predicted failure mode expected from this experiment was a flexure 

dominant failure. Previous testing on rammed earth suggested that high shear strength 

and low compressive strength could be expected from the specimen, combined with the 
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high aspect ratio of the piers in the wall. Based on pretesting calculation, the specimen 

was expected to fail in a combined failure mode, with initial flexural cracks developing 

and processing into shear cracks. 

The test results show that all three wall piers exhibited shear failures as the 

predominate failure and no yielding was observed in the longitudinal rebars. This caused 

a more brittle failure and did not provide the ductility expected. Secondary failure modes 

were also observed as sliding, rocking, and crushing failures. It was also noted that no 

internal or external shear reinforcement was provided in any of the walls tested.     

2.3 Design Recommendations 

ACI 530-08 (2008) requirements depend on the location of construction and local 

government regulations. This thesis adopts the document Building Code Requirements 

and Specification for Masonry Structures (TMS 402-08/ACI 530-08/ASCE5-08), 

reported by the Masonry Standards Joint Committee (MSJC); for all design requirements 

and construction theory concerning masonry structures. ACI 530-08, as it will be referred 

to as in this thesis, uses simple principles of mechanics and analytical correlations to 

prescribed parameters for design.    

Wheeler (2005) developed the Interlocking Compressed Earth Blocks, Volume II. 

Manual of Construction for the construction of single story residential ICEB structure in 

developing countries. Explained in this manual are suggested methods for building the 

various walls types commonly used in construction of a residential structure. However, 

the document does not provide any expected strength, building requirements, or structure 

specifications associated with ICEB buildings.  The manual of construction is used a 

teaching aid in conjunction with a 10 day training course provided by Center for 
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Vocational Building Technology (CVBT) on the proper building techniques associated 

with ICEB building. This thesis refers to this manual for common building techniques of 

various wall types, but does not necessary follow the guidelines set forth in suggested 

building techniques. Engineering judgment was used in determining proper reinforcing 

techniques to avoid the premature failures due to inadequate building techniques.  

2.4 Slender Masonry Walls  

Shedid et al. (2008) investigated the effects of vertical reinforcements and axial 

compression on the inelastic behavior and ductility of six slender masonry shear walls. 

Each reinforced masonry shear walls was tested under reverse cyclic loading and 

designed with a 2:1 aspect ratio to ensure flexure dominant behavior with the plastic 

hinge region occurring near the bottom of the specimen.    

It was found that each of the walls failed in flexure in the same characteristic 

stages. At small displacements, each wall experienced cracking along the bed join 

connecting the specimen to the reinforced concrete footing, then cracking between joints 

in lower courses on the wall. As displacements became larger cracking began to step 

upwards towards the middle third of the shear wall between mortar joints blocks, 

processing into diagonal cracks.  As the displacement continued to increase, vertical 

splitting cracks began to form along the length of the wall in the compression zone of the 

wall and the onset of crushing occurred. Following cracking, the section within the 

compression zone began to spall away from the toe of the wall leaving only the grout 

column surrounding the rebar. The final stage before failure was the cracking of the grout 

column, leaving the vertical rebar unconfined to the buckle in plane. 
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The posttest analysis indicated that both displacement ductility and yield 

displacements were highly dependent on the amount of vertical reinforcement. From the 

lateral deformation profile it was discovered that rotation, caused by the formation of a 

plastic hinge, occurred at the bottom of the wall while the top of the wall remained a rigid 

body.  

Shedid et al. (2009) tested six slender masonry shear walls under displaced 

controlled cyclic loading to investigate the energy dissipation, ductility, shear and 

flexural displacement, and stiffness of flexural dominated shear walls. Each specimen 

was designed as a 2:1 aspect ratio, over reinforced in shear, with vertical reinforcing on 

the outer most cells of the wall.  

The post testing analysis indicated that Equation (1-1), suggested for shearing 

displacements, is unconservative. 

(1.2 )
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⋅

Δ = ⋅
⋅                                                             (1-1)

                        

where hw is the wall height, Em is the modulus of elasticity of masonry, and Ae is 

the effective shear area. From testing and instruments readings, the effective shear area 

was back calculated to be an average of 14.8% and 13.2% of the gross masonry area at 

yielding and maximum load, respectively. 

Energy dissipation was calculated as the area enclosed by hysteretic loops at each 

displacement level, intended to track the rate of energy dissipation before and after 

yielding. It was found that energy dissipation increased drastically after the yielding 

occurred due to the widening of the hysteric loops. A direct comparison of the energy 

dissipation on a per wall basis was not possible due to the variation of displacements each 
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wall was pushed; however the trend of normalized energy dissipation indicated that 

percent energy dissipation increased linearly with the ratio post –yield to yield 

displacements. 

2.5 Flanged Masonry Walls 

Priestley and Limin (1990) tested four T-section masonry shear walls to 

investigate the effect of flange width and mortar bed confinement on masonry shear 

walls. To test the effect of flange length, all walls were built with the same height and 

web length, but the flange length was doubled in one specimen. Mortar bed confinement 

was tested by using confining plates in the bottom courses of a specimen throughout the 

web.  Each specimen was tested under slow pseudo-static loading until failure. 

From the testing of the four T-sections, it was discovered that there was a 

significant difference in the strength when the flange was in tension or compression for 

all four specimens. Due to the asymmetry of the cross section it was found that the 

section was 2.5 times as stiff with the flange in tension compared to when the flange was 

in compression. It was also observed that there was a significant difference in the energy 

dissipation depending on whether the flange was in tension or compression.  

The effect of the mortar bed confinement provided a significant increased in the 

ultimate strength and displacement capacity of the specimen. It was also observed that the 

confining plates provided a significant decrease in the load degradation of the specimen 

following the compression zone failure. The extra confinement from the confining plates 

changed the failure mechanism from concrete crushing to lateral buckling of the web. 

Shedid et al. (2010) tested seven reinforced masonry walls with different boundary 

frame elements under displacement controlled cyclic loading. Of the seven walls tested 



15 

 

two were traditional rectangular walls, two were flanged, two had square boundary 

element, and one had a spiral boundary element. All seven walls were designed to have 

the same lateral resistance when subjected to the same axial loading. 

From experimental results it was discovered that very little observed difference 

between the strengths of each respective wall due to the change in aspect ratio. This 

indicated that cross sectional properties have a greater impact on the strength than height, 

and the plastic hinge length has a better correlation to the length than the height of the 

wall. The comparison of the flanged and end-confined walls to the regular rectangular 

walls indicated that a 39% to 106% increase in ductility could be expected, suggesting 

that flanged and end-confined walls could be beneficial in seismic zones.  

2.6 Masonry Shear Walls with Opening 

Voon and Ingham (2008) tested eight partially grouted single story masonry shear 

walls with opening. The shear walls tested varied in overall length and width, as well as 

the length and width of the openings, and the number of openings per walls tested. Of the 

eight walls tested, five had single openings and three with double opening. Both the 

opening size was varied to reflect square and rectangular openings a well as doors.  

From the experimental testing it was found that all of the force displacement plots 

exhibited pinched shape which was correlated to the presents of significant shear 

deformations. It was observed that diagonal cracks, which passed from the lintel into the 

pier essentially, created a pinned connection at that joint reducing all the moment 

capacity associated with the connection. 

The experimental results concluded that the size of the opening directly affects the 

lateral strength of the wall. The strength degradation of each specimen was gradual with 
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no specimen exhibiting sudden or brittle failure, directly attributed to the fully grouted 

bond beam which caused a frame type action and developed double curvature in central 

piers. Based on the cracking patterns it was concluded that altering the trim reinforcement 

below the opening changed the locations of the cracks. 

Elshafie et al. (2002) tested thirteen single story reinforced masonry shear walls 

with opening to study the response of lateral loading. Each specimen was 1/3 scale with 

opening of various sizes in different locations.  Each wall was designed to fail in a ductile 

mode with plastic hinges forming at the ends of members.  

The testing results confirmed the used of plastic analysis for determination of the 

lateral load resisting capacity. Plastic analysis was used in this study because it did not 

require an accurate understanding of the section stiffness which is difficult to accurately 

determine for shear walls with openings. From plastic analysis four possible failure 

mechanisms were analyzed and expected to occur. The failure mechanism, shown is 

Figure 2-2, are: strong pier/ weak beam mechanism; strong beam/weak pier mechanism; 

mixed mechanism; and tension mechanism. 
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1. Strong piers /Week Beam Mechanism 
 

 

2. Strong Beam /Weak Piers Mechanism 

 

3. Combined Mechanism   
 

 
4. Tension Mechanism 

Figure 2‐2: Failure Mechanism for Shear walls with openings (Elshafie et al., 2002) 
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3 MATERIAL PROPERTIES  

3.1 Introduction 

This chapter briefly presents the material properties pertinent to the experimental 

and analytical work of this thesis, containing a brief discussion of compressed earth 

blocks and reinforcing steel rebar, strength of the masonry prism, and the idealized 

models of the masonry which are required in the numerical work presented in Chapters 7 

and 8.  More detailed information about compressed earth blocks and reinforcing steel are 

provided in Appendix A.  Incidentally, other important aspects of the materials properties 

can be found in the companion thesis (Bland, 2011), which includes the soil profile of the 

ICEBs, the ICEB manufacturing processes, quality control methods, ICEB testing 

procedure, and properties of the grout material.  

3.2 Interlocking Compressed Earth Blocks 

The interlocking Compressed Earth Blocks used in this thesis were constructed 

onsite at Cal Poly using a Soeng Thai Model BP6 press. The Soeng Thai Model BP6 

press is capable of producing different types of block by adding or removing various 

inserts. The base block, shown in Figure 1-1, is a full block commonly called the “Rhino 

Block” used to interconnect any form of dry stack masonry construction.  The “Rhino 

Block” is composed of two reinforcement holes used for vertical grouted reinforcement--

and three “grout key channels” commonly filled with a fluid grout to provide wall 

stability and load transfer.  For the construction of the three wall specimens tested in this 

thesis, six different variations of the standard full block were used, shown in Figure 3-1. 
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a) Full Block 

 

b) Full Channel Block 

 

c) Half Block 

 

d) Half Channel Block 

 

e) End Block 

 

f) End Channel Block 

Figure 3‐1: The six types of blocks used in wall construction 
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The full fabrication process for constructing ICEBs using the Soeng Thai Model 

BP6 press is described in detail in the companion thesis (Bland, 2011).  Each eight-block 

batch used a mixture comprised of soil, sand, cement, and water in the construction of 

each ICEB. The mixture that provided the most durable, compressive strengths and best 

aesthetics is summarized in Table 3-1. The wet weight of the mixture, which was packed 

into the press to make each type of block, along with the number of block produced for 

each wall is summarized in Table 3-2. 

Table 3‐1: ICEB mixture proportion for an 8 block mix (Proto et al., 2010) 

 

 

Table 3‐2: ICEB produced for specimen construction 

Block Type 
Mass per Block Number of Blocks per Wall 

Total Number  
of Blocks (Kg)  W4  W5  W6 

Full Block  7.9  30  78  32  140 

Half Block  4  16  15  27  58 

Full Channel  7  14  39  36  89 

Half Channel  3.5  2  1  10  13 

End Block  8  0  14  0  14 

End Channel  7.2  0  4  0  4 

Total  ‐‐  62  151  105  318 

Weight (kg)  % of Total
Soil 50.0 74.3
Sand 6.7 10.0
Cement 4.2 6.2
Water ~ 6.4 9.5
Total 67.3 100.0
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3.3 Rebar Testing 

 To determine the actual strength of the vertical reinforcement used in the 

specimens, samples of the vertical rebar were subjected to tensile testing. The rebar was 

tested according to ASTM A370-10 (2011), on the Satec universal test machine shown in 

Figure 3-2. Each piece of vertical rebar was clamped at the top and bottom of the bar, 100 

mm from the center. The reinforcement was then subjected to a tensile force that was 

induced by a vertically ascending crosshead at an average displacement rate of 0.18 

mm/sec. The rebar was restrained by a stationary crosshead and was tested until the rebar 

ruptured. Values for the average yield strength and average ultimate strength for each 

piece of rebar are reported in Table 3-3. Complete results are shown in Appendix A.  

Table 3-3: Rebar strength 

Wall #  
Average Yield 

Strength 
(MPa) 

Average Ultimate 
Strength 
(MPa) 

W4  378  541 
W5  370  542 
W6  356  497 
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Figure 3‐2: Rebar testing facility 

 

3.4 Masonry Prism Testing 

The average compressive strength of the masonry (f’m) of each specimen was tested 

with masonry prisms. Each prism was constructed from three fully grouted, vertically 

stacked ICEBs which were built at the same time and cured under the similar conditions 

as the wall specimens.  The prisms were capped top and bottom with a hydrostone 

capping compound to form a flat surface and to ensure a uniform load distribution on the 

prism. Confinement was applied to each prism with plywood boards tightened against the 

end of the prism with three sets of two thread rods, hand tightened, to provide passive 
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confinement. Each prism was loaded at a strain rate of 20 microstrains per seconds (με/s), 

which corresponded to a displacement rate of approximately 0.4 millimeters per minute 

(mm/min) in order to achieve an accurate stress versus strain profile of the tested prisms. 

Each test was run for approximately 40 minutes allowing for a total 15.8 mm of 

compression on the prism. 

The strain was measured in two different ways, with extensometers fastened to the 

outside of the prism to directly measure the strain in the masonry and with LVDTs placed 

on either end in of the prism. Extensometers were used to measure the strain in the 

masonry until the prism began to crack and spall outwardly; the extensometers were then 

removed to prevent the instruments from damage. Following the removal of the 

extensometers the strain for the remainder of the test was measured by the two LVDTs.   

The resisting force of each prism was measured by a load cell as part of the universal 

testing machine. It is understood a reduction in strength would be associated with 2:1 

aspect ratio of each prism (Bales et al., 2009); however, the reported stress and strain 

values correspond to the tested values of each prism with no reduction based on aspect 

ratio. The test set-up of the masonry prisms can be seen in Figure 3-3. 

The compressive strengths of the tested prisms are summarized in Table 3-4 and the 

corresponding strain-stress curves are included in Figure 3-4. The cross-sectional area 

associated each fully grouted prism is 45,000 mm2. All of the tested prisms experienced a 

similar failure mode of to that of an ungrouted ICEB blocks. At the beginning of each test 

diagonal compression cracking was observed in the prism, followed by conical spalling 

on the unconfined sides of the prism, followed by the vertical crushing of the prism. 
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Figure 3-3: Masonry prism test setup 

 

Table 3-4: Average Prism Compressive Strength 

Wall 
Specimen 

Average Compressive 
Strength  

(MPa) 

W4  2.77 
W5  3.16 
W6  2.25 

 

3.5 Models for Masonry  

The strength of masonry prisms were obtained from specimens W4B and W5A in 

this thesis, W2A, and W2B from the companion thesis (Bland, 2011). More detailed 

information about these specimens is provided in Appendix A. It is recognized that 
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additional prisms associated with W6 were also tested; however the strain data was found 

to be unreliable. Therefore,W6 prism data was excluded.  

Presented in Figure 3-4 are two idealized models, namely, a modified Hognestad 

model and a bilinear model, which will be used to approximate the system behavior in the 

numerical studies presented in Chapters 7 and 8.  The modified Hognestad model 

expressed below was adopted in the nonlinear static analysis presented in the companion 

thesis (Bland, 2011) : 
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where fm represents the strength of the masonry; f’mo represents the maximum 

compressive strength of the masonry; and εc, , εo and  εcu represent the strain of interest, 

the stain associated with the maximum masonry  strength, and the maximum considered 

strain, respectively. The bilinear, elastic-perfectly-plastic model with a maximum 

compressive strength of 3 MPa will be used in the simulation presented in Chapter 7. 

Both models used modulus of elasticity of 575 MPa, which was obtained, per Section 

1.8.2.2.1 of ACI 530-08. 
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Figure 3-4: Stress vs. Strain Data from Masonry Prism Tests  
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4 SPECIMEN DESIGN AND CONSTRUCTION  
 

4.1 Introduction 

This chapter provides a detailed description of the design and construction process 

of the ICEB specimens. All specimens were reinforced with 10M steel rebar, 

longitudinally and transversely. Detailed information about the rebar arrangements can be 

found in the following sections; while grout and mortar proportions, used in specimen 

construction can be found in Appendix A. 

W4 is a 1.8 meter tall and 0.9 meter long wall with a 2:1 height-to-width aspect 

ratio designed to investigate the effect of aspect ratio on ICEB walls. To focus on the 

impact of wall aspect ratio on its seismic behavior, the only variable changed from W3 

(tested in the companion thesis) to W4 was the aspect ratio, done by essentially building 

half of W3. The procedure presented in Section 4.2 outlines and explains the steps taken 

to build W4 and the rationale behind the manner in which the wall was constructed, while 

the overall reinforcing pattern is shown in Figure 4-1. 
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Figure 4-1: W4 reinforcing pattern 

 

The T-wall (W5) was designed as an intersecting flanged wall with the web having 

a 1:1 aspect ratio and a 0.75 meter wide flange on one end of the wall. Testing W5 allows 

for a direct comparison between W3 and a flanged wall with the exact same reinforcing 

to determined on the contribution of the flange to the walls strength, ductility, and overall 

performance. To focus on the impact of an intersecting wall, the only change to the 

design of W3 was the addition of a flange. The reinforcement in the flange can be found 

in Figure 4-2. The transverse reinforcement in the flange was added for continuity 

between the intersecting walls, not for strength, as it was anticipated that the web would 

take the vast majority of the shear force in the in-plane direction.  The design and 

building procedure presented in Section 4.3 outlines the steps taken to build W5 and 
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design decision in which the wall was constructed, while the overall reinforcing pattern is 

shown in Figure 4-2. 

