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Abstract A matrix is called totally positive (resp. totally nonnegative) if all its minors are
positive (resp. nonnegative). Consider the Ising model with free boundary conditions and
no external field on a planar graph G. Let a1, . . . , ak, bk, . . . , b1 be vertices placed in a
counterclockwise order on the outer face of G. We show that the k × k matrix of the two-
point spin correlation functions

Mi, j = 〈σai σb j 〉
is totally nonnegative. Moreover, det M > 0 if and only if there exist k pairwise vertex-
disjoint paths that connect ai with bi . We also compute the scaling limit at criticality of the
probability that there are k parallel and disjoint connections between ai and bi in the double
random current model. Our results are based on a new distributional relation between double
random currents and random alternating flows of Talaska [37].

Keywords Ising model · Total positivity · Random currents · Alternating flows

Mathematics Subject Classification 82B20 · 60C05 · 05C50

1 Introduction

The Ising model was introduced by Lenz with the intention to describe the behaviour of
ferromagnets, and was first solved in dimension 1 by Ising [19]. Peierls later showed that the
model does undergo a phase transition in dimensions 2 or more [32], and it has been since
the subject of extensive study both in the physics and mathematics literature. Notable results
in the planar case include the exact solution obtained by Onsager [31] and Yang [38], and the
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recent breakthrough of Smirnov et al. showing conformal invariance in the critical scaling
limit [7,8,17,18,36].

A seemingly unrelated notion is that of totally positive matrices characterized by having
all their minors positive. They appear in various areas of mathematics and physics including
oscillations inmechanical systems [12,13] (whichwas the originalmotivation to study them),
stochastic processes and statistical mechanics [9,11,22], quantum groups [28–30], and alge-
braic geometry [33,34]. Some of their fundamental properties include the simplicity and
positivity of the spectrum obtained by Gantmacher and Krein [12], and the variation dimin-
ishing property discovered by Shoenberg [35] which says that the number of sign changes
in a vector does not increase after multiplying by a totally positive matrix.

In this article we identify total positivity in the planar Ising model. Our results on the Ising
boundary two-point correlation functions are analogous to the results of Fomin [11] on the
walk matrices of random walks on planar graphs. Indeed, the walk matrix can be interpreted
as the two-point correlation function matrix of another very well known ferromagnetic spin
system—the discrete Gaussian free field. Furthermore, Fomin provides an interpretation
of the determinants of walk matrices in terms of probabilities of non-intersection events
involving loop-erased walks of Lawler [25]. In our setting the relevant events concern the
double random current model.

The random current model is derived from the power series expansion of the Ising model
partition function. It was introduced by Griffiths, Hurst and Sherman [15], and was later used
by Aizenman et al. [1–3] to obtain a detailed description of the behaviour of the Ising model
onZd . The model has recently received revived attention from the mathematical community.
The most notable example is the result of Aizenman, Duminil-Copin and Sidoravicius [4]
who studied percolation properties of double random currents to show continuity of magneti-
zation for a wide range of Isingmodels onZd (including the d = 3 case). Their argument was
later generalized by Björnberg to the setting of quantum Ising models [5]. Also, a new dis-
tributional relation between random currents, Bernoulli percolation and the FK-Ising model
was discovered by Lupu and Werner [27]. One of the main tools used to study the random
current model is the switching lemma [15], and our result may be thought of as its planar
generalization (see Example 2.2). For a recent overview of the applications of the random
current model, see [10].

Since the work of Groeneveld, Boel and Kasteleyn [16], the boundary Ising correlation
functions have been known to satisfy exact Pfaffian relations.We provide an alternative proof
of this fact using the expansion of the Pfaffian as a sum of determinants (see Lemma 5.6). Our
results are hence a refinement of those in [16] in that we relate each of these determinants to
an explicit event in the double random current model.

A special property of the (dis-)connection events appearing in our results is that even
though they are non-local, i.e., they depend on a macroscopic (in terms of the size of the
graph) number of edge variables, their probabilities are simple functions of the boundary
measurements which are defined as expectations of local variables. This in particular implies
that these probabilities do not depend on the structure of the graph as long as the boundary
measurements are preserved. This phenomenon also exists in uniform groves and double
dimers as was discovered by Kenyon and Wilson [23,24]. Moreover, the authors proved that
the probability of seeing any type of partition of the boundary vertices induced by cluster
connectivities in these models is a homogenous multi-linear polynomial in the boundary
measurements.

We arrive at the total positivity of the Ising boundary two-point functions by representing
them in terms of alternating flows of Talaska which satisfy total positivity [37]. They, in
turn, appear in the combinatorial study of the totally nonnegative Grassmannian initiated by
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74 M. Lis

Postnikov [33]. The interpretation of the determinants of the two-point functions in terms
of random current probabilities is achieved by a new distributional relation between double
random currents and random alternating flows.

This article is organized as follows: The next section introduces basic notation and presents
the main results. Section 3 gives a distributional identity for double random currents, and
Sect. 4 provides a closely related identity for random alternating flows. The relationship
between these two, together with the total positivity of alternating flows, is the basis for our
main results, whose proofs are given in Sect. 5.