 

Figure 4-2: W5 reinforcing pattern 

 

W6, a 1.8 m tall and 1.8 m wide wall with a 0.9 m x 0.9 m square window opening 

at its center, was designed to create a direct comparison between a solid wall and one 

with a opening.  To focus on the performance of the piers of W6, the wall was designed 

according to the strong beam/weak pier methodology as described in the literature 

(Elshafie et al., 2002). The procedure presented in Section 4.4 outlines and explains the 

steps taken to build W6 and the rationale behind the manner in which the wall was 

constructed, while the overall reinforcing pattern is shown in Figure 4-3. 
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Figure 4-3: W6 Reinforcing Pattern 

 

4.2 Construction of the Slim Wall (W4) 

Construction of W4 began with the preparation of two pieces of 10M rebar, 

purchased from a local supplier with specifications found in Chapter 3 for the application 

of strain gauges. Both rebar were trimmed to 2.1 meters and marked in four different 

designating locations between which the strain gauges would be applied.  Grinding the 

rebar with a flap disk between marks placed at 177 mm and 228 mm, and 177mm and 

328 mm began the preparation process by removing their mill scale and ribs. During this 

process, over grinding occurred on both rebars causing reduction in cross-sectional area 

by roughly 6.45 mm2. Sanding then followed using three progressively finer grades of 
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sand paper, followed by degreasing. The strain gauges were then applied following the 

steps set forth by the strain gauge manufacturer. Following completion of the stain gauge 

applications, the strain gauges were coated in polyethylene for insulation and then 

covered with electrical tape to create a barrier against the mortar and grout applied during 

the wall construction.   

The slim wall construction continued with anchoring the prepared rebar to the 160 

mm thick footing. The rebar were anchored by two 12.7 mm diameters holes drilled to a 

depth of 127 mm into the footing. The ends of the rebar were secured to the footing by 

filling the two holes with anchoring adhesive followed by each rebar. The rebar was 

vertically leveled and anchoring adhesive allowed 24 hours to set prior to any further 

construction. Special care was taken during the rebar setting process to ensure that the 

strain gauges were aligned with the neutral axis to prevent strain from being measured 

due to local bending . 

Constructing the first layer (course) of ICEB’s began after a 24 hours of curing the 

anchoring epoxy around the rebar in the footing. The first layer was laid prior to 

construction of the wall due to the unevenness of the footing and to allow the mortar, 

under the first layer, to cure. Mortar was built up under the first course of ICEBs to 

ensure the wall would be both plumb and level. Adjusting for the uneven leveling in the 

footing was done by varying the thickness of mortar. Channel blocks were laid on the 

bottom layer of blocks to provide horizontal shear reinforcement. This provided better 

load transferring from the wall to the footing.  Mortar was pushed up into the 

reinforcement holes in the ICEB in order to create a better bond between the block and 

the footing but prevent from flowing into the channel to avoid a cold joint at the top of 
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the block. A 10M rebar was then placed along the length of the channel as the vertical 

reinforcement. 90 degree bends with 200 mm tails were inserted at the location of the 

vertical reinforcement to ensure proper bonding developed both horizontally and 

vertically along the rebar as shown in Figure 4-4.  

 

Figure 4-4: Rebar Anchored Footing of W4 

Twenty-four hours after the first course of ICEBs were set; construction began on 

the rest of the wall which began by weighing pre-calculated amounts of sand, cement, 

and lime into separate batches to be used as mortar ingredients.  Courses 2 through 4 

were entirely constructed of full and half blocks and dry stacked using the running bond 

pattern. The courses were leveled and made plumb before the next layer of channel 

blocks were set, as standard blocks were more uniform than the channel blocks.  Course 2 

through 4 were leveled in all three directions using a standard level, a string line, roofing 

nails, and a rubber mallet. The vertically uneven bricks were found using a level and 

were corrected by tapping with the rubber mallet in the course where the leaning was 

observed.  The level was then placed on the top course of wall to determine where bows 

or sags were present. Due to the ICEB’s lack of uniformity two different approaches were 

taken. The first approach was to simply rotate or switch out one or more blocks with a 
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height difference located at either end of the block. The second approach, used when the 

first was unable to remedy, was to wedge one or two roofing nails under uneven blocks 

which raised the end of key blocks a few millimeters.  By raising one or two of the blocks 

a few millimeters, the wall could be leveled relatively easily without the use of mortar, a 

method commonly used in non dry stack masonry.  The string line was used to straighten 

each course in the plane of the wall by running a string line from one end of the wall to 

the other. The string was moved closer or further away from the wall while “eyeballing” 

the string in relation to the wall to determine how much the wall need be adjusted 

horizontally. A  rubber mallet was also used to tap ICEBs that were out of plane with the 

string back into alignment with the plane of wall.  

The fifth course of ICEB’s laid were channel blocks, which were set and leveled 

in a similar manner to the full blocks on the previous courses.  A 1.3 m length of 10M 

rebar was cut and bent 90 degrees, 200mm on each end for shear reinforced vertical 

hooks. The rebar was set approximately 5mm above the channel and tied with steel wire 

to the vertical rebar. This prevented the rebar from resting on the bottom of the channel, 

and provided a stronger bond between the grout and rebar. Duct tape was used to cover 

the grout key on the outside of the wall and to restrain the fluid grout on the either end of 

the wall. Due to the weight of the grout being poured down the grout keys on the ends of 

the wall, plywood boards had to be cut to the width of the wall and butted against the 

ends of the wall with 2x4’s spanning between the plywood boards. Ratchet straps were 

looped around the length of the wall and tighten to provide confinement for the grout.  

Grouting the first five courses began by mixing the previously weighed portions 

of cement, sand and lime in a small five gallon mixer. Water was added to obtain the 
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proper consistency, but was not directly measured as the consistency of grout had been 

determined from previous experience. This building experience came from building W1 

through W3 in the companion thesis (Bland 2011). It was found that the grout needed to 

be extremely fluid because a significant quantity of the water was absorbed in the ICEB 

shortly after application. Once the grout mixture was deemed pourable enough, the grout 

was removed from the mixer, scooped into a funnel, and poured into the wall. The grout 

was poured from one side of the wall to the other, while rebar rods were inserted into the 

holes simultaneously after filling.  Grouting was completed as a two person job, with one 

person pouring the grout, with  the second person rodded continuously. This was done for 

every hole (both grout keys and reinforcement holes) from one end of the wall to the 

other to preventing air voids from forming in the grout. Once all the holes in the wall 

were filled, the channel of course 5 was filled just enough grout to cover the rebar as 

shown in Figure 4-5, to prevent a cold joint at the top of the ICEB course.  

   

Figure 4-5: Grout used in specimen construction 
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The process used to set, level, and grout courses two through five was repeated 

twice more in setting courses six through nine and courses ten through thirteen. During 

the building of the wall, increased height showed how important it was to keep each 

course level. Due to the aspect ratio of the wall, and its relative slenderness compared to 

the other walls, it was increasingly prone to tilting out-of-plane. As a result, leveling of 

the courses began to occur at every level instead of at every three levels which stabilized 

the wall exceedingly well in comparison. 

It became apparent while the grout was setting that the more fluid grout hardened 

fairly quickly. Therefore, the plywood boards and ratchet straps, used to keep the grout in 

the grout keys on the outer side of the walls, became unnecessary at the bottom and were 

placed further up the wall. Removing the confinement around the open grout keys on 

either side of the wall allowed small touch-ups in areas where the grout may not have 

completely filled all voids to be performed as the grout was still workable. In areas where 

the confinement had not completely worked, a trowel could be used to remove the excess 

grout. When the plywood boards were removed, it was apparent that the duct tape was 

very effective in providing an impervious barrier but poor for providing confinement. In 

the areas where a gap was present between plywood boards, the duct tape would rupture 

allowing grout to pour out of the confinement and leave either a budge or a void in the 

grout (Figure 4-6).   
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Figure 4-6: Plywood confinements for grout keys 

Due to the dimensions selected for the wall, it was not possible to keep the 

horizontal reinforcing pattern consistent with the entire height of the wall. As a result, 

four courses of full blocks were laid in-between courses of reinforcement. It was 

determined that even with the fluid grout it would be easier to lay three courses of full 

blocks, grout, setting the next two courses, and then grout them separately. This 

procedure, although effective, provided a major drawback which was spillage of excess 

grout. Typically grout would be applied only with channel blocks on the top of the wall. 

This would provide a catchment for the grout in the channel blocks which might spill 

over from the reinforcement holes or grout keys. Without a channel block to catch the 

excess grout from the funnel, the excess grout would flow into the top layer of the blocks 

and create an uneven surface on which the next course would be laid. To prevent this 

uneven surface, a wet sponge was used to remove the spilled grout before it set.  
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Courses 17 and 18 were laid and leveled on top of the already grouted courses in 

the same manner as Courses 3 and 4; however, before grouting began, two 6 inch anchor 

L bolts were set directly next to the vertical rebar in the reinforcement hole without the 

anchor L bolt touching the side of the reinforcement hole. This also allowed the grout to 

create a better bond to all of the anchor bolts. The anchor bolts were set at the designed 

depth, and in the correct location, by constructing an adjustable jig. The jig was designed 

to rest on the top of channel block and side of the wall to allow only the threads of the 

anchor bolts to remain above the wall and the rest of the anchor to be set into the 17th 

course.  Preceding the setting of the anchor bolts, the 17th and half of the 18th course was 

set and grouted, leaving the channel of the 18th course empty. This course was left empty 

because the rebar in the top course would not be set until the steel loading beam had set.  
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4.3 Construction of the T Wall (W5) 

Construction of W5 began with preparing six pieces of 10M rebar for the 

application of strain gauges.  Each piece of rebar was marked at 177 mm and 228 mm, 

and the foil strain gages were applied between these marks.  

Following the application of the strain gauges six 11.25 mm diameter holes were 

drilled to a depth of 127 mm into the 150 mm thick reinforced concrete footing.   The 

holes were spaced according to the locations where the rebar was to be set shown in 

Figure 4-7. The web of the wall had the same vertical rebar spacing as W1 though W3 

(Bland 2011), while the flange of the wall had one rebar on either side of the wall. The 

flange width was determined by calculating the minimum flange width which accurately 

depicts an intersecting wall. A conservative estimation of the flange width was used in 

order to mobilize all the rebar in the flange. The minimum effective width was 

determined according to the following equation recommended by (Paulay and Priestley, 

1992): 

0.3eff w wb h b b= + <                                                     (5-1)                         

where hw is the height of the wall, bw is the width of the wall, and beff is the effective 

length of the flange.  The results of this equation provided an effective flange width of 

690 mm. Using a full block on either side of the web of provided an effective flange 

width of 750 mm which was the closest possible width under the constraints of the ICEB 

lengths.  
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Figure 4-7: Vertical rebar layout of W5 

Following the 24 hour curing period for the epoxy, the first course of blocks was 

laid. Several modifications had to be made, before construction, to accommodate the 

intersection of the web and flange.  The first course of ICEBs consisted of seven regular 

full blocks and one full end channel block.  The end blocks were used at this intersection 

to allow for a continuous end grout key, as the cobra pattern (overlapping pattern) does 

not allow for this at the intersections face. To allow the continuous reinforcement from 

the web into and throughout the flange, a portion of the side of the end channel block had 

to be removed to allow for the rebar to be inserted.  A 50 mm section of the channel end 

block wall was selected to be removed, starting from the wall end of the block and 

toward the middle. Removal of this wall section was started by marking the cutting area 

on either end of the section and using a skill saw with a masonry blade set to the same 

depth as the channel. Once the cuts had been across the entire width of the block, the 

block was set on its side and a wood file was lined up along the bottom of the cut to 
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gently tap out the notch from the cut section (Figure 4-8). In cases where the section did 

not break away cleanly from the brick, the file was used to tap extra pieces of the brick 

away leaving the notched section level with the bottom of the channel.  

  

Figure 4-8: Modification of end blocks for reinforcement 

Following the notching of the end blocks, all eight channel block were arranged 

on the footing with five channel blocks lined up from rebar A towards rebar D (see 

Figure 4-7) The end block was used as a channel block at the end around rebar D, and the 

other two channel blocks were lined up perpendicularly to the notches cutout of the end 

block.  A level was used to determine the low spots on the footings, under the bricks, 

where more mortar would be used to level the first course of the wall. The two open ends 

of the flange and the web were duct taped to contain the mortar and the mortar was laid 

under the each block, by lifting one block at a time, packing the mortar under the block 

and then letting the block sink into the fresh mortar. The blocks were leveled by either 

tapping individual block further into the mortar with a rubber mallet or by adding more 

mortar under each block.  The mortar was allowed to set for a day before anymore 
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construction was completed on the wall (Figure 4-9). This allowed the bottom course to 

remain level while the wall could be constructed on top of it. 

 

Figure 4-9: W5 after the first course was laid. 

 

Twenty four hours after the first course of ICEBs had cured; major construction 

began with the setting of the transverse rebar in the first course of the channel block. A 

length of rebar was cut to 2.25 m and marked at 300 mm and 2097 mm where 90 degree 

bends would be made in the rebar. The bends would be constructed perpendicular to each 

other as to allow one bend to hook around the outside rebar D, in the flange, and travel 

towards rebar E. The 90 degree hook at the other end of the transverse rebar would be 

bent upwards and then run parallel to, and in line with, rebar A. Once the rebar was set 

into place, steel ties were used to secure the transverse rebar in the center of channel by 

tying it to the vertical rebar. Another 750 mm section of rebar was cut for use as a 

transverse reinforcement in the flange. Two 90 degree vertical bends were made at 150 

mm and 600 mm from one end and then tied to rebar E and F using steel ties with the two 

bends facing up. The combination of two lengths of transverse rebar in the flange and in 

the web provided continuous shear reinforcement throughout the entire course.   
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Figure 4-10:  Course 1 of W5 with shear reinforcement placed. 

Following the placement of the shear reinforcement in the first course, and before 

the second course was laid, five full blocks and one half blocks had 6.35 mm holes drilled 

into the side of each block through the center of the reinforcement hole to supply the wire 

to the strain gauge. The location for these holes was determined to be the areas with little 

stress throughout the duration of the test and that could be easily connected to the data 

acquisition system. The blocks were lifted over the vertical rebar, the wires fed through 

the drilled holes, and the blocks set into place on the second course.  

To create the intersection between the flange and the web it was necessary to 

determine an appropriate way join them. According to the Interlocking Compressed Earth 

Block Manual, (Wheeler, 2005) two patterns are used to construct intersecting walls 

which are called the cobra pattern and the peacock pattern as shown in Figure 4-11. 
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Cobra pattern was chosen over the peacock pattern due to the number of half blocks used. 

The cobra pattern used half as many half-blocks as the peacock pattern which would 

provide better stability and overall continuity for the flange wall. A third pattern, which 

was not in the construction manual, was briefly considered using ¾ block and eliminating 

the need for half blocks but was deemed impractical as our press was not designed to 

create ¾ blocks.   

 

● = full block into the wall  X= half block 

 

● = full block into the wall  X= half block 

Figure 4-11: Cobra (left) and Peacock (right) Pattern for intersecting Walls  
(from Wheeler, 2005) 

Although the decision to build the intersection using the cobra pattern was made 

the width of the one block flange provided a problem with the location of the half blocks. 

The flange was designed as shown in Figure 4-12. 
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Figure 4-12: Adapted cobra pattern for W5 

 

The pattern in the fifth course of the flange was the same the first course, as the 

pattern repeats itself every five courses. The same is true with the horizontal reinforcing 

pattern of transverse rebar; however, in order to more evenly distribute the shear forces 

from the web into the flange, the transverse rebar coming into the web was hooked 

opposite to the reinforcement below it. Hooking the rebar on both sides of the flange 

helped balance the shear transferred into both sides of the flange in the push and pull 

cycles.  

After rebar had been inserted in both the web and the flange of the fifth course of 

the wall, it was necessary to make the wall both level and plumb. The addition of the 

flange to this wall made leveling the wall much easier as the overlapping pattern of the 
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flange helped line up the blocks in the web, and vice versa. A few minor leveling 

adjustments had to be made by either changing out uneven blocks or by inserting spacer 

nails between the blocks in low spots to raise the height in key locations. Grouting was 

completed by mixing two batches of grout to fill the entire four and half courses. The 

grout was poured into the channel in the fifth course and filled from the top down moving 

from the web to the flange. Each hole was filled in sequence and rodded after filling; 

grout was refilled after the level dropped. Special care was taken to ensure that each hole 

was rodded the entire height.  The channel of the fifth course was filled last, just enough 

to cover the horizontal reinforcement, then rodded the entire length of the web and flange 

to remove any air voids as shown in Figure 4-13. 

 

Figure 4-13: Courses 1 through 5 of W5 after grouting, 
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Courses 6 through 13 were laid, leveled, stacked, and grouted the same as courses 

1 through 5 in two different lifts. Due to the asymmetry of the transverse reinforcement, 

courses 14 through 18 were set in two different lifts instead of one. Similar to W4, W5 

had three courses of full blocks between layers of reinforcement until Course 13. Courses 

13 through 18 had four layers of full blocks between two layers of reinforcement; 

therefore, grout would need to be applied over five and a half courses, instead of four and 

a half. It was determined five and a half courses would be too big of a risk to pour even 

the most fluid grout through; therefore, the five courses were leveled and grouted at 

Course 16 (a course of full blocks) and again at Course 18. Following laying and leveling 

Courses 14 through 16, forms around the courses were erected to confine the grout.  The 

grout was carefully poured into the grout keys and the reinforcement holes using a scoop, 

a funnel, and then rodded to aid the removal of voids. 

The seventeenth and eighteenth courses were laid and leveled at the same time, 

but were not set in the same pattern as the other courses (see Figure 4-14). The 

seventeenth course was constructed with a full block coming thought the web into the 

flange. The reinforcement was set in course 18 with a block arrangement similar to 

Courses 1, 6, 10 and 14. The eighteenth course was constructed from seven full channel 

blocks and two half channel blocks to hold the transverse reinforcement. Once Course 17 

and 18 were laid and leveled anchor L bolts were set in the center of the reinforcement 

holes, close to the vertical reinforcement and deep enough to penetrate through the 

eighteenth course and into the seventeenth course. The L bolts protruded above the 

eighteenth course to allow the steel loading beam to be bolted to the wall at a later time. 

The seventeenth course and all but the channel of Course 18 were grouted once the 
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outsides had the form built up around the outside grout channel. The top channel was left 

open to provide a layer of reinforcement and the mortar which would be used to fill the 

channel of the eighteenth course and bond the steel loading beam to the wall. 

.  

Figure 4-14: Courses 17 and 18 in the flange (left) and web (right) of W5  

The eighteenth course was allowed to set after the grout was poured and the wall 

was washed down with a hose to remove any excess grout on the side of the wall. This 

made the wall more aesthetically pleasing and also allowed the grout and mortar to cure 

slower so cracking and separating from the blocks wouldn’t become a problem. The wall 

was watered every 12 hours for 48 hours to assist in proper curing. Following the first 24 

hours of curing, all the form work and duct tape was removed before the grout was 

completely cured which allowed the tape to be removed easier. The wall was left to 

solidify for 21 days before the steel loading beam was mounted to the top of the wall.  
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4.4 Construction of the Window Wall (W6) 

The internal reinforcing design of the wall is based on a combination of 

observations from the performance of previously tested walls and the ICEB manual 

(wheeler, 2005). The ICEB manual suggests that no less than one reinforcing bar should 

surround all four sides of the window for an opening less than 1.2 m (see Figure 4-15). 

Previous testing suggests that reinforcement with tight bends, such as around the frame of 

the window, would produce tearing around the corners of the window when the rebar 

goes into tension. To prevent this failure, four separate reinforcing bars were used along 

the outside of the opening allowing each bar to be stressed without effecting the bars in 

the other direction, preventing stress concentrations around the corner of the opening as 

shown in Figure 4-16. 

 

Figure 4-15: proposed method for 
Window reinforcement (Wheeler, 2005) 

 

 

Figure 4-16: Revised method for window 
reinforcement to prevent corner tearing 
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Construction of W6 started with the preparation of the vertical reinforcement, 

with four pieces of 10M rebar cut to be 2.1 meter long. Strain gauges were applied at 

various locations on all four pieces of rebar.  Two of the pieces (rebar A and rebar B) 

were fitted with 2 foil strain gauges each, while the remaining pieces (rebar C and rebar 

D) were fitted with one strain gauge each.  The two strain gauges on rebar A and B, 

starting from the bottom, were to be set at 540 and 1430 mm respectively, while the 

gauges on rebar C and D were set at 540 mm from the bottom.   

 

Figure 4-17: Vertical rebar layout for W6 

After the anchoring epoxy had cured for 24 hours, the first course of ICEBs was 

set. A batch of thick mortar was prepared according to the proportions specified in 

Appendix A and laid along the footing where the first course was to be set. It was 

necessary to set the first course of bricks well in advance because the reinforced concrete 
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footing was not level. To compensate, extra mortar filled in the low spots making the first 

course of ICEBs level. Five full channels and two half-channel ICEB’s were set in the 

wet mortar with the two half blocks on the outside corners and the full blocks in the 

middle. This configuration was selected in order to allow the header above the window 

and the ring beam below to have full blocks at the corners of the window.  To level the 

blocks vertically, mortar was added or removed under the blocks and a rubber mallet was 

used to tap the bricks straight in the plane of the wall. A 24 hour curing period followed 

to ensure that the mortar had sufficient strength to withstand the self weight of the wall.  

A 2 meter long 10M rebar was bent with two 150 mm, 180 degree hooks and was 

placed around the outside of the vertical rebar A and D (see Figure 4-18), as horizontal 

shear reinforcement. After the top failures of W3 and W5, the decision was made to use 

180 degree hooks, which would be better to transfer forces from vertical to horizontal, 

rebar. In the past, 180 degree hooks were felt to be too hard to manufacture in developing 

countries and scantly meet the ACI requirement for bend diameters (ACI 530-08). By 

tilting the rebar with the 180 degree hooks, it was possible to fit the rebar in the channels 

and around the vertical reinforcement.  
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Figure 4-18: Transverse reinforcement hooked around vertical rebar of W6 

Courses 2 and 3 of the wall were dry stacked using the running bond pattern, 

making the second course all full block and the third course having half blocks on either 

end of the wall, similar to the first course.  The fourth course consisted of all channel 

blocks and would become the bottom layer of the window. These blocks were laid in a 

pattern similar to that of course 2 and the transverse reinforcement was again hooked 

around the two outside bars (rebar A and D) using 180 degree hooks with 150 mm tails. 

Duct tape was taped to the end of the blocks of the wall, and plywood boards cut to the 

width of the ICEB were butted against either end of the wall. Ratchet-straps were then 

strapped around the length of the specimen to prevent the grout from pouring out on 

either end. Fluid grout was then poured into each hole and rodded 3 to 5 times to prevent 

any air voids which can be seen in Figure 4-19.  The wet mortar which filled the channel 

was then smoothed using a trowel for esthetic purposes.  
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Figure 4-19: Courses 1-4 of W6 being grouted 

The pier design revolved around creating a flexural failure in the wall, and 

preventing a shear failure in the piers. Due to the relatively small amount of shear area 

provided by each pier, it was determine that steel reinforcement would be needed 

throughout the piers. A conservative estimation of the shear capacity from each pier 

suggested that two horizontal reinforcing bars would produce sufficient shear capacity to 

create a flexural failure. The combination of the narrow width of each pier and the lack of 

shear strength of the material do not meet the ACI requirement for reinforcing to be half 

the depth of the member where reinforcement is required (ACI 530-08). The resulting 

design required reinforcement to be placed in every other course of the pier keeping 

reinforcing pattern constant and meeting all ACI requirements for the piers.  
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The construction of the piers on either side of the 3 block wide and 9 block high 

opening began at the fifth course. Each of the piers consisted of a half block and a full 

block which continued to alternate in the running bond pattern.  Shear reinforcement was 

placed in Course 6, 8, 10, and 12, translating to every other course of the pier starting at 

the second course of the pier. The transverse reinforcement was hooked around the 

longitudinal reinforcement using 180 degree hooks.  Grouting took place at all the 

courses where shear reinforcement was placed, and filled only enough to cover the 

reinforcement to ensure that the cold joint was midway up the block, and not at the joint 

between the bricks.  Duct tape was used on the outside of the blocks on either side of the 

piers in order to keep the grout in place in the outside grout key of the brick. Ratchet 

straps, plywood and boards were used as form work on both piers to contain the grout.  

Before setting the lintel above, the window formwork was constructed to frame 

the window and hold the bricks in place over the unsupported distance above the 

window. The design of the formwork was constructed to allow the removal of the timber 

frame without putting any stress on the specimen after the grout cured.  The formwork 

was created using six pieces of scrap lumber; a top and bottom piece, two side pieces, and 

two inside pieces which can be seen in Figure 4-20.  The two side pieces were designed 

and cut in length to run the full length of the piers. These two timbers also acted as a 

formwork to the piers on the inside of the window along with part of the frame. Both the 

header and the bottom piece were cut to approximately 824 mm, and fitted between the 

two 0.9 m side pieces.  The two inner pieces were cut to approximately the same length 

as the bottom piece to fit between the bottom and header pieces.  The two inner pieces 
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were nailed to the outer pieces supporting the top and bottom pieces of the frame, 

allowing a flat bridge across the top of the window to keep the header level. 

 
Figure 4-20: Schematic of the timber frame for the window 

The header was designed to accommodate both the self weight and the moment 

produced over the opening. The single ring beam set in the first course of the header was 

designed based on the ICEB manual (Wheeler, 2005) for openings less than 1.2 meters. 

The ring beam helped distribute the force from the roof load and the self weight of the 

header into the piers. The ICEB manual made no recommendation for the manner in 

which to set shear reinforcement, however calculations suggested that shear forces would 

be present in the header and require extra shear reinforcement. Even thought extensive 

testing had been done on the shear capacity of ICEB walls, no testing had been completed 

using ICEB in a beam setting. It was decided to over reinforce the header. It was assumed 

that the header would not have enough shear capacity without reinforcement, which 

required stirrups to be placed no further than half the depth of the beam apart. The 

geometry of the ICEBs made it possible to set stirrups at 150 mm increments. Three 

stirrup U-shaped stirrups ran the full high of the header and up the reinforcement holes of 
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the header in every block of the header which can be seen in Figure 4-21. All the vertical 

reinforcement extended past the top of the wall and bent into the top channel, but shown 

terminating where the bend would begin in Figure 4-21 for clarity of the figure. 

 

Figure 4-21: shear reinforcement design of W6 header 

The header was set as a ring beam with reinforcement continuously across the 

wall. The reinforcement was set the same as the ring beam below the window, with the 

180 degree hooks being hooked around the outer most vertical rebars on either side of the 

wall. The transverse reinforcement in the header was tied to the inner vertical bars of the 

piers, which were used to keep them in the center of the holes allowing the grout to bond 

better to both the reinforcement and the block. Before the grout was poured into the 

header, three vertical stirrups were fashioned for the header to prevent the lintel from 

failing in shear. The stirrups were made of scrap pieces of vertical rebar and were bent 

into a U-shape with both ends being roughly 40 cm long and the middle section being 15 

cm long. These three vertical stirrups were set in the middle of the header, spanning the 

length of the window opening and running up the circular reinforcement holes of each of 

the blocks of the lintel over the opening which can be seen in Figure 4-22.  By setting the 

fifteenth course of ICEBs before filling the channel of the fourteenth course, the vertical 
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stirrups were held in place, and the grout was poured by lifting the blocks of the fifteenth 

course, one at a time, pouring the grout into the channel, then resetting each block.  

Figure 4-22: Setting the shear reinforcement for the lintel of W6 

The top three layers of the wall to be set were Courses 16 though 18 with Course 

16 being the last layer of full blocks and Courses 17 and 18 being channel blocks. All 

three layers were set at the same time pouring the grout in-between stacking layers. This 

was done due to the large amount of vertical steel running throughout the top three layers 

and the importance of keeping the vertical stirrups, partially set in grout, from moving. 

Courses 17 and 18 were channel blocks with 10M rebar placed in them as they were laid 

with 180 degree angle hooks bent around the two outermost vertical rebar. From the top 

failures of W3 and W5 it was understood that extra reinforcing was needed to transfer the 

load from the actuator to the wall resulting in course 17 becoming a ring beam in W6. To 

transfer this load, four modified L anchor bolts were set into the top two courses, 

allowing the anchor bolts to be spaced correctly and set down past the reinforcement of 

the seventeenth course.  

Grout was poured from the top of the eighteenth course using an extra fluid grout 

and a funnel. This grout was made more fluid by adding more water allowing the grout to 

flow better to ensure that it filled all the voids in the reinforcement holes and the grout 
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keys in all four layers.  As each reinforcement hole or grout key was filled with grout, it 

was rodded between two and four times to help consolidate the grout by removing the air 

voids. Special care was made to ensure that proper bonding took place around the vertical 

rebar and L hooks by rodding around them, then quickly refilling any voids caused by the 

rodding.  Courses 15, 16, and 17 were grouted this way, but Course 18 was only grouted 

enough to cover the rebar in the channel as to prevent a cold joint at the top.  The grout 

would be given two days to harden before the vertical rebar would be bent over into the 

channel of the eighteenth course of bricks in order to ensure a tighter bends of the rebar 

and prevent cracking of the grout and blocks.  

Forty-eight hours after the final grouting was completed on the eighteenth course 

of the wall, the vertical rebar was bent over using a pipe with an inner diameter slightly 

larger than that of the rebar, allowing it to slide over the rebar and provide more leverage 

for bending. Once the rebar was bent as far as the geometry of the pipe would allow, a 

3/8” wrench was used to further bend the rebar allowing it to lie flat in the channel of the 

top course of blocks. Mortar was then used to fill the rest of the channel of the eighteenth 

course of the wall. Extra mortar was added on top of the wall to provide additional bond 

for the steel loading beam to the wall. The vast majority of the load transfer would be 

supplied by the four anchor bolts embedded in the top two courses of the wall. While the 

mortar was still wet, the steel load beam wall was lifted into place with a crane and 

slowly lowered onto the wall and bolted with L bolts. Excess mortar between the load 

beam and the wall was then sponged off for esthetic reasons and the entire wall was 

watered down every 12 hours for 2 days to allow the cement in the grout and mortar to 

cure.  
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5 INSTRUMENTATION AND TEST SET-UP 

5.1 Wall Relocation  

Specimens W4 and W5 were built outside the testing set-up and moved into place 

before testing instrumentation. W6 was built inside the testing setup, and required no 

movement of the wall. W4 and W5 were moved in a similar manner with a pallet jack or 

forklift wheeling the wall into place, inside the testing setup, then a crane was used to lift 

the wall and footing over the bolts in the strong floor. Between moving of the walls into 

the testing area and lifting the walls onto the bolts in the strong floor, the steel loading 

beam was mounted to the top of the wall. After a period no less than 24 hours following 

the mounting of the load beam, providing time for the load beam to set, the process of 

lifting the walls into place commenced. As shown in Figure 5-1 ratchet straps were 

strapped over wall and fastened to the footing to minimize tensile stresses from 

developing in the wall during moving. The walls were lifted by strapping a wide flange 

beam to the top of the loading steel beam and using a second set of ratchet straps 

connected to the footing. The wide flange beam was used to add rigidity to the wall 

during the lifting process, minimize the stresses from being transferred into the wall from 

the crane. The crane was connected to the wide flange beam at a single lift point above 

the center of gravity allowing the wall to be lifted vertically without tilting.  
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Figure 5-1: W4 being lifted into place with a crane 

 

5.2 Laboratory Set-up 

The same laboratory testing configuration used in the companion thesis (Bland, 

2011) was used in testing all three specimens in this thesis. The lateral load was provided 

by a 350 kN MTS hydraulic actuator with stroke of +/- 250 mm. The actuator was pinned 

to a meter thick reinforced concrete “Strong Wall” assumed to ideally rigid and hence 

provides no deflection caused by the force application from the actuator.  The reinforced 

concrete footing, which the wall was built on, was bolted to a stiff reinforced concrete 

“Strong Floor” to prevent movement during the application of the load.  The top of the 

walls were restrained from out-of-plane deflections by a steel frame as shown in Figure 
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5-2. Rollers attached to the wide flange vertical members restrained the wall in the out-

of-plane direction at either end, but allowed the wall to translate in plane. W4 and W6 

used two sets of vertical bracing beams, one at each end of the wall, as shown by Figure 

5-2. The addition of the flange to W5 negated the need for the second set of braces at the 

flange end of the wall; as the flange was assumed to prevent the wall web from rotating 

out of plane. During the testing of W5 only one set of vertical braces were used as shown 

in Figure 5-3. 

 

 
Figure 5-2: Test set-up for testing of W4 and W6 (Out-of-plane) 
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Figure 5-3: Test Set-up for W5 (Out-of-plane) 

 

Each specimen was loaded by the actuator thought a steel loading beam at the top 

of the specimen which transferred the load into the wall. The loading beam, which ran the 

full length of the wall, was connected to the wall with 152 mm Simpson Strong-Tie L 

anchor bolts, bolting to the steel plate, anchored into the reinforcement hole. The actuator 

was attached to the top of the steel loading beam by 12 bolts configuration welded to the 

loading beam corresponding to the bolt pattern of the actuator as shown in Figure 5-4.   
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Figure 5-4: Steel loading beam used for load transfer from the actuator to wall 

 

5.3 Instrumentation  

The instruments used in the testing of all three shear wall specimens remain the 

same. Each wall utilized six linear displacement resistance transducers (DTR 0 through 

5), seven linear variable differential transformer (LVDTs, designated by the length of the 

stroke and letters), eight linear potentiometer (LPOT 0 though7), and varying number of 

foil strain gauges, applied to the rebars described in Chapter 4.  Although the 

configuration of many of the instruments changed from specimen to specimen, four 

remain the same: 2” LVDT A, 0.3” LVDT A, 0.3” LVDT B, and 0.1” LVDT. The 2” 

LVDT A was in line with the actuator and was used to track the displacement of the 

actuator throughout the testing. The 0.3” LVDT A and B, and the 0.1” LVDT were used 

to monitor slip at different locations of the test set-up. The 0.3” LVDT A monitored the 

horizontal slip between the steel loading beam the wall, while 0.3” LVDT B monitored 

the horizontal slip between the bottom of the wall and the reinforced concrete footing. 

The 0.1” LVDT monitored the slip between the strong floor and the reinforced concrete 

footing on which the wall was built. 



63 

 

5.3.1 W4 Instrumentation 

Specimen W4 was expected to exhibit flexure dominant behavior for which the 

majority of the damage would occur in the bottom half of the wall. As such, the 

instrumentation was focused on the bottom half of the wall. DTRs 2 through 5 were 

configured to measure the shear deformation on the bottom half of the wall by mounting 

the instruments to studs epoxyed into the wall. Two 0.5” LVDTs (0.5” LVDTs A and B 

shown in Figure 5-5), set at either toe of the wall, measured the uplift at each corner of 

the wall.  Lateral deflections were captured by DTRs 0 and 1 which measured 

displacements at the top (below the loading beam) and midpoint of the wall respectively. 

To capture flexural displacements at the bottom half of the wall the six LPOTs were 

attached to angle irons, which extended on either side of the wall to increase the 

resolution of the instruments. All six LPOTs were attached to the 1550 mm long angle 

irons which were bolted to the studs epoxyed in the wall. Figure 5-5 shows the 

configuration of the instruments arranged on W4.   

 
Figure 5-5: Instrumentation configuration of W4 
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5.3.2 W5 Instrumentation 

The instrumentation of W5 was similar to the instrumentation of Specimen W3 of 

the companion thesis (Bland, 2011) to allow for a direct comparison between flanged and 

regular walls. DTRs 2 through 5 were configured to measure the shear deformation over 

the web with instruments mounted to the wall through the studs epoxyed into the wall. 

The two 0.5” LVDTs were used to measure the uplift at each corner of the wall. The 0.5” 

LVDTs were attached to the wall similar to the DTRs on the shear panel, with studs 

epoxed into the masonry.  In plane lateral deflections were measured in the same manner 

as in W4 with the same DTRs and LVDTs mounted to a free standing frame adjacent to 

the wall.  