2 Main Results

Let G = (V, E) be a finite connected planar graph. For positive coupling constants J : E →
(0,∞), we consider the Ising model on G with free boundary conditions and no external
field, i.e., a probability measure on the space of spin configurations {−1, 1}V given by

PIsg(σ ) = 1

ZIsg

∏

{u,v}∈E
exp(J{u,v}σuσv), σ ∈ {−1, 1}V ,

where

ZIsg =
∑

σ∈{−1,1}V

∏

{u,v}∈E
exp(J{u,v}σuσv)

is the partition function. Since the coupling constants are positive, themodel is ferromagnetic,
i.e., it assigns larger probability to configurations where more pairs of adjacent spins assume
the same value. For u, v ∈ V , the two-point spin correlation function is defined to be the
expectation

〈σuσv〉 =
∑

σ∈{−1,1}V
σuσvPIsg(σ ).

A classical argument says that in a ferromagnetic spin system, all two-point functions are
positive (see Lemma 5.1).

LetW = {w1, w2, . . . , wn} be the set of vertices on the outer face ofG listed counterclock-
wise, and let W◦ ∪ W• = W be a partition of W into two sets (one of them possibly empty).
We will refer to W as the boundary vertices and for A ⊆ W , we will write A◦ = A ∩ W◦
and A• = A ∩ W•. For two natural numbers i, j , we define Ii, j to be the set of numbers
strictly between i and j , e.g. I1,1 = ∅, and I1,3 = I3,1 = {2}. The following result yields
positivity of determinants of matrices whose entries are, up to a sign, the boundary two-point
spin correlation functions.

Theorem 2.1 Let A = {wl1 , wl2 , . . . , wlk } ⊆ W with l1 < l2 < · · · < lk . Consider the k×n
matrix

N A
i, j = (−1)s(i, j)〈σwli

σw j 〉,
where

s(i, j) = |Ili , j ∩ {l1, . . . , lk}| + 1{w j∈A◦, j<li } + 1{w j∈A•, j>li }.

Then, for any B ⊂ W with |B| = k,

det N A,B ≥ 0,
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The Planar Ising Model and Total Positivity 75

where N A,B is the k×k submatrix of N A with columns indexed by B.Moreover, det N A,B > 0
if and only if there exist k pairwise edge-disjoint (possibly empty) directed paths in G such
that each of them starts in A and ends in B, and if two paths meet at a vertex, then their edges
alternate in orientation around it (edge oriented towards or away from the vertex). Here, we
assume that an empty path joining v ∈ A◦ ∩ B◦ (resp. v ∈ A• ∩ B•) with itself is represented
by a counterclockwise loop (resp. clockwise loop) attached to v within the outer face.

We note that the choice of W◦ and W• determines both the sign factors appearing in the
definition of N A, and the interpretation of the associated determinants in terms of alternating
flows (see Lemma 5.5). This is inherited from the results of [37] through the construction of
Sect. 4 (see Fig. 2).

Example 2.1 For any distinct a, b, c ∈ W , we have

1 + 〈σaσb〉 > 〈σaσc〉 + 〈σbσc〉, and 1 + 〈σaσb〉2 > 〈σaσc〉2 + 〈σbσc〉2.
Indeed, assume that a, b, c are ordered counterclockwise, a, b ∈ W◦, c ∈ W•, and take
A, B = {a, b, c}. We have

N A,B =
⎡

⎣
1 〈σaσb〉 〈σaσc〉
−〈σaσb〉 1 −〈σbσc〉
〈σaσc〉 −〈σbσc〉 1

⎤

⎦ ,

and by Theorem 2.1,

det N A,B = 1 + 〈σaσb〉2 − 〈σaσc〉2 − 〈σbσc〉2 > 0,

which gives the second inequality. The inequality is strict since we can take empty paths
connecting the vertices with themselves. To obtain the first inequality, we use the second one
together with the Griffiths inequality 〈σaσb〉 ≥ 〈σaσc〉〈σcσb〉 [14].

In the special case when A and B form disjoint contiguous sets of boundary vertices,
we obtain the following total positivity property of the boundary two-point spin correlation
functions with no additional signs.

Corollary 2.2 (Total positivity) Let A = {a1, a2, . . . , ak}, B = {b1, b2, . . . bk} be contigu-
ous sets of boundary vertices, i.e., such that a1, . . . , ak, bk, . . . b1 is a counterclockwise order
on A ∪ B. Then, the k × k matrix

M A,B
i, j = 〈σai σb j 〉

is totally nonnegative. Moreover, M A,B is totally positive if and only if for any A′ ⊂ A and
B ′ ⊂ B such that |A′| = |B ′| = l, there exist l pairwise vertex-disjoint paths that connect
A′ and B ′.