LPOTs 3 and 4 were used to measure the lateral displacement of the flange to the 

web, while LPOTs 2 and 5 measure the vertical displacement of the flange relative to the 

web. The vertical and horizontal measurements were taken at the top and bottom of the 

web-flange intersection to determine relative displacement from the top of the flange to 

the bottom. Figure 5-6 shows the configuration of which the instruments were arranged 

on W5. 
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Figure 5-6: Instrumentation configuration of W5 

 

5.3.3 W5 Retest Instrumentation  

As described in detail in Chapter 6, an unexpected mechanical failure occurred at 

the initial stage of the testing of W5. The specimen was then repaired and subjected to 

retests. The configurations of some of the instruments were modified slightly in the 

repaired specimen due to the change in geometry of the wall. DTRs 2 though 5 were 

moved four courses down, below the reinforced concrete segment shown in Figure 5-7 to 

capture the behavior of the masonry. In order to determine whether movement occurred 

between concrete retrofit and the masonry wall, LPOT 3 was moved from measuring 

vertical movement of the flange to measuring slip between the reinforced concrete 

segment and the rest of the wall. Figure 5-7 shows the configuration of which the 

instruments were arranged on W5 after the retrofit. 
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Figure 5-7: Instrumentation configuration of W5 after reinforced concrete retrofit 

5.3.4 W6 Instrumentation 

The instrumentation of W6 was different from any of the previous walls as only 

one pier of the wall was instrumented. All six DTRs were used to measure diagonal 

shearing strains while the LPOTs were used to measure the strains in the vertical rebar on 

the left side of the wall. It was decided to only instrument one pier of the wall based on 

the assumption that each side should exhibit similar behavior. The instrumentation of the 

DRTs and LPOTs were divided into three portions; two in the pier and one in the lintel as 

shown in Figure 5-8. 

Lateral displacements were measured at four different locations on W6; at 

actuator level, at the top of the left pier, the midpoint of the left pier, and at the bottom of 

the left pier. The 2” LVDT A was positioned on in line with actuator, at the opposite end 

of the wall. The remaining three LVDTs were positioned directly below the actuator, on a 

separate free stranding structure away from the wall. Figure 5-8 shows the configuration 

of the instruments on W6. 
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Figure 5-8: Instrumentation configuration of W6 

5.4 In Plane Loading Protocol 

The displacement controlled loading protocol presented in Table 5-1 and Figure 5-9 

was used for testing all specimens considered in this thesis.  Incidentally, the same 

loading protocol was used in the companion thesis (Bland, 2011), allowing a direct 

comparison of the wall behaviors obtained from different tests.  It is noted that the cyclic 

loads applied on the top of the specimens can be differentiated into two cases, i.e. the 

push and pull cycles which cause tension and compressions forces on the actuator side, 

respectively. As presented in Table 5-1, the displacements corresponding to the pull and 

push cycles were respectively assigned to be positive and negative. Also note from Figure 

5-9 that such a loading protocol consists of two push and pull cycles at each deflection 

level. The deformation capacity of the specimens were determined when 20 percent 

reduction in strength was observed during the tests; however the protocol was continued 

until more than 50 percent of the strength has degraded, or the wall became unstable. 
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Table 5-1: loading protocol used on specimens 

Displacement 
Step 

Number of 
Cycles Cycles Deflection

(mm) % Drift 

1 2 1-2 0.5 0.03% 
2 2 3-4 1 0.06% 
3 2 5-6 2 0.11% 
4 2 7-8 4 0.22% 
5 2 9-10 6 0.33% 
6 2 11-12 8 0.44% 
7 2 13-14 10 0.56% 
8 2 15-16 12 0.67% 
9 2 17-18 14 0.78% 
10 2 19-20 16 0.89% 
11 2 21-22 20 1.11% 
12 2 23-24 24 1.33% 
13 2 25-26 28 1.56% 
14 2 27-28 32 1.78% 
15 2 29-30 36 2.00% 
16 2 31-32 40 2.22% 

 
 

 
Figure 5-9: Graphical representation of the loading protocol 
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5.5 Vertical Loading 

Vertical loading was applied to each specimen by adding a series of meter long 

steel angles stacked on top of the steel loading beam to simulate the weight of the 

lightweight roofing system. In addition, a portion of the vertical loading was provided by 

the self-weight of the actuator head, which was weighted before being mounted to the top 

of the wall. The vertical load imposed on the specimens remained at a constant of 2.5 

kN/m; however due to the varying lengths of the wall different amount of the total load 

were applied on each wall. Table 5-2 summarizes the vertical load applied to each 

specimen. Incidentally, steel angles that used as the vertical loads on W5 were welded to 

the steel loading beam in order to distribute the load over both the flange and web.   

Table 5-2: Applied vertical loads to specimens 

Specimen 
Wall length 

(m) 

Vertical load applied 

(kN) 

Number of 

angles 

W4 0.9 2.25 9 

W5* 2.4 6.0 24 

W6 1.8 4.5 18 
                     *W5 includes flange length              
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6 OBSERVATIONS FROM THE TESTS 
 

This chapter presents in detail the observation from the testing of all the specimens 

described in Chapter 4.  

6.1 Testing of W4 

6.1.1 Overview 
The slim wall (W4) was tested 25 days after construction. The testing consisted of 

thirty-one cycles of the prescribed loading protocol.  The maximum force produced from 

W4 in the pull and push directions were 13.2 kN and 14.4 kN, respectively. The 

corresponding displacements were 16 and 20 mm in the pull and push directions, 

respectively. During testing, the force resisted by the wall was recorded at the 

corresponding displacements; however, a significant amount of slip was detected 

between the footing and the strong floor, as shown in Figure 6-1. These slip values were 

subtracted from the displacements recorded at the top of the wall to give a more accurate 

force displacement relationship shown in Figure 6-2.  

 

Figure 6-1: W4 footing slip vs. lateral displacement of actuator 
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The wall resisted 9% more force in the push direction than in the pull direction as 

described by the force and displacement relationship depicted in Figure 6-2. It is noted 

that there are many reasons which may have contribution to this observation (e.g. 

horizontal slip deformation at footing, initial imperfection of construction, non-uniform 

property of the construction materials; and possible premature failure at wall base 

resulting in slight uplift deformation of the wall at the tension side). However, to further 

quantify their impacts is beyond the scope of this thesis given that the resistance 

difference is within the acceptable range from the perspective of engineering design. The 

following sections describe in detail the observed behavior of W4 at different 

deformation levels. 
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Figure 6-2: Hysteresis of W4  

6.1.2 W4: Cycles 1 through 8 

Throughout the first eight cycles, there was very little noteworthy visual damage 

in the wall. From 0.5 mm to 4 mm displacements, no cracking or sliding of any kind was 

observed anywhere in the wall. There were no lateral movements observed at the base of 

the wall where the maximum moment occurred. Photographs show small extensions and 

compression along the outer most fibers at the base of the wall near the end of Cycle 8, 

which indicated a small degree of energy dissipation occurring in Cycle 8. The hysteresis, 

shown in Figure 6-3, confirms that energy dissipation begins in Cycle 8 where it can be 

observed that the hysteric loops are beginning to widen. Prior to Cycle 8 the wall 

remained in the elastic range as the push-to-maximum displacement and the return-to-

zero displacement occurred along the same line. Inelasticity occurred in the eight cycle 
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where two distinct paths can be seen. These two distinct paths, making the loops appear 

thicker, indicted that energy dissipation was beginning to occur.  Although, the start of 

energy dissipation was observed in Cycle 8, the wall is primarily in the elastic region 

based on the almost linear relationship of the force displacement curve.   

 
Figure 6-3: Hysteresis of W4 Cycles 1 through 8 
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6.1.3 W4: Cycles 9 and 12 

 
Figure 6-4: Hysteresis of W4: Cycles 1 through 12 

 

Cycles 9 to 12 corresponded to displacements of 6 and 8 mm in which the wall 

transitioned from the elastic to inelastic zone as shown in Figure 6-4. This transition can 

be seen in both rebars yielding after it reached a maximum strength in Cycle 10. In Cycle 

12, the wall reached the same maximum strength as Cycles 10 and 11. Once the force 

reached 9.7 kN, it remained generally constant as the displacement continued to increase. 

Another indication that the rebar had yielded was that non-zero forces were observed 

when the actuator returned to zero displacement.  

Cycle 11 showed that the first cracking observed in the wall, which is shown in 

Figure 6-5 occurred between the mortar on the reinforced concrete footing and the first 

course of ICEBs where the maximum moment is expected.  The cracking, although 

barely visible, is the result of combined uplift and shear effects and can be seen faintly 
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around the base of the wall. The cracking of the toe, in addition to the yielding of the 

rebar, resulted in the first considerable energy dissipation observed in the test.  

 
Figure 6-5: Cracking at the base of W4 during Cycle 10 

 

6.1.4 W4: Cycles 13 through 20 

In Cycles 13 through 20, corresponding to displacements of 10mm through 

16mm, the maximum horizontal resisting force observed in each cycle was about 13.2 kN 

(± 0.5 kN) in the pull direction and 14.2 kN (±0.5 kN) in the push direction, 

demonstrating the stable resistance of the wall. Each successive cycle dissipated more 

energy than the preceding cycle, increasing at a proportional amount to the displacement. 

This trend can be observed in Figure 6-6 showing the hysteric loops of each of the cycles. 

It was also observed that with each progressive cycle, the zero force moves further from 

zero displacement. 
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Figure 6-6: Hysteresis of W4: Cycles 1 thought 20 

 

The uplift observed on either side of the wall in Cycle 15 continued to increase in 

size reaching a maximum uplift of 3.72 mm and 3.97 mm on the right and left sides, 

respectively. With each successive cycle, the corner cracks expanded to approximately 

0.75 mm more than the previous cycle, causing the wall to begin to rock. As the rocking 

grew in magnitude, the cracking along the base also became more pronounced; 

essentially causing the bond to break between mortar and the first course of ICEBs as 

shown in Figure 6-7.  

Damage occurred in the top half of the wall during Cycles 13 and 20. Cracking 

between the load beam and the top of the wall was observed around the outside of the 

grout channel. The crack began to propagate from the top of the grout channel, which 

provides the main connection between the anchor bolts and load beam as shown in Figure 
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6-8. The cracking was first observed after the completion of Cycle 14 and became more 

pronounced after the completion of Cycle 16; however, there were no more changes 

throughout the rest of the wall testing. This crack, though prevalent to visual observation, 

appeared to have very little impact on the strength of the wall.  

 

 

Figure 6-7: Cracking around the base of W4 
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Figure 6-8: W4 cracking around the grout channel and the loading beam 

 

6.1.5 W4: Cycles 21 through 24 

Throughout Cycles 21 and 24, slip became increasingly more prominent, 

contributing significantly to the overall specimen deformation. The observed slip at the 

base of the wall was more than doubled from Cycles 12 to 24. This increase in slip 

resulted from the complete fracture between the bottom course of ICEBs and the mortar. 

The uplift noted in the previous cycles continued to grow, causing the propagation of 

cracking along the base. Although this sliding was visually observed throughout Cycles 

21 through 24, it became more apparent that the bottom course had completely sheared 

away from the base as shown in Figure 6-9. Shear cracking became visible in the pull 

excursion of Cycle 23 with the start of the typical 45 degree cracking. The cracking 
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propagated from the vertical rebar on the left side of the wall to the shear rebar in the 

bottom course of the wall as shown in Figure 6-10. The shear cracks opened as the 

displacement increased and closed when the displacement returned to zero. It was 

observed that all the shear cracking took place in the bottom half of the wall. There was 

no sign of damage taking place above the midpoint of the wall.  

 

 

Figure 6-9: Shearing between the bottom courses of W4 and the mortar in the 
footing 
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Figure 6-10: Shear cracking along the bottom of W4 

 

From the hysteresis shown in Figure 6-11, it can be observed that the shear 

cracking does not appear to have a significant impact on the strength of the wall. A small 

amount of strength degradation was observed in the pull excursion of Cycle 21, but the 

strength increased slightly in the push direction. When the wall was subjected to the push 

cycle, no shear cracking in the other direction was observed.  

 

LEFT RIGHT 
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Figure 6-11: Hysteresis of W4: Cycles 1 through 24 

 

As shown in Figure 6-12, two other types of failure were also observed: sliding 

shear failure and progressive vertical cracking at the toe of the wall. The more notable of 

the two was the horizontal cracking. The horizontal cracking began to propagate from the 

base of the wall upwards almost immediately following the beginning of Cycle 21, and 

grew wider throughout the following cycles. The toe cracking, at either end of the wall, 

formed on both sides of the wall (back and front) and began to separate the toe from the 

rest of the wall as shown in Figure 6-13.  
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Figure 6-12: Cracks in W4 in Cycles 21 thought 24 

 

 

Figure 6-13: Toe cracking of W4 in Cycle 24 

LEFT RIGHT 

LEFT 
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6.1.6 W4: Cycles 25 through 28 

While it appeared that the damage to the wall consistently increased throughout 

Cycles 25 to 28; however, the hysteresis reflects that most of the strength derogation is 

prevalent in Cycle 28 as shown in Figure 6-14. From the hysteresis it can be observed 

that in Cycles 25, 26 and 27 the strength of the wall remained stable. In Cycle 28; 

however, it became apparent that significant strength degradation had begun.   

A significant dip in the hysteresis can be observed in the last push excursion of 

Cycle 28. The wall suddenly lost 1.85 kN of strength. This sudden loss in the strength 

was the result of the lower part of the toe suddenly opening up around the rebar. It is 

clear that prior to the fracture, little strength was provided by the toe, only stability. From 

the hysteresis shown in Figure 6-14, it can be observed that the stiffness had the similar 

slope before and after the strength reduction, indicating no significant change in stiffness. 
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Figure 6-14: Hysteresis of W4: Cycles 1 through 28 

6.1.7 W4: Cycles 29 and 32 

 
Figure 6-15: Hysteresis of W4: Cycles 1 through 31 
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Due to the toe failure at the end of the Cycle 28, it was necessary to remove all 

external instruments before proceeding with Cycles 29 and 30. Although in excess of 

20% strength loss was observed during Cycle 28, Cycles 29 through 32 were deemed 

necessary to investigate the ultimate behavior of the specimen. Cycle 29 caused the 

complete deterioration of the toe on both sides of the wall. Although the hysteresis shows 

similar strength degradation on either direction, the right side of the wall provides a more 

visible example of the failure mode as shown in Figure 6-16. Upon completion of Cycle 

31, the trend of decreasing strength was clearly shown in Figure 6-15 and the test was 

concluded due to the instability of the wall. 

 

Figure 6-16: Complete degradation of toe due to Cycle 31 

LEFT RIGHT 
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6.2 Testing of W5 

6.2.1 W5 -Phase I 

W5 was scheduled to be tested 24 days after construction. Following the test 

setup, a mechanical failure occurred while zeroing the instruments for testing. The 

actuator moved at rate of approximately 24 mm per second and was stopped at a 

displacement of 60.25 mm, corresponding to a 3.34 percent drift. The loading rate that 

the actuator moved at did not correspond to any prescribed loading protocol.  Although 

data acquisition was running at a speed of four hertz at the time of loading, only ten data 

points were recorded before the actuator was stopped. The force-displacement graph, 

shown in Figure 6-17, shows the data recording over the course of the movement of the 

actuator. Due to the high speed of loading, very little useful data could be salvaged for 

analysis, but it provided useful information regarding the new state of the specimen after 

retrofitting took place for retesting. 
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Figure 6-17: Force vs. Displacement of W5-Phase I 

 

The maximum force from the load cell was recorded as 100.5 kN at a 

displacement of 20.6 mm. Steel in the web was recorded to begin yielding at a 

displacement of 11.70 mm, corresponding to a force of 82.6 kN, and flexural cracking 

was observed on the backside of the flange around the exterior grout channels. The toe of 

the web showed similar cracking around the bottom in the compression zone but no 

cracking around the reinforcement was detected. 

The damage to the wall from the 60.25 mm shift was extensive but was primarily 

confined to the top four courses of the wall. Shear cracking in the top four courses 

completely diminished the flange and the webs capacity to resist shear and left a residual 

shift at the top of the wall as shown in Figure 6-19 and Figure 6-20. The top of the flange 
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was shifted 9.67 mm relative to the web. Although the damage to the web was mostly 

concentrated in the top four courses, two places where considerable damage took place 

were at the web toe and the intersection between the web and the flange, as shown in 

Figure 6-18 and Figure 6-19. The compressive failure at the toe of the web caused 

spalling around the top of the toe due to the increased force from the overturning 

moment. The web is designed to take most of the in-plane shear, while the flange 

simulates an intersecting wall, making the web relatively stiff compared to the flange. 

The majority of the damage found in the web was the result of shear failure and was 

predominant in the top four courses of the web. The crack shown in Figure 6-19 shows 

the characteristic shear crack. Other characteristics of a shear failure were seen in the 

vertical and horizontal extensions between blocks as well as spalling in high tension 

regions of the wall.  

 

Figure 6-18: Damages in W5 Web resulting from mechanical failure of actuator 
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Figure 6-19: Compression failure at the intersection of the web and flange 

 

 

Figure 6-20: Shear Failure of the web and flange. 

It was determined that the majority of the damage inflicted by the sudden 

movement of the actuator was located in the top four courses of the wall and the rest of 

the specimen was salvageable. Due to the extensive damage to the top of the wall, the 
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method for repair was the complete replacement of the top four courses with a reinforced 

concrete top. This was done by carefully removing all the blocks on the top four courses 

of the web, and the top three of the flange. The vertical rebar, which was bent during the 

shift, was returned to vertical. The horizontal rebar located in the top course was removed 

completely and replaced with horizontal reinforcing at each course level in the reinforced 

concrete top. 

The reinforced concrete for the repair purpose was designed to be a high strength, 

fast curing, fluid mix, which would provide load transfer from the actuator to the 

remaining fourteen courses in the wall. In order to accomplish this, extra horizontal 

reinforcing was added as shown in Figure 6-21 and Figure 6-22. Formwork was then 

built around the areas where the blocks had been removed in both the web and flange. 

Areas surrounding the toe where significant spalling occurred were formed up to 

maintain the original shape of the wall. Reinforced concrete was then mixed and poured 

into the wall. After each batch of the concrete was poured, it was then vibrated to prevent 

any air voids.  
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Figure 6-21: Repair of the web of W5 before reinforced concrete was cast 

 

 

 

Figure 6-22:  Repair of the flange of W5 before reinforced concrete was cast 
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The final stage in the repair was to attach the steel load beam to the rigid concrete 

portion. To create a good load transfer from the actuator to the wall, the steel load beam 

was connected to the concrete section.  

Twelve hours after the reinforced concrete section was poured, the formwork was 

removed for re-instrumentation and visual inspection. The repaired specimen is shown in 

Figure 6-23 and Figure 6-24. The visual inspection detected two bonding defects in the 

reinforced concrete section. The first was between the steel loading beam and the 

concrete top, and the other near the bottom of the concrete where the formwork bulged. 

Hydrostone was dry packed in these areas to close any visible gaps but provided little 

structural benefit. 

 

Figure 6-23: Web of W5 after removal of the reinforced concrete formwork 
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Figure 6-24: Flange of W5 after removal of the reinforced concrete formwork 

6.2.2 W5 -Phase II 

W5 was retested 31 days after the original construction was completed and 7 days 

following the repair using reinforced concrete. Through the duration of the experiment, 

28 cycles of the loading protocol, found in Chapter 5, were used. W5 was tested to a 

maximum displacement of 32 mm, corresponding to 1.77 percent drift, which was 

roughly half of the maximum displacement from W5-Phase I test. A maximum resisting 

force from the wall was recorded as 76.71 kN at a displacement of 14 mm in the pull 

direction, and 55.1 kN at the same displacement in the push direction as shown in Figure 

6-25.   
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Figure 6-25: Hysteresis of W5-Phase II  

 

6.2.3 W5-Phase II: Cycles 1 through 8 

Throughout the duration of the first eight cycles very little noticeable damage 

took place with respect the deformation of the wall. Close inspection of the web of the 

wall showed cracks, created from the initial 60.25 mm shift of Phase I test, opening and 

closing with the displacement of the wall. This opening and closing action can be seen by 

comparing the closed crack at zero displacement, and the open crack at maximum 

displacement shown in Figure 6-26 and Figure 6-27, respectively. It was clear from the 

observations that the wall remained elastic throughout the first eight cycles based on the 

small amount of cracking observed. The hysteric loops produced during testing further 

confirmed these observations. A closer observation of the hysteric loops, seen in Figure 

6-28, shows the loops enclose negligible area indicating that very little energy has been 

dissipated by the wall. 
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Figure 6-26:  Crack in W5 at zero displacement 

 

 

Figure 6-27: Crack in the W5 at maximum displacement of cycle 8 
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Figure 6-28: Hysteresis of W5- Phase II: Cycles 1 thought 8 

 

6.2.4 W5-Phase II: Cycles 9 through 12 

As shown in Figure 6-29, at the peak displacements of Cycles 10 and 12 (i.e., at 6 

mm and 8 mm respectively), that the strength of the wall continues to grow with very 

little energy dissipated. The beginning of significant energy dissipation could be seen in 

the push excursion of Cycle 11, primarily due to the horizontal cracking between blocks 

at the toe of the web which is shown in Figure 6-30. The hysteresis, shown in Figure 

6-29, clearly shows that the zero force line being crossed at two separate displacements, 

neither of which are zero, indicating a residual shift in the wall from a previous 

displacement.   
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Figure 6-29: Hysteresis of W5: Phase II Cycles 1 through 12 

 

 

Figure 6-30: Tension cracks at the base of the toe of W5 web  
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6.2.5 W5-Phase II: Cycles 13 Through 16 

Cycles 13 through 16 corresponded to peak displacements of 10 and 12 mm in 

which different strengths were observed when the flange is under compression and 

tension. This trend is most predominant when looking at the maximum forces the wall 

produced in the Cycles 15 and 16. As shown in Figure 6-31, when the flange was in 

tension, the maximum force resisted by the wall was 76.7 kN which is larger than 55.1 

kN when the web was in tension.  

 
Figure 6-31: Hysteresis of W5-Phase II: Cycles 1 through 16 

 

A visual inspection of the wall throughout Cycles 13 to 16 revealed three definite 

damages in the walls. The most predominant damage was the beginning of spalling at the 

base of the web as shown in Figure 6-32. It was also noticed that cracks which had been 
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opening and closing in the previous cycles had become significantly wider and was 

remaining open in both the push and pull cycles of the test. It was also noted that the 

majority of these cracks were found to be focused around the joint between the web and 

the flange, indicating that the flange was beginning to separate from the web. The third 

observation of damage in the wall was the beginning of shear cracking, which is shown in 

Figure 6-33.  

A closer observation of the strain gauge data revealed that rebar D, in the middle 

of the flange, reached a strain of 0.0023 indicating that the steel rebar yielded. Due to the 

failure of several strain gauges, it was impossible to determine the strains of all rebars. 

Using the assumptions that plane sections remain plane it was estimated that the rebar in 

the web should have yielded as well.   

 

Figure 6-32: Spalling of the outer grout channel of the W5 web during Cycle 16 
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Figure 6-33: Cracking of W5 web at zero displacement after Cycle 16 

 

6.2.6 W5-Phase II: Cycles 17 through 20 

The 14 mm peak displacement in Cycle 17 produced the maximum force on the 

wall before strength degradation occurred. The highest obtained force with the flange in 

tension was 76.7 kN and with the web in tension was 55.1 kN. Throughout the duration 

of Cycles 17 through 20, the strength of the web in tension remained approximately 

constant as shown in Figure 6-34. Cracking in the lower five courses of the toe is shown 

in Figure 6-35. It was observed that throughout Cycles 17 through 20, the cracks parallel 

to the reinforcement propagated upward on either side of the block. As the cracked 

section around the outside of the rebar grew with each cycle, the strength continually 

degraded. Shear sliding also became prevalent in Cycles 17 through 20, particularly in 

courses 3 thought 5 from the bottom.  
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Figure 6-34: Hysteresis of W5-Phase II: Cycles 1 through 20 

 

 
Figure 6-35: W5 cracking around the bottom toe of the web 
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6.2.7 W5-Phase II: Cycles 21 through 24 

Beginning with Cycle 21, displacement increment increased from 2 to 4 mm per 

cycle, which caused drastic deformation to the wall and continued to degrade the wall 

strengths.  To prevent damage to the instruments at the toe of the wall, DTR 4, 0.5” 

LVDT B, LPOT 0 and LPOT1 were removed from the wall during the test. During the 

Cycle 22, the toe spalled off on the right side of the toe and pushed away from the left 

side as shown in Figure 6-36.  The unconfined rebar was then subjected to all the 

compressive force typically taken by the spalled masonry at the toe of the wall, causing 

the rebar to buckle as shown in Figure 6-37. When the load was reversed during the push 

excursion of the cycle, tension force developed in the rebar and the rebar was 

straightened as shown in Figure 6-38. 

 

 

Figure 6-36: Spalling of the ICEBs and grout around the toe of W5 web 
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Figure 6-37: Buckling of unconfined rebar  
subjected to compressive force during pull 

excursion of Cycle 24. 

 

Figure 6-38: Unconfined rebar in tension 
during the push excursion of Cycle 24. 

 

Cycles 23 and 24 continued the same failure seen in the previous cycles , i.e., 

damaging the toe of the web. The pull excursion of Cycle 23 caused the remaining intact 

portion of the ICEB to spall off leaving only the bare rebar at the toe of the web. Figure 

6-39 shows the ICEBs split down the middle of the brick on either side of the grout 

channel as result of the compression taken at the toe.  The only part of the brick 

remaining intact from the compressive force are the grout keys, reinforcement holes 

(without reinforcement), and the steel rebar which appear to be taking the majority of the 

compressive force. Examples of the other failures were shear sliding in the web and 

cracking in the flange. Increased sliding could be observed in the third and forth courses 

of the web. Cracks on the outer face and at the base of the flange is shown in Figure 6-40. 

This was the first time which any significant cracking was observed in the flange.  
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Figure 6-39: External spalling of ICEBs at the web toe of W5. 

 

 

Figure 6-40: Cracking at the base of the flange of W5 
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Cycles 21 though 24 showed a drastic reduction in the strength of the wall. 

Approximately 15% of the wall’s maximum strength had been lost at the peak 

displacement of 20 mm, in Cycle 21, and 20% had been lost at the peak displacement of 

24 mm, in Cycle 24. The majority of the walls strength loss can be attributed to the 

cracking and spalling at the toe of the web; and very little was attributed to the 

degradation in the flange.  The hysteresis loops, shown in Figure 6-41, show the strength 

degradation. 

 
Figure 6-41: Hysteresis of W5-Phase II: Cycles 1 through 24 
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6.2.8 W5-Phase II: Cycles 25 and 28 

Before Cycle 25 began, the instruments at the base of the flange were removed to 

prevent possible damage of the instruments. The only instruments remaining on the wall 

were DTRs 0 through 3 and both 2 inch LVDTs which were safe from falling debris.   

The hystereses of the Cycles 25 through 28 shown in Figure 6-42 indicates that 

wall has failed based on the strength degradation in both directions. The most notable 

reduction in strength was observed. For the push direction, an overall strength reduction 

of 23 percent was observed at the maximum displacement of Cycle 25, while 54 percent 

reduction was obtained at the maximum displacement of Cycle 27. As shown in Figure 

6-42, a similar trend was observed in the pull direction: strength reductions of 22 percent 

and 51 percent were observed between Cycle 25 and 28, respectively.  Figure 6-43 shows 

that the web degraded exactly as predicted by classic flexural theory.  

Having seen more than 50 percent reduction in strength during Cycle 28, the 

decision to stop the wall test at the end of the Cycle 28 was made. The test concluded 

having completed 28 cycles ranging in displacement from 0.5 mm to 32 mm. The 

predominant failure mode was identified as tensile yielding of rebar, with masonry 

crushing and shear sliding following. Shear sliding was observed between the third and 

fifth courses, and masonry crushing was seen at both the toe of the web and at the base of 

the flange. It was the degradation of the toe and the movement of the neutral axis towards 

the flange that caused the eventual reduction in strength. 



107 

 

 
Figure 6-42: Hysteresis of W5-Phase II: Cycles 1 through 28  

 

 

 

Figure 6-43: Degradation of W5 web  
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Testing of W6 

6.2.9  Overview 

Specimen W6 was tested 21 days after the original construction was completed, 

and 18 days following the application of the steel loading beam onto the top of the wall.  

With the wall being built inside the testing area, no delays in testing were needed to 

accommodate relocation of the wall. A total of 24 cycles of the loading protocol 

presented in Chapter 5 were used before it was decided that no more useful data could be 

achieved. W6 was tested to a maximum displacement of 24 mm, corresponding to 1.33 

percent drift. The maximum resisting force from the wall was recorded at the 

displacement of 14 mm of 30.18 kN in the pull direction, and 28.23 kN force was 

recorded in the push direction.  

The failure mode of the wall was determined to be a combination of flexural 

yielding of the steel and diagonal compression failure in the blocks. Based on visual 

observations, it was determined that cracking began at 4 mm displacements in Cycle 7 

and continued to grow throughout the testing. The left pier of the wall experienced 

considerably more damage than the right pier. Strain gauge data indicated that yielding 

occurred only on the outside rebar on the bottom of the piers during Cycles 9 through 24. 

Instrument readings indicated no slip developed between the top of the wall and the 

footing, the load beam and the top of the wall, or between the footing and the strong 

floor; therefore no modifications were made to the hysteresis curve shown in Figure 6-44. 

The following sections describe in detail the wall performance observed during the test. 
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Figure 6-44: Hysteresis of W6 

 

6.2.10 W6: Cycles 1 through 8  

The specimen behaved essentially elastic during the first three cycles of test and 

visual observations were recorded since the fourth cycle. Throughout Cycles 1 to 6, no 

cracking or sliding of any kind could be observed anywhere in the wall. Cracking in the 

specimen was first visually observed at the beginning of Cycle 7 in the right pier. A crack 

was observed on the face directly above the right pier in the 14th course of ICEBs. It was 

observed that the crack opened in the pull cycles and closed in the push cycles but did not 

appear to grow in the subsequent cycles. Following Cycle 8 the entire specimen was 

reviewed for cracking but no other cracks were found. 
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The hysteresis shown in Figure 6-45 further confirms these observations. As 

shown, the specimen exhibited linear loading and unloading behavior through Cycles 1 to 

6, indicating the system primarily remained in the linear elastic range and thus negligible 

energy was dissipated in the system. However, in Cycles 7 and 8, the loops are beginning 

to widen, indicating the initiation of energy dissipation.  

 
Figure 6-45: Hysteresis of W6: Cycles 1 to 8 

  

6.2.11 W6: Cycles 9 through 12  

In the hysteresis shown in Figure 6-46 it can be observed that energy dissipation 

continues to increase throughout Cycles 9 through 12. A closer inspection of the 

hysteresis shows that Cycles 10 and 12, no longer follows the path of Cycles 9 and 11, 

indicating the development of cumulative damages in the specimen.  
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Figure 6-46: Hysteresis of W6: Cycles 1 through 12  

Throughout Cycles 9 through 12 very few physical changes could be observed in the 

specimen. The crack initially developed in Cycle 7 over the left pier continued to open 

and close, but no significant growth in crack size was recognized. Rocking was noted at 

the bottom of both piers (around the 4th and 5th courses) when they were in tension; 

however no further cracking or crushing was detected. 

6.2.12 W6: Cycles 13 through 16  

In Cycles 13 to 16, visually noteworthy damages occurred in the specimen. 

Following the completion of Cycles 14, the bottom sill plate of the windows began to 

crack. The parallel cracks could be seen running along the outer side of the grout channel 

along the bottom of the window sill as shown in Figure 6-47. From visual observation, it 

appeared that the grout and rebar in channel were separating from the ICEBs of the sill. 
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The crack shown in Figure 6-47 was observed to occur only at the end of Cycle 14 and 

was not observed to grow in any following cycles.  In addition, small inclined cracks 

were seen developing in the two courses at the top right corner of the pier and three 

courses lower on the left corner of the pier, as shown in Figure 6-48. The locations where 

the cracks are beginning to form are in areas where shear reinforcement was not present 

suggesting that the shear rebar would enhance the shear force transfer capacity and hence 

prevent the diagonal cracking caused by shear force.   

 
Figure 6-47: W6 cracking around the sill of the windows following Cycle 14 
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Figure 6-48: W6 diagonal cracking observed in the left pier after Cycle 16 

 

From the hysteresis of Cycles 13 through 16, shown in Figure 6-49, and the strain 

gauge data it can be concluded that rebar yielding has occurred at the bottom ends of both 

piers; however, strain at the top ends of the instrumented pier did not indicate yielding. 

The peak shear forces resisted by the specimen during Cycle 15 are 30.12 kN in the pull 

direction and 28.28 kN in the push direction. 
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Figure 6-49: Hysteresis of W6: Cycles 1 through 16 

 

6.2.13 W6: Cycles 17 through 20  

Visual observations from Cycles 17 through 20 show the continual crack propagation 

and the formation of new cracks in both piers. The diagonal cracks observed from 

previous cycles continued to propagate from the flexural rebar in a diagonally manner 

indicating development of a shear cracking. New cracks were observed in three locations: 

above the left pier, along the longitudinal reinforcement in the left pier, and the right pier. 

The cracking above the left pier shown in Figure 6-50, propagated downwards from 

approximately two courses above the left pier. The second new crack shown in Figure 

6-50 was observed to begin in the Cycle 17 and grew larger through Cycle 20. This crack 

branched off the original diagonal crack at a shallower angle and followed the flexural 

reinforcement towards the bottom of the pier.  The third set of new cracks observed to 
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develop on the right pier in a manner similar to what was seen in the left pier during 

Cycle 17. These diagonal cracks began on the outer face of the pier and propagated 

towards the vertical reinforcement.  

 

 

Figure 6-50: New cracks observed in W6 during Cycles 9 and 10  
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Figure 6-51: Hysteresis of W6: Cycles 1 through 20 

 

From the hysteresis shown in Figure 6-51, energy was stably dissipated during 

Cycles 17 through 20. In addition, the shear forces resisted by the wall at the peak 

displacements of the pull cycles remain relatively constant, however, considerable 

strength degradations are observed in the push cycles. The observed difference in 

strength degradation between the pull and push cycles is due to the fact that more cracks 

took place in the left pier; resulting in reduced strength. 

The cracking pattern in the piers seem to illustrate that they failed  in shear, based on 

the angle of the cracks, however due to the extensive amount of horizontal reinforcement 

in each pier it is likely the diagonal cracks seen are the result of diagonal compression 

cracks are from the masonry crushing (Pauley et al., 1982). The major indicators that 

these cracks are from diagonal compression is the ductile natures of the specimen 

observed, compared to that of a shear failure. Although this could indicate a combined 
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failure, it is more likely that these cracks were caused from the reversed cyclic loading 

compression as explained in by Paulay et al.,1982.  

6.2.14 W6: Cycles 21 through 24  

In Cycle 21 the displacement increment increased from 2 mm to 4 mm per cycle. 

From the hysteresis shown in Figure 6-52, the maximum shear force resisted by W6 

during cycle 21 is 23.8 kN which is 22 percent lower than the maximum strength of the 

wall. A discrepancy between maximum force of Cycle 21 and 22 was 32 percent.  A 

similar trend was observed between the push cycles of Cycles 21 and 21 with a 20 

percent reduction in strength observed. Although the specimen has lost more than 20 

percent strength, Cycles 23 and 24 were run to capture the ultimate behavior of the 

specimen. Cycle 23 saw a 58 percent reduction in maximum strength from the specimen 

and a 44 percent reduction between Cycles 23 and 24.  It was clear after Cycle 24 no 

residual strength would be gained from the specimen. 

 
Figure 6-52: Hysteresis of W6: Cycles 1 though 24 
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Cycles 21 thought 24 caused serious damage to the piers of the specimen. Prior 

Cycle 21, the left pier showed visible cracking but remained intacted, while the right pier 

show very little structurally significant cracking (see Figure 6-53). Following Cycles 21 

and 22, both the right and left piers showed more damage, in particular, the left pier 

suffered from block spalling around the vertical rebar and the width of the cracking 

increased (see Figure 6-54).   

 

Figure 6‐53: Cracking pattern of W6 prior 
to Cycle 21 

 

Figure 6‐54: Cracking pattern of W6 
following Cycle 22 

 

Before Cycle 21 was run, all external instruments were removed to prevent 

damage from the falling debris. Following Cycle 24, the test was concluded due to the 

significant strength loss and possible instability of the specimen. The final damage to the 

specimen can be seen in Figure 6-55. At the end of Cycle 24, all of the masonry blocks 

surrounding the vertical rebars spalled off in the left pier, and the outside vertical rebar in 
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the pier became visible. The right pier did not suffer from any block spalling but the level 

of cracking increased significantly.   

 

Figure 6-55: Damage in W6 following Cycle 24  
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7 DISCUSSION OF TESTING RESULTS 
 

7.1 Hysteretic Curves  

The hysteretic curves from all tests are summarized in the Figure 7-1. It is 

recognized that specimen W5 experienced a testing accident as described in Section 6.2.1 

and it was re-tested after the repair work.  As such, the testing data associated with W5 

were classified as Phase I and Phase II for the original specimen and repaired specimen, 

respectively. The maximum resisting force and the corresponding displacement, and the 

maximum obtained displacement and the corresponding resisting force of each specimen 

are summarized in Table 7-1. The envelopes for the force displacement curves of the W4, 

W5-Phase I, W5-Phase II, and W6 tests are shown in Figure 7-2. 
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W4 W5-Phase I 

W5-Phase II W6 
Figure 7-1: Force displacement curves from tests  

Table 7-1 Maximum displacement and forces of specimens  

 
Specimen ID 

 
 

Maximum 
Lateral 

Resistance 
(kN) 

Displacement 
corresponding 
to Maximum 
Resistance 

(mm) 

Maximum 
Recorded Lateral 
Displacement 

(mm) 

Force 
corresponding 
to Maximum 
Displacement 

(kN) 
Pull  Push  Pull  Push  Pull  Push  Pull  Push 

W4  13.2  14.5  14.1  22.2  35.9  35.8  4.4  5.6 
W5‐ Phase I  100.5  ‐‐  20.7  ‐‐  60.2  ‐‐  33.6  ‐‐ 

W5‐Phase II  72.7  55.1  10.2  18.2  28.6  31.8  31.9  18.9 
W6  30.2  28.2  8.8  9.83  21.6  21.4  12.6  7.2 
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Figure 7-2: Envelopes of the hysteretic curves 

 

7.2 Hysteretic Enegry Disipation  

Hysteretic energy dissipation of the three walls from this thesis (i.e., W4, W5, and 

W6) and the flexure-dominant wall from the companion thesis (i.e., W3) were compared 

in this section. The energy dissipated by each specimen was quantified by the area 

enclosed by the corresponding hysteretic loops.  At each displacement level, the 

hysteretic loops from the two loading cycles (the primary and secondary cycles) were 

considered using the trapezoidal integration equation. The cumulative energy dissipated 

by each specimen is summarized in Figure 7-3 and the total energy dissipation at end of 

the tests of the considered specimen is presented in Table 7-2. For comparison purpose, 
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Figure 7-3 compares the cumulatively dissipated energy normalized by the total energy 

dissipation of each specimen at the displacement level of interest. 

Table 7-2: Wall Energy Dissipation 

 Specimen ID 
Maximum Energy 

Dissipation  
(kN-mm) 

W3 10,400 
W4 5,640 
W5* 8,630 
W6 2,120 

       * considered from phase II test  

 

 
Figure 7-3: Cumulative energy dissipation comparison 
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Figure 7-4: Normalized cumulative energy dissipation comparison 

 

7.2.1 W4 Energy Dissipation  

W3 and W4 were both pushed to a maximum displacement of 40 mm which 

allows for a direct comparison. W4 and W3 have the same height and rebar size; but the 

depth of W4 is only half of that of W3, indicating that more energy would be dissipated 

by W3 due to its relatively larger cross-section. The comparison presented in Figure 7-4 

further confirms this point. As shown, the energy dissipation of W3 is approximately two 

times greater than W4. However, when comparing the normalized cumulatively 

dissipated energy, one can observe that W3 and W4 exhibited similar performance as 
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shown in Figure 7-4 indicating that, while W3 and W4 have different aspect ratios, they 

both exhibited the same energy dissipation performance.    

7.2.2 W5 Energy Dissipation  

W5 shares the same in-plane dimension as W3, with a two block wide flange on 

one end of the wall. W5 was tested to two cycles less than W3 which only allows per-

cycle energy dissipation comparison up to the drift of 1.78%. From the Figure 7-4, it can 

be observed that W5 dissipation of is not quite as stable as that of W3. In each cycle W5 

dissipates a lower percentage of its total energy earlier, until the last cycle. 

7.2.3 W6 Energy Dissipation  

W6 was designed with the same outer dimension as W3, with a 0.9 by 0.9 meter 

opening in the center, but was only tested to a lower drift level, which only allows a per 

cycle comparison available up to the drift of 1.55% . Due to the reduced cross-section of 

W6, it only exhibited 30 percent of the total energy dissipated by W3 at the maximum 

displacement.  A per cycle comparison shows that walls with openings are slightly less 

stable in dissipating energy at the larger displacement levels, but show a similar overall 

performance up to the drift of 1.55%.  

7.3 Ductility  

Ductility, in seismic design, is a structure’s ability to undergo larger amplitude 

deformations in the inelastic range without a substantial reduction in strength.  For the 

purposes of this thesis, ductility will be defined as the ratio of the maximum deformation 

of the structure to the deformation at the structure’s yield point. Here the maximum 

deformation is defined as the point at which the structure experiences a 20 percent 
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reduction in strength on the envelop curves shown in Figure 7-2. The yield displacement 

of the structure is defined as the location of equal energy absorption of the equivalent 

elasto-plastic system and the real system (Park, 1989), as shown in Figure 7-5. The 

ductility results for all of the walls are summarized in Table 7-3. 

 
Figure 7-5: ductility criteria (Bland, 2011) 

 

Table 7-3: Ductility Comparison 

Specimen Direction ∆u ∆y µ µavg 
W3 Pull 22.47 8.24 2.72

2.63 
Push ‐28.33 ‐11.00 2.54

W4 Pull  33.21  4.63  7.17 
6.06 

Push ‐32.34 ‐6.05 4.96

W5 Pull  20.08  7.75  2.60 
N/A 

Push ‐26.36 ‐8.48 3.10

W6 Pull  17.52  6.10  2.87 
2.73 

Push ‐14.53 ‐5.63 2.58
 



127 

 

Comparing the ductility of W3 and W4, it is observed that the ductility of a 2:1 

aspect ratio shear wall is approximately two and one third times that of a 1:1 aspect ratio 

shear wall with the same reinforcing pattern. In addition, based on the ductility results of 

W3 and W5, it is found that a flanged wall has roughly the same ductility with the flange 

in tension and 20% more with the flange in compression compared to the same wall 

without a flange. It is noted that Shedid et al. (2010) reported that 43% to 106 % 

increases in ductility can be expected by the addition of a flange. A portion of the 

underestimate in ductility observed in W5 can be attributed to the initial shift in Phase I 

test of W5. Last, results from W3 and W6 indicate that a wall which has an opening in 

the center and is ensured to exhibit flexure-dominant behavior, has approximately the 

same ductility as same wall without opening. 

7.4 Wall Displacements 

Wall displacement components were calculated based on the recorded 

measurements taken during the shear walls tests. Sections 7.4.1 through 7.4.3 compare 

the decoupled deformation components that include sliding, shearing, rocking, bending, 

and overall end deformations of the wall at the peak drift of each cycle. The end 

deformations were directly recorded from the DTRs at the top and midpoint of each 

specimen. Sliding deformations were calculated as the sum of the three LVDT’s 

measuring slip between the top of the wall and the loading beam, between the bottom of 

the wall and the footing, and between the footing and the strong floor. Rocking 

deformations were derived from the two uplift LVDTs on either side of the wall using the 

following equation (Bland, 2011): 
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where δr1 and δr2 came from the 0.5” LVDT A and 0.5” LVDT B respectively; Lw and 

and he are the length and height of the wall, respectively; and ls is the distance from the 

LVDT to the near side of the wall.  

For a given displacement component of the wall, the rocking deformation was 

calculated based on the rotation between the two transducers multiplied by the height, as 

shown in Figure 7-6.  

 
Figure 7-6: Arrangement for rocking deformation instruments (from Voon, 2007) 

 

The shear and bending displacements were calculated based on the extension and 

contraction of the DTRs and LPOTs. According to Bland (2011) the shear and bending 

deformation components, us and ub, respectively are:  
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where δv1 and δv2 represent vertical transducer measurements, δd1 and δd2 represent 

diagonal transducer measurements, du represents the distance from the top of the wall to 

the top of the instruments measuring shear and bending deformations, h represents the 

specimen height, L is the specimen length, and d is the diagonal distance. Figure 7-6 

illustrates the arrangement the measurements. More detailed derivations for these 

equations can be found in the companion thesis (Bland, 2011). 

 
Figure 7-7: Arrangement for shear deformation instruments (from Voon, 2007) 
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7.4.1 W4 

As shown in Figure 7-8, the flexural deformation is larger than the shear 

deformation at lower displacement levels, indicating the behavior of the wall is flexure-

dominant. With the increase of lateral displacement, the shear deformations become more 

predominate, corresponding to the sliding shear observed in the experiment. It is also 

evident that rocking and sliding of the wall contributed substantially to the overall 

deformation of the wall at the higher displacement levels. Displacement at the midpoint 

end of the wall remains approximately half of that at the top end of the wall. This 

suggests that no severe damage has occurred from the midpoint of the wall to the top 

which is consistent with the visual observations taken during the test.  

 
Figure 7-8: W4 deformation components 

7.4.2 W5 

The displacement components of W5 are shown in Figure 7-9, and the lengths 

over which they are measured are summed shown in Table 7-4. Results indicate that the 

specimen experienced significant shear deformation which may be due to the 
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imperfection of the wall caused by the W5-Phase I test, the contribution of the flange, or 

a combination of the two. As described in Chapter 6, the premature failure of the wall in 

the Phase I test loosened many of the blocks which increased the potential for sliding 

shear, making the wall more likely to slide than bend. In addition, results for the flexural 

deformation show that the wall is more prone to bending in the push direction, with the 

flange in compression, than in the pull direction, with the flange in tension. From the 

lateral deformation plot it can be observed that 60 percent of the top end lateral 

deformations occurred at the midpoint of the wall suggesting that the plastic hinge 

extended up from the bottom of the wall.      

 
Figure 7-9: W5 deformation components 

Table 7-4: Instrument distances for W4 and W5 retest 

                               
W4 
(mm) 

W5 retest 
(mm) 

Instrumented Height (h) 800 1200 
Instrumented Length (L) 600 1500 

  Wall Height  (hw)  1800  1800 

 Wall Length  (Lw)  900  1800 

Distance from top of 
wall to instruments  (du)  90  550 

  Diagonal Distance  (d) 950 1920 
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7.4.3 W6 

The displacement component of W6 were measured in three different sections, as 

shown in Table 7-5 and Figure 7-11, then summed together to give the overall 

displacements, shown in Figure 7-10. From Figure 7-10, it can be observed that in both 

the push and pull directions the shear and bending deformation components are 

approximately the same. From the lateral deformation plot, it can be observed that 

approximately half of the wall top deformation was present at the top of the pier.  

 
Figure 7-10: W6 deformation components 

 

 
Figure 7-11: W6 shear and bending instrumentation 
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Table 7-5: Instrument distances for W6 

Wall 6 
 

Top 
(mm) 

 Middle 
(mm) 

  Bottom  
 (mm) 

Total 
(mm) 

Instrumented Height  (h) 400 500 500  1400 
Instrumented Length  (L) 317 317 317  951 
Distance from top of 
wall to instruments  (du)  50  0  0  50 

Diagonal Distance   (d) 511 592 592  1695 
 

7.5 Plastic Moment Resistance and Lateral Strength of Specimens  

While each specimen experienced various types of combined failures, including 

local shear failures, sliding failures, and local crushing failures observed during the tests, 

all the specimens primarily exhibited flexure dominant behaviors which they were 

designed for.   

The plastic flexure resistance of the cantilever specimens can be derived using the 

procedure for calculation of the ultimate resistance of reinforced concrete cross-sections, 

which assumes plane section and strain compatibility, as shown in Figure 7-12. Although 

this principal relationship is generic, several factors are code based. ACI 530 assumes a 

uniform distribution of the compression forces resisted by the masonry over a zone where 

the length is the product of an alpha factor (α) and the distance from the extremely outer 

masonry fiber to the neutral axis (c). The magnitude of the uniformly distributed 

compression force is equal to the product of the masonry compressive strength and a beta 

factor (β).  ACI 530 defines both α and β factors as 0.8 for the masonry compressive 

block. The tensile force in each steel rebar can be determined by the following equation  

fsi=AsEsεsi ≤Asfy                                                                 (7-4) 
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where As is the area of the rebar, Es the modulus of elasticity of steel, and εsi is the 

maximum allowable strain in steel. 

   

 
Figure 7-12: Idealized normal stress and strain relations (Bland, 2011) 

 

The equation which defining the plastic moment capacity of the wall, derived 

from Figure 7-12 with moments taken about the neutral axis of the wall, is:  
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where P is the applied vertical load, c is the distance from the neutral axis to the extreme 

outer compression fiber , L represents the length of the wall, and id  is the distance from 

neutral axis to each respective rebar. Tsi and Csi are the compressive and tensile forces in 

the vertical rebar as determined by strain compatibility, and Cm is the resultant force 

resisted from the masonry blocks under compression. Tsi and Csi are determined by 

Equation (7-6) and Cm is determined by Equation (7-7), respectively:  

si s si

si s si

T A f
C A f

=⎧
⎨ =⎩

                                                   (7-6) 

where As is the area of a steel bar, fsi represents the tensile or compression stress in the 

steel bar  and it can be determined based on Equation (7-4) and strain compatibility, 

following the provisions set forth by ACI-530. 

' 0.8 ' (0.8 ) 0.64 'm m m mC f ab f c b f cbα= = =                                    (7-7) 

where a is the depth of the compressive block, taken as 0.8 times c; 'mf  is the 

compressive strength of the masonry; α is a factor used to convert a nonuniform stress 

distribution into an equivalent uniform stress, taken as 0.8 according to ACI 530-08; and 

b is the width of the wall. 

For a cantilever structure such as W4 and W5, the lateral force resistance (F) can 

be found by dividing the plastic moment resistance of the specimen (Mp), determined 

from Equation (7-5), by the specimen height (He), as shown by equation  

p

e

M
F

H
=

                                                           (7-8)
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For W6, the specimen lateral force resistance can be obtained from the virtual work 

equation which equating the internal work done by the cross-section plastic moment and 

the external work done by the lateral load as shown in Equation (7-9) 

eqpiM H Vθ θ⋅ = ⋅ ⋅∑                                                  (7-9) 

where Mpi is the plastic moment of the specimen, H is the height of the piers, Veq is the 

lateral force at the top of the wall, and  is the rotation of each at the location of the 

plastic moment, as shown in Figure 7-13. 

 

 
Figure 7-13: Lateral force resistance determination for W6 

 

Figure 7-14 compares the predictions from Equations (7-6) and (7-7) to the testing 

results.  It is recognized that the one of the important parameters controlling lateral 

strength of the specimens is the rebar yielding strength. The rebar yield strength, obtained 

from the rebar tests (360 MPa on average, see Appendix A for details) is higher than the 
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value assumed in specimen design (i.e. 276 MPa). As such, the actual strength is used for 

specimen strength calculation. As shown in Figure 7-14, reasonable agreements were 

observed in W4 and W5. 

W4 W5- Phase I 

 
W5- Phase II W6 

Figure 7-14: Lateral force resistance comparisons: Analytical vs. Testing Data 

Different from W4 and W5 in which inelastic behavior concentrated at the base of 

the specimens, W6 had inelastic behavior at each end of the piers. According to equation  

(7-7), the lateral strength of W6 depends on the number of plastic hinges and strength of 

these hinges. Ideally, four plastic hinges with 100% of their nominal strength should form 

at the ends of the piers.  However, for many reasons, such as loss of the hinge moment 

resistance due to local failures; incomplete development of the plastic moment resistance 
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of plastic hinges; increased effective height of the piers; which is used in the calculation 

of the system lateral resistance; insufficient development length of the rebars in grouted 

ICEBs, a reduced system strength may be observed. As such, both 100% and 75% of the 

predicted strength from Equation (7-9) were included in Figure 7-14 for comparison 

purpose.  

7.6 Nonlinear Static Analyses 

In order to check the possibility of incorporating the ultimate strength calculation 

for ICEB walls into existing structural analysis computer program and further confirm the 

adequacy of the procedure presented in the previous section, which assumes flexure-

dominant wall behavior, nonlinear static analyses (also known as pushover analyses) 

were conducted in SAP 2000.  

In the developed models, inelastic behavior of the specimen was captured using a 

group of frame elements representing the masonry fibers or reinforcing rebars at certain 

predetermined plastic hinge locations, i.e., modeling the walls with consideration of 

lumped plasticity. For simplicity, both masonry and steel were modeled as elastic-

perfectly-plastic materials. Compression-only and tension-only properties were assigned 

to masonry and reinforcing rebars, respectively.  To achieve such material properties, 

each fiber were modeled by connecting one elastic member with tension or compression 

limit equal to zero to another inelastic member with plastic deformation concentrating at 

the midpoint. A visual depiction of each fiber is illustrated in Figure 7-15. It is 

recognized that the above-mentioned simplified material properties overestimate the 

stiffness of the specimens; however, they provide reasonable estimates of the specimen 

ultimate strength as shown in Figure 7-16.  In order to focus on the flexural behavior of 
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the specimen, the shear forces were assumed to be transferred without causing any 

inelastic behavior at the plastic hinge locations. For the zones outside the plastic hinge 

locations, isotropic and elastic material properties were assigned. The cross sectional area 

and number of fibers used in each model is summarized in Table 7-6.   

Results for all specimens are summarized in Figure 7-16. For the reasons 

explained in section 7.5, results associated with 3 and 4 plastic hinges are both provided 

for W6. In addition, analytical models considering distributed plasticity were developed 

in the companion thesis (Bland, 2011). For comparison purpose, results from that model 

were also included for W3. From all cases compared in Figure 7-16, it is consistently 

observed that results from the computer models match reasonably well with the testing 

data, indicating the adequacy of these models for practical application. For completeness, 

Figure 7-17 was generated to compare the nonlinear static analysis to the plastic analysis. 

Good agreement was found in the result comparison, as shown in Figure 7-17.  

 

 
Figure 7-15: Generic Fiber from SAP 2000 model 
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Table 7-6: Fiber components of ICEB walls 

Wall   Wall 
component 

Number 
of ICEB 
fibers 

Width of 
ICEB fibers 

Depth of 
ICEB fibers

Area each 
ICEB 
fibers

Number 
of steel 
fibers 

Area each 
steel 
fibers

(mm)  (mm)  (mm2 )  mm2 

W3  ‐‐  200  9  150  1350  4  71 
W4  ‐‐  100  9  150  1350  2  71 
W5  Web  275  6  150  900  3  71 
W5  Flange  25  6  450  2700  1  321 
W6  ‐‐  180  10  150  1500  8  71 
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Figure 7-16: Lateral force resistance comparisons: SAP 2000 vs Test Data  

 

 
W3 W4 

W5- Phase II 
 

 W6 
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W4 

 

 
W5 
 

 
W6 

 
Figure 7-17: Lateral force resistance comparisons: Analytical vs SAP  
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8 SEISMIC PERFORMANCE OF FLEXURE DOMINANT ICEB WALLS 

In order to address the behavior of the flexure dominant walls under earthquake 

loading, this chapter performed nonlinear time history analysis using the Incremental 

Dynamic Analysis (IDA) procedure (Vamvatsikos and Cornell, 2002).  The following 

sections summarize the development of the analytical model, description of 

demonstration buildings, and the results from the analysis. 

8.1 Description and Validation of the Computer Model 

IDARC-2D, commonly referred to as IDARC, is a two dimensional, 

noncommercial, structural analysis program capable of nonlinear analysis. Created at the 

State University of New York, Buffalo, IDARC permits both static and dynamic 

nonlinear analysis (Reinhorn, 2010). This program was used in this thesis for simulating 

the behavior of ICEB structures. 

Considering the scope of this chapter focuses on the flexure dominant wall 

behavior, W4 was first modeled for validation purpose. Consistent with the actual 

specimen and testing conditions, W4 was modeled as a cantilever member with 

distributed plasticity. As discussed in Chapter 3, the masonry behavior is quite similar to 

that of conventional concrete.  The stress-strain curve of unconfined concrete which was 

modified using the maximum compressive strength from the W4 prism test and the 

modulus of elasticity identified from the modified Hognestad model, described in section 

3.5, was assigned to the masonry in the model. An idealized tri-linear strain-stress 

relationship with yield strength (410 MPa) and ultimate strength (480 MPa), identified 

from coupon tests, were assigned to the reinforcing rebars. The general smooth hysteretic 

model developed by Sivaselvan and Reinhorn (2000) was used in the analysis for 
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capturing the deteriorating inelastic behavior of the specimen under unloading and 

reloading conditions. 

The computer model of W4 was analyzed using the same loading protocol used in 

the shear wall test.  Figure 8-1 compares the results from simulation and those from the 

testing. As shown, reasonable agreement is observed, indicating the adequacy of the 

developed analytical model. 

  

 

Figure 8-1: Comparison of results from test and IDARC 

8.2 Demonstration Building 

In order to further examine the seismic behavior of flexure dominant ICEB walls, 

two demonstration buildings were designed for IDA. The following sections describe the 

geometries, assumed material properties, and determination of the fundamental period of 

such building examples. 
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8.2.1 Geometries and Materials of the Demonstration Buildings 

As shown in Figure 8-2, the demonstration building includes 20 slim flexure 

dominant walls, reinforced the same as W4, as the primary lateral force resisting system 

along each direction.  These two buildings, studied in this thesis, are both single story 

structure and have the same plan view as shown in Figure 8-2; however, they are 

different in story height and reactive mass.  Such differences allow for investigation of 

the effects of these parameters on seismic behavior of ICEB buildings.  

 
Figure 8‐2: Demonstration Building for Nonlinear Dynamic Analysis 

Heights of the abovementioned Buildings 1 and 2 were respectively assumed to 

be 2300 mm and 3000mm. These heights were selected to be representative in residential 

buildings. The openings shown in Figure 8-2 are designed as either doors or windows, 

with the lintels above the opening and sill’s below the opening considered to be 

nonstructural elements. 
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The reactive masses of the building were determined based on three factors: 

reactive mass of the ICEB walls, reactive mass of the nonstructural elements and the 

reactive mass from the roof. Equation (8-1) was used to determine the reactive mass of 

the demonstration buildings.  

1 ( )
2 wall NSE roofM M M M= + +∑

                                       (8-1)
 

where M is the mass reactive mass, Mwall is the mass of each shear wall, MNSE mass of 

nonstructural elements, and Mroof is the roof mass. 

The roof mass was determined based on the vertical load assumed in the shear 

wall test of W4, translating to 250kg/m across each shear wall elements. The reactive 

mass of the shear walls was calculated based on the mass of a fully grouted ICEB and the 

total number of blocks in each wall. The mass of the nonstructural elements depends on 

the material which they are constructed from. For the purposes of this thesis, it was 

considered to be 10% of the total mass of all ICEB walls. As a result, the reactive masses 

of Buildings 1 and 2 were determined to be 21,144 kg and 24,408 kg, respectively.   

8.2.2 Determination of Fundamental Period 

The fundamental periods of the demonstration buildings was determined to scale 

the selected ground motions for further nonlinear time history analysis described in a 

following section. In addition to the reactive mass described in the previous section, the 

stiffness of ICEB walls, which can be determined from moment of inertia, and material 

modulus of elasticity require calculation. A traditional method of transformed sections, 

found in standard mechanics of materials textbook, allows one to calculate the moment of 

inertia of a section with two different materials based on the areas and moduli of 
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elasticity of the two materials. This method typically assumes isotropic material 

properties for different materials (i.e. identical properties for both tension and 

compression), but from the materials testing conducted in this investigation it is 

understood that ICEBs have negligible tensile strength. As a result, this investigation 

assumes compression-only material property for ICEBs for moment of inertia 

calculations. As a result only the masonry within the compression zone, calculated from 

plastic analysis, was considered to contribute strength.  

The Masonry Design Guide (The Masonry Society, 2007), calculates the 

deflection of a solid cantilever shear wall, subjected to a single point load at the top, as: 

3 1.2
3c

m v

h hP
E I E A

⎛ ⎞
Δ = +⎜ ⎟

⎝ ⎠                                                         (8-2)                         

where P is the applied force, h is the height of the wall, Em is the modulus of 

elasticity of the masonry, Ev is the shear modulus of the masonry (taken as 0.4Em), and I 

is the calculated moment of inertia.  

Given the fact that the shear deformation associated with the elastic behavior of 

the wall is negligible and the scope of this thesis focused on the walls with flexure 

dominate behavior, the shear deformation was neglected in equation (8-2). As a result, 

the wall elastic stiffness can be calculated according to equation (8-3): 

3

3 m

c

E IPk
h

⎛ ⎞= = ⎜ ⎟Δ ⎝ ⎠
                                                                (8-3) 

Figure 8-3 compares the stiffness of W4 determined from the above mentioned 

procedure and the hysteretic curves of W4 obtained from testing. As shown, the above 

procedure provides reasonable estimate for the initial stiffness of the specimen.  



148 

 

With the reactive weights and wall stiffness, the fundamental periods of the 

demonstration buildings were determined based on the following equation  

2 MT
k

π=                                                                 (8-4) 

where k is the stiffness calculated from Equation (8-3) and M is the reactive 

weight of the structure. 

Following Equation (8-4), the fundamental periods of Building 1 and 2 were 

determined to be 0.18 and 0.29 seconds respectively. Table 8-1 gives the height, reactive 

weights, stiffness, and periods associated with each demonstration building. 

 

Table 8-1: Properties of demonstration buildings 

Building 
Height  Reactive Weight Stiffness Period 
(mm)  (kg) (kN/mm) (s) 

1  2300  21,144  25.44  0.18 

2  3000  24,408  11.46  0.29 

  



149 

 

 

Figure 8-3: Estimated stiffness and hysteretic curves of W4 

 

8.3 Incremental dynamic analysis 

IDA is a parametric analysis method that has recently emerged in several recent 

forms to estimate more thoroughly structural performance (in particular collapse level 

performance) under seismic loads. It typically involves subjecting a structural model to 

multiple ground motion records scaled to multiple levels of intensity, thus producing 

curves of response parameterized versus intensity level (Vamvatsikos and Cornell, 2002).  

In this thesis, based on the structural model validated in Section 8.1, the IDA approach 

was used to evaluate the collapse performance of the demonstration buildings.  The 

following sections describe the selected ground motions for IDA and quantification of the 

probability of collapse of the demonstration buildings.   



150 

 

8.3.1 Ground Motions  

As a special type of nonlinear time history analysis, the results of IDA highly depend 

on the ground motion input in the analysis. Conventionally, the ground motion input 

should be selected from actual earthquake records from different sites to ensure they are 

not biased. The ground motions used in Quantification of Building Seismic Performance 

Factors, known as FEMA P695 (FEMA, 2009) were considered in this thesis.  The 

original earthquake sets considered in FEMA P695 includes one set of 22 far field ground 

motions and one set of 28 near field ground motions (14 records with pulse and the other 

14 records without pulse).  Considering the availability of these ground motions and their 

compatibility with IDARC, 19 far field ground motions and 23 near field ground motions 

were selected. Detailed information about these selected ground motions is presented in 

Appendix B.   

In order to exclude the performance difference of the demonstration buildings caused 

by magnitude, site conditions, source type, and distance to source of each specific 

earthquake, the selected ground motions were scaled using the following equation:    

MOTION
input

T

PGAPGA N
Sa

=                                                       (8-4) 

where PGAMOTION is the peak ground acceleration of respective earthquake 

ground motions, SaT is the elastic spectral acceleration at the fundamental period of 

the structure, and N represents the ground motion intensity considered in the analysis. 

For this thesis, the intensity increment was selected as 0.05, ranging from 0.05 to 2.5.  
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8.3.2 Probability of collapse  

Based on the structural models and the selected ground motions, nonlinear time 

history analyses were conducted for different levels of ground motion intensity (i.e. 

spectral acceleration values).  Results for Buildings 1 and 2 shown in Figure 8-4 form a 

database for quantification of the probability of collapse.    

 

 
Building 1 under near field earthquakes 

 
Building 1 under far field earthquakes 

 

Building 2 under near field earthquakes 

 

Building 2 under far field earthquakes 
Figure 8-4: Results from IDA 
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Traditionally, the maximum drift of a structure under a certain level of earthquake 

intensity is assumed to have a lognormal distribution (FEMA P695, 2009). Therefore, the 

probability of collapse of the structure at the earthquake intensity level of interest can be 

calculated as:  

0
0

ln( | ) 1 YYP Y Y x −θ
> = −Φ[ ]

β
                                              (8-5) 

where x is the earthquake intensity level of interest (i.e. a certain value of spectral 

acceleration); Y is the random variable representing the maximum story drift of the 

structure; Yo is the collapse level drift limit which is defined to be the drift value 

corresponding to 20% of strength degradation on the backbone curve shown in Figure 7-2 

and was identified to be 1.78% for flexure dominant walls; Φ  is the cumulative 

distribution function of standard normal distribution, β and θY  are respectively the 

sample standard deviation and the median of the natural log values of the maximum drifts 

calculated from the considered ground motions at the intensity level of interest. 

Connecting the estimates of the probability of collapse at each earthquake intensity 

level, one can obtain the fragility curves shown in Figure 8-5 and Figure 8-6. Such 

graphical representations can be used for quantification of the probability of collapse at 

the different intensity levels.  
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Figure 8‐5: Fragility curves of demonstration buildings under near field ground         

motions 

 
Figure 8‐6: Fragility curves of demonstration buildings under far field ground motions  



154 

 

As discussed in FEMA P695, the spectral acceleration corresponding to a 

probability of failure equal to 50 percent (denoted as SCT) is used as an index to address 

the collapse resistance of the structure. From the fragility curves shown in Figure 8-5 and 

Figure 8-6, the values of SCT were identified for Buildings 1 and 2. Results are presented 

in Table 8-2.  As compared, demonstration Building 2, with higher walls and a larger 

mass, has a smaller value of SCT than Building 1 which is shorter and lighter, indicating 

that larger values of story height and reactive weight may have detrimental effects on the 

collapse resistance of ICEB walls.  

Table 8‐2: PSA values for 50% collapse probability 

 SCT for Far Field 
(g) 

SCT for Near Field 
(g) 

Building 1 1.93 2.07 

Building 2 1.57 1.50 

8.4 Discussion of ICEB structures at different sites  

As described in Chapter 1, the ICEB structures are being promoted in developing 

countries, in particular Asia, where levels of seismicity may vary widely. As such, it 

would be interesting to address the performance of the demonstration buildings in these 

countries.  This section addresses the suitability of ICEB structures, from the perspective 

of collapse prevention, based on the fragility curves obtained in the previous section and 

the seismic hazard identified from the respective seismic design spectra of two Asian 

countries, i.e., Indonesia and Thailand.  These countries have quite different levels of 

seismicity. For comparison purpose, another site in California (i.e., the Cal Poly campus) 

was also considered.   
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Although different countries recommend different ways for calculating the seismic 

forces on structures, the equations were presented in the same manner, i.e. multiplying 

the reactive weight by the elastic spectral acceleration values associated with the design 

basis earthquakes (DBE). In order to make use of the fragility curves and have a more 

realistic estimate of the structure collapse performance, the DBE spectral acceleration 

values were converted to the values associated with the maximum considered 

earthquakes (MCE). According to FEMA P695, one can multiply the DBE spectral 

acceleration by 1.5 to obtain the MCE spectral acceleration.  With the MCE spectral 

acceleration, one can identify the corresponding probability of collapse from the fragility 

curves.  Based on this approach, the MCE spectral accelerations were determined for the 

countries of interest. It is noteworthy that the MCE spectral accelerations should be 

corresponding to elastic spectra which means that the factors used to modify the seismic 

force for consideration of inelastic structural performance should not be considered.  

Appendix C presents the detailed information about the seismic provisions of Indonesia 

and Thailand for determination of the DBE spectral accelerations. Table 8-3 lists the 

corresponding MCE spectral acceleration values.  It is recognized that the maximum 

seismic force is present in zones 2 and 6 zones for Thailand and Indonesia, respectively. 

Table 8-3 only includes the maximum values (the worst scenarios) for consideration. 

More complete information about the MCE spectral acceleration values of these zones is 

also provided in Appendix C. 

In order to address the suitability and the ability to avoid collapse failure of the 

ICEB buildings in the considered countries, the Collapse Margin Ratio (CMR) defined in 

FEMA P695 (FEMA, 2009) as the ratio of the spectral acceleration associated with 50 
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percent collapse probability to the spectral acceleration associated with the MCE event on 

the site of interest is used as an index for comparison.  The higher CMR values indicate a 

higher level of confidence for preventing structures from collapse.  Table 8-4 lists the 

CMR values for the sites and buildings considered.  

Table 8-3: Maximum DBE and MCE values 

  Thailand Indonesia California 
Zone  2 1 N/A

Soil Conditions Soft Soil Firm Soil  Class B 

BDE  0.045 0.52 0.84

MCE  0.0675  0.78  1.26 

 

Table 8‐4: CMR ratio 

  Demonstration 
Building SCT 

CMR

 Thailand Indonesia California  

Near Field 
Building 1 2.07 30.90 2.65 1.64 
Building 2 1.50 22.22 1.92 1.19 

Far Field  
Building 1 1.93 28.81 2.47 1.53 
Building 2 1.57 23.43 2.01 1.25 

  

Based on the CMR values presented in Table 8-4, it is observed that the two 

demonstration buildings both exhibit relatively low probabilities (less than 50%) of 

collapse during earthquake events, as indicated by the CMR values greater than 1.0.  This 

indicates the ICEB structures with flexure dominant behavior may be suitable for all 

locations considered from the seismic design perspective. However, this type of 

construction may be overly conservative for Thailand where relatively low seismicity 

exists. As shown in Table 8-4, the CMR in Thailand is approximately 10 times and 15 
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times larger than Indonesia and the Cal Poly site, respectively.  Therefore, future research 

opportunities exist to develop more cost effective construction detailing (such as partially 

grouted walls and walls with less steel reinforcement) for the ICEB structures in 

Thailand. 
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9 CONCLUDING REMARKS AND FUTURE WORK 
 

9.1 Summary 

This thesis conducted experimental and analytical investigations on flexural behavior 

of three commonly constructed ICEB walls. The three walls tested in this research 

include an 1800 mm tall and 900 mm wide slender wall (W4), an 1800mm x 1800mm 

square wall with a 750 mm wide flange on one end (W5), and a 1800 mm square wall 

with a 900 mm x 900 mm square opening in the middle (W6). Each wall was constructed 

from fully grouted ICEBs made on the Cal Poly campus from native soil, sand, and 

Portland cement. All three walls were tested under displacement controlled cyclic 

loading. Various instruments were used to capture the shear, bending, rocking, and 

sliding displacement components for a better understanding of in-plane performance of 

ICEB shear walls.  

Two types of analyses were conducted for calculating the ultimate strength of flexure 

dominant ICEB walls based on the data collected from shear wall testing: a nonlinear 

static analysis model assuming lumped plasticity and a plastic analysis model.  In 

addition, incremental dynamic analysis was conducted to address the seismic 

performance of flexure dominant ICEB buildings. Last, based on the database from the 

incremental dynamic analysis, the collapse potential of demonstration ICEB buildings 

were compared for the countries of interest.  
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9.2 Concluding Remarks 

The results of this thesis can be divided into two categories based on the findings 

from experimental and analytical work, respectively. Both types of results provide insight 

into the performance of flexure dominant ICEB shear walls. 

9.2.1 Findings from Experimental Results  

• The failure mode of each wall was characterized by tensile yielding of the 

longitudinal rebar. Compared with the brittle shear failures observed in the 

companion thesis, the flexure dominant specimens are more ductile and have a 

more stable energy dissipation capacity.  

• A loss of toe confinement which may lead to rebar buckling, characterizes the 

eventual strength loss of the two cantilever specimens (W4 and W5).  Strength 

loss for the wall with an opening (W6) was characterized by a combination of 

flexural failure and the diagonal crushing of masonry.  

• Shear sliding, observed in the two cantilever specimens, has a significant 

contribution to the overall deformation of the system.   

• A double ring beam was effective in transferring the load from the load beam into 

the wall.  

• Vertical stirrups used in the construction of the lintel, above the opening in W6, 

were effective in preventing a shear failure of the lintel. 

•  To help resist buckling the vertical reinforcement, transverse (shear) 

reinforcement should be hooked 180 degrees, around the vertical reinforcement, 

despite the narrow width of the channel in the channel ICEB blocks.  This is not 
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consistent with the minimum bend diameter for reinforcing bars required by the 

ACI 530-08 provision, but was found effective in W6. 

• The ductility of ICEB shear walls can be affected by the aspect ratio, the 

presences of an opening, and the presences of a flange. 

9.2.2 Findings from Analytical Results 

• A reasonable agreement was found between the ultimate strength observed from 

testing and that predicted by plastic analysis using the parameters prescribed by 

ACI 530-08.  

• The lumped plasticity model, used in the nonlinear static analysis provides good 

agreements with the maximum strength observed from testing; however it does 

not capture the stiffness of ICEB walls due to the simplified material properties. 

• Results from the incremental dynamic analysis on single story demonstration 

buildings suggest that there is a relatively low probability of earthquake-induced 

collapse for similar single story flexure dominant ICEB constructions in all the 

three considered countries.  

9.3 Future Research 

• Further investigation of the strengths of lintel is necessary to determine the most 

effective and efficient manner for designing wall with opening. 

• Investigation into the bond strength between reinforcement and grout, and 

between grout and ICEB would provide better insight into the required length 

necessary to develop required bond strength. 
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• Exploration of various methods of toe confinement could improve the ductility of 

ICEB walls by preventing premature failure in the compression zone. 

• Further cost analysis of ICEB construction is necessary to ensure the widespread 

acceptance of this system in developing countries.    
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APPENDIX A             RESULTS FROM MATERIAL TESTING 
 

This appendix presents the material properties obtained from this thesis and the 

companion thesis. Table A-1 presents the compressive strength obtained from testing of 

the prism specimens. These specimens tested under the stress-controlled and strain 

controlled conditions are detonated as σ and ε in Table A-2, and they were respectively 

loaded at a load rate of 2.0MPa/min and a displacement rate of 0.45mm/mm 

(corresponding to 20 με/s). Table A-2 presents the compressive strength of the ungrouted 

ICEBs. Table A-3 and Figure A-1 present the tensile strength and strain-stress curves of 

the reinforcement rebar used in the specimens. Proportions for mortar and grout mixtures, 

using the in construction of walls are presented in Table A-4.  
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Table A-1: ICEB prism compressive strength 

Wall  Loading 
Area  Stress 

Mean  St Dev 
(mm2)  MPa 
Partial Grouting 

1  σ  41,819  2.88 
3.32  0.615183 

1  σ  41,819  3.75 

2  σ  41,819  2.12 
2.10  0.047258 4  ε  45,000  2.05 

6  ε  41,819  2.14 

Full Grouting 

1  σ  45,000  4.57 
4.12  0.636396 

1  σ  45,000  3.67 

2  σ  45,000  4.31 
4.20  0.155563 

2  σ  45,000  4.09 

3  ε  45,000  2.88 
3.04  0.219203 

3  ε  45,000  3.19 

4  ε  45,000  ‐‐ 
2.77  N/A 

4  ε  45,000  2.77 

5  ε  45,000  3.16 
3.16  N/A 

  5*  σ  45,000  4.73 

6  ε  45,000  2.37 
2.26  0.162635 

6  ε  45,000  2.14 
 

Table A-2: ICEB compressive strength 

Wall 
Area  Stress 

Mean  St Dev 
(mm2)  MPa 

1  39,319  7.64 

7.57  0.662246 

1  39,319  7.42 

2  39,319  6.96 
2  39,319  7.8 

‐  39,319  7.39 
‐  39,319  7.36 

‐  39,319  9.03 
‐  39,319  6.93 
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Table A-3: Rebar tensile test data 

Test Specimen 

 
 

Area  
(mm2) 

Yield Strength 
(MPa) 

Average Yield 
Strength  
(Mpa) 

Ultimate 
Strength 
(Mpa) 

Average 
Ultimate 
Strength  
(Mpa) 

W4 
Rebar #1  71.00  407.42 

378.18 
574.33 

541.21 
Rebar #2  71.00  348.94  508.08 

W5 

Rebar #1  71.00  339.72 

369.47 

574.33 

542.12 

Rebar #2  71.00  383.90  Slipped 
Rebar #3  71.00  354.77  496.61 
Rebar #4  71.00  388.61  555.40 
Rebar #5  71.00  380.34  Slipped 
Rebar #6  71.00  Slipped  Slipped 

W6 

Rebar #1  71.00  Slipped 

356.05 

Slipped 

496.99 
Rebar #2  71.00  355.39  481.38 
Rebar #3  71.00  Slipped  Slipped 
Rebar #4  71.00  356.71  512.59 
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Figure A-1: Stress-Strain data for rebar  

 

Table A-4: Grout and Mortar Proportions 

Ingredients 
Grout  Mortar 

Proportions  Mass per Batch  Proportions  Mass per Batch 
(Volume %) (kg)  (Volume %) (kg) 

Sand  75  16  75  14 

Cement  18  3.4  17  2.5 

Lime  7  0.5  8  0.5 
 



APPENDIX B                        GROUND MOTIONS USED IN SEISMIC                
                                                       PERFORMANCE EVALUATION 
 

As described in Chapter 8, the IDA approach was used to evaluate the collapse of the 

demonstration building for a suite of 42 recorded motions selected from the 50 ground motions 

considered in FEMA P695. The original ground motions in FEMA P695 include 28 near field 

records (14 with pulse and 14 without pulse) and 22 far field records. Far filed motions are 

recordings which occur more than 10 km from the fault rupture, while near field recordings are 

motions which were recorded within 10 km of the fault rupture. According to FEMA P695 

(FEMA 2009), these original 50 ground motions were selected based on the following criteria: 

1. Code (ASCE/SEI 7-05) Consistent – The records should be consistent (to the extent 

possible) with the ground motion requirements of Section 16.1.3.2 of ASCE/SEI 7-05 

Minimum Design Loads for Buildings and Other Structures (ASCE, 2005) for three-

dimensional analysis of structures.” 

2. Very Strong Ground Motions – The records should represent very strong ground 

motions corresponding to the MCE motion.  

3. Large Number of Records – The number of records in the set should be “statistically” 

sufficient such that the results of collapse evaluations adequately describe both the 

median value and record-to-record (RTR) variability of collapse capacity. 

4. Structure Type Independent – Records should be broadly applicable to collapse 

evaluation of a variety of structural systems, such as systems that have different dynamic 

response properties or performance characteristics. Accordingly, records should not 

depend on period, or other building-specific properties of the structure. 

B-1 
 



5. Site Hazard Independent – The records should be broadly applicable to collapse 

evaluation of structures located at different sites, such as sites with different ground 

motion hazard functions, site and source conditions. Accordingly, records should not 

depend on hazard disaggregation, or other site- or hazard-dependent properties 

 

Of the original 50 recorded ground motions, 3 far field and 5 near field motions were not 

considered in the IDA because they are either not available or not suitable with the IDARC 

program.  Detailed information about the selected far field and near field ground motions are 

presented in Table B-1 and Table B-2, respectively. 
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Table B-1: Far Field Earthquake Records 

No. EQ Location Record/ Component Fault Type Magnitude PGA (g)

1 Northridge NORTHR/MUL279 Thrust 6.7 0.516

2 Northridge NORTHR/LOS270 Thrust 6.7 0.482

3 Duzce, Turkey DUZCE/BOL090 Strike-slip 7.1 0.822

4 Hector, Mine HECTOR/HEC090 Strike-slip 7.1 0.337

5 Imperial Valley IMPVALL/A-DLT352 Strike-slip 6.5 0.351

6 Imperial Valley IMPVALL/H-E07140 Strike-slip 6.5 0.338

7 Kobe, Japan KOBE/NIS000 Strike-slip 6.9 0.510

8 Kobe, Japan KOBE/SHI000 Strike-slip 6.9 0.243

9 Kocaeli, Turkey KOCAELI/ARC000 Strike-slip 7.5 0.358

10 Kocaeli, Turkey KOCAELI/ARC000 Strike-slip 7.5 0.220

11 Landers LANDERS/YER270 Strike-slip 7.3 0.245

12 Loma Prieta LOMAP/CAP000 Strike-slip 6.9 0.450

13 Loma Prieta LOMAP/G03001 Strike-slip 6.9 0.555

14 Manjil, Iran MANJIL/ABBAR--L Strike-slip 7.4 0.4964

15 Superstition Hills SUPERST/B-ICC000 Strike-slip 6.5 0.358

16 Superstition Hills SUPERST/B-POE270 Strike-slip 6.5 0.446

17 Cape Mendocino CAPEMEND/CPM000 Thrust 7 0.550

18 San Fernando SFERN/PEL090 Thrust 6.6 0.209

19 Friuli, Italy FRIULI/A-TMZ000 Thrust 6.5 0.351
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Table B-2: Near Field Earthquake Records 

No. EQ Location Record/Component Fault Type Magnitude PGA (g) 

With Pulse

1 Imperial Valley-06 IMPVALL/H-E06230 Strike-slip 6.5 0.439

2 Imperial Valley-06 IMPALL/H-E07230 Strike-slip 6.5 0.463

3 Superstition Hills-02 SUPERST/B-PTS225 Strike-slip 6.5 0.455

4 Loma Prieta LOMAP/STG090 Strike-slip 6.9 0.324

5 Erzican, Turkey ERZIKAN/ERZ-EW Strike-slip 6.7 0.496

6 Cape Mendocino CAPEMEND/PET090 Thrust 7 0.662

7 Landers LANDERS/LCN000 Strike-slip 7.3 0.785

8 Northridge-01 NORTHR/RRS228 Thrust 6.7 0.838 

9 Northridge-01 NORTHR/SYL360 Strike-slip 6.7 0.843

10 Kocaeli, Turkey KOCAELI/IZT090 Strike-slip 7.5 0.220

11 Duzce, Turkey DUZCE/DZC270 Strike-slip 7.1 0.535

Without Pulse

12 Gazli, USSR GAZLI/GAZ090 Thrust 6.8 0.718

13 Imperial Valley-06 IMPVALL/H-BCR230 Strike-slip 6.5 0.775

14 Imperial Valley-06 IMPVALL/H-CHI012 Strike-slip 6.5 0.270

15 Nahanni, Canada NAHANNI/S1280 Thrust 6.8 1.096

16 Nahanni, Canada NAHANNI/S2240 Thrust 6.8 0.489

17 Loma Prieta LOMAP/BRN090 Strike-slip 6.9 0.501

18 Loma Prieta LOMAP/CLS000 Strike-slip 6.9 0.644

19 Cape Mendocino CAPEMEND/CPM000 Thrust 7 1.497

20 Northridge-01 NORTHR/SPV270 Thrust 6.7 0.753

21 Northridge-01 NORTHR/STC180 Thrust 6.7 0.477

22 Kocaeli, Turkey KOCAELI/YPT330 Strike-slip 7.5 0.349
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APPENDIX C                   SEISMIC DESIGN SPECTRA IN  
                                           THE CONSIDERED COUNTRIES 

 
As discussed in Chapter 8, the seismic design spectra of Indonesia, Thailand and 

California were used to determine the spectral accelerations for quantification of the 

CMR values to evaluate the collapse performance of the demonstration ICEB buildings. 

The following sections describe the detailed information of these spectra. It should be 

noted that the provisions for generating these spectra presented in this appendix are taken 

from the website of the International Institute of Seismography and Earthquake 

Engineering (IISEE) in Japan: 

http://iisee.kenken.go.jp/net/seismic_design_code/index.htm 

C.1 Thailand  

Ministry regulation code No. 48, set forth by the Thailand ministry of the interior, 

defines horizontal seismic base shear according equation (C-1) with the corresponding 

variables defined in Table C-1.      

   *dV C W=                 (C‐1) 

          

http://iisee.kenken.go.jp/net/seismic_design_code/index.htm�
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Table C-1: Thailand Seismic Design Factors 

Variable Definition Value 
 

W Effective weight of the structure 

 
Total dead load and at least one-

fourth of the design live load 
 

 
Cd 

 
Spectral Design value 

 
* * * *Z K C S I  

 
Z 
 

seismic zone factor 
 

Table C-2 and Figure C-1 
 

K Structural Factor Table C-3 

C Dynamic Factor 1 0.12
15

C
T

= ≤  

T 
 

Fundamental Natural period of the 
structure 
 

 

S 
 

Site-structure resonance coefficient 
 

Table C-4 
 

I Importance factor Table C-5 
 

Table C-2: Seismic Factor for each Zone 

Zone Seismic Factor (Z) 
0 No need of seismic design 
1 0.15 
2 0.25 

 

Table C-3: Structural Factor for Different Type Buildings 

Description   Structural Factor (K) 
steel structures  0.67 
other structures  1 
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Table C-4: Resonance Coefficient as a function of Soil Type 

description S

soft soil 1.5

stiffer soil type 1

 

Table C-5: Seismic Importance factor based on Structure use 

description I 
Buildings essential to the public use, e.g., 
schools, hospitals, fire stations, disaster 
mitigation centers, railway stations, airports 1.5 

Buildings that can assemble more than 300 
persons in one room at one time, or buildings 
with more than 5 stories 1.25 

Any other buildings than above mentioned 
ones 1 
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Figure C-1: Thailand Seismic Regions (from IISEE) 

 

Excluding consideration of the effects of structure nonlinear performance and 

difference caused by the occupancy category, i.e. setting K and I equal to 1.0 according 

to Table C-3 and Table C-4, the Dynamic factor (C) has a value of 0.12 based on the 

fundamental period of the structure. Cd determined from Table C-1, is the estimate of 

DBE spectral acceleration. The MCE spectral acceleration values for all the seismic 

zones in Thailand and other factors used in the calculation are provided in Table C-6.        
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Table C-6: Summary of Spectral Acceleration values of the sites in Thailand  
 

Seismic 
Zone 

Seismic 
Zone 
Factor   Soil Type 

Resonance Coefficient  
Factor  Cd 

MCE Spectral 
Acceleration 

(g) 
(Z)  (S)

0  0  No Seismic 
Design Needed  0  N/A  N/A 

1 
 

0.15 
 

Soft Soil 1.5 0.027  0.0405
Stiffer Soil Type

 
1 
 

0.018 
 

0.027 
 

2  0.25 
Soft Soil 1.5 0.045  0.0675‐*

Stiffer Soil Type 1 0.03  0.045
-* the worst scenario which will be used in Chapter 8 for CMR calculation 

 

C.2  Indonesia   

The Ministry of Public Works for Indonesia set forth the Indonesian Earthquake 

Code, which defines horizontal seismic base shear according to equation (C-2) with the 

corresponding variables defined in Table C-7.  

 

*d tV C W=                                                                       (C‐2) 
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Table C‐7: Indonesia Seismic Design Factors 

Variable Definition Value 

Wt Effective weight of Structure 

 
Combination of the total vertical 
dead load and the reduced vertical 
live load 

 
Cd 
 

Spectral Design Value * *C K I  
 

   

C 
 

Basic seismic coefficient Figure C-2 and Figure C-3
 

I 
 

Importance factor Table C-8 

K 
 

Structural Factor Table C-9 

 

 

 

Figure C-2: Seismic Zones for Indonesia 
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Figure C-3: Indonesia zone based Seismic Design Spectra  

 

Table C-8: Importance factors for Buildings in Indonesia 
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Table C-9: Structural factor for Indonesian Building 
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Excluding the considerations of structure nonlinear performance and difference 

caused by the occupancy category, i.e. setting K and I equal to 4.0 and 1.0 according to 

Table C-8 and Table C-9, the value of Cd obtained from Table C-7 is the estimate of DBE 

spectral acceleration. The MCE spectral acceleration values for all the seismic zones in 

Indonesia and other factors used in the calculation are provided in Table C-10. 

 

Table C-10: Location based design factors 

Zone  Base Seismic Coefficient C  Cd Factor  MCE 

Soft Ground  Firm Ground Soft Ground Firm Ground Soft Ground  Firm Ground
Zone 1  0.13  0.09 0.52 0.36 0.78‐*  0.54

Zone 2  0.09  0.07 0.36 0.28 0.54  0.42

Zone 3  0.07  0.05 0.28 0.2 0.42  0.3

Zone 4  0.05  0.03 0.2 0.12 0.3  0.18

Zone 5  0.03  0.01 0.12 0.04 0.18  0.06

Zone 6  N/A  N/A N/A N/A N/A  N/A

-* the worst scenario which will be used in Chapter 8 for CMR calculation 

United States- Cal Poly Site 

For the Cal Poly Site, the design spectrum shown in Figure C-4, which was 

generated by the procedure recommended by ASCE 7 based on the spectral coefficient 

provided by the (USGS), was used for determining the spectral acceleration.  Excluding 

the consideration of structure nonlinear performance and difference caused by the 

occupancy category, the DBE and MCE spectral acceleration values are determined to be 

0.84g and 1.26g respectively. 
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Figure C-4: Design Spectra for Cal Poly assuming site class B 
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