Remark 1 One can prove that if A and B are as above, then det MA,B = det N A,B by showing
that the additional signs in N A,B make the same sign contribution to the determinant as the
reverse order on columns in MA,B . This is evident in the following expansion of these
determinants. Let A, B be any subsets of W of equal cardinality, and let π : A → B be a
bijection. One can interpret π as a pairing of the disjoint union A � B, i.e., a partition of
A � B into pairs {a, π(a)}. One can then think of a diagrammatic representation of π where
points representing A and B are placed in the corresponding order on the boundary of a disk,
and straight line segments connect the points according to π . Here, for each v ∈ A◦ ∩ B◦
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76 M. Lis

(resp. each v ∈ A• ∩ B•), two copies of v are placed on the circle, and the one corresponding
to a point in A comes immediately after (resp. before) the one corresponding to a point in B
in the counterclockwise order. We define xing(π) to be the number of crossings between the
line segments. It is easy to see that when A, B are as in Corollary 2.2, then xing(π) is the
number of inversions of π treated as a permutation of the index set {1, . . . , k}. Hence, by the
definition of the determinant,

det MA,B =
∑

π :A→B

(−1)xing(π)
∏

{a,b}∈π

〈σaσb〉. (2.1)

Moreover, the choice of signs in the definition of thematrix N A yields an analogous expansion
of the determinant for general choices of A and B:

det N A,B =
∑

π :A→B

(−1)xing(π)
∏

{a,b}∈π

〈σaσb〉. (2.2)

A verification of (2.2) can be found in [33, Proposition 5.2] or [37, Proposition 2.12].

Our secondmain result provides an interpretation of these determinants in terms of random
currents. A current on G is a function n : E → {0, 1, 2, . . . }. By ∂n we denote the set of
sources of n, i.e., vertices v such that

∑
u: {u,v}∈E n{u,v} is odd. For A ⊆ V , we define

�A = {n | ∂n = A}. The weight of a current n is defined by

w(n) =
∏

e∈E

(Je)ne

ne! , (2.3)

and the random current probability measure with boundary conditions A is given by

PA
curr(n) = w(n)

Z A
curr

, n ∈ �A,

where Z A
curr = ∑

n∈�A
w(n) is the partition function.

Note that if n1 ∈ �A and n2 ∈ �∅, then n1 + n2 ∈ �A. The double random current
probability measure PA

d-curr with boundary conditions A is defined to be the measure of the
sum of two independent random currents with A and ∅ boundary conditions respectively:

PA
d-curr(n) = PA

curr ⊗ P∅
curr({(n1,n2) ∈ �A × �∅ | n1 + n2 = n}), n ∈ �A.

For u, v ∈ V and a current n, we will write u
n↔ v if u and v are connected in G by a

path of edges with non-zero values of n, and we will write u
n
� v otherwise. Let A and B

be contiguous sets of boundary vertices as in Corollary 2.2. We define the event of having
parallel and disjoint connections between A and B (see Fig. 1) by

PA,B = {n ∈ �A∪B | ai n↔ bi for all i, ai
n
� b j for all i �= j}.

As a consequence of the proof of Theorem 2.1 and Corollary 2.2, we can compute the
probability of PA,B under the double random current measure:

Theorem 2.3 Let A and B be contiguous sets of boundary vertices as inCorollary 2.2, and let
v1, v2, . . . , v2k be a counterclockwise order on A∪ B. Consider the 2k×2k skew-symmetric
matrix satisfying

K A∪B
i, j = 〈σvi σv j 〉 for i < j.
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The Planar Ising Model and Total Positivity 77

Fig. 1 The solid edges represent
non-zero values of a current
n ∈ PA,B with A = {a1, a2, a3}
and B = {b1, b2, b3}. The black
edges represent odd values and
the grey edges represent even
values

a1 a2 a3

b3

b2b1

Then,

PA∪B
d-curr(PA,B) = det MA,B

Pf K A∪B
,

where Pf denotes the Pfaffian of a skew-symmetric matrix.

Example 2.2 We consider the simplest non-trivial case of Theorem 2.3 when k = 2. To
this end, let S = {a, b, c, d} ⊆ W be ordered counterclockwise, and let X = {n ∈ �S |
a

n↔ b
n↔ c

n↔ d}. Note that by planarity of G, and the fact that each connected component
of n contains an even number of vertices in ∂n, the complement of X in �S is P{a,b},{c,d} ∪
P{a,d},{b,c}. We have Pf K S = 〈σaσb〉〈σcσd〉 + 〈σaσd〉〈σbσc〉 − 〈σaσc〉〈σbσd〉, and hence by
Theorem 2.3,

PS
d-curr(P{a,b},{c,d}) = 〈σaσd〉〈σbσc〉 − 〈σaσc〉〈σbσd〉

Pf K S
,

PS
d-curr(P{a,d},{b,c}) = 〈σaσb〉〈σcσd〉 − 〈σaσc〉〈σbσd〉

Pf K S
,

PS
d-curr(X ) = 〈σaσc〉〈σbσd〉

Pf K S
.

We note that these formulas follow from the switching lemma of Griffiths, Hurst and Sher-
man [15] (see e.g. [4] for a modern treatment of the lemma). The statement of Theorem 2.3
for k > 2 does not however seem to be a direct consequence of this lemma.

Remark 2 For future reference, recall that the Pfaffian of the skew-symmetric matrix K A∪B

is the square root of its determinant, and it is a well known fact that it can be written as

Pf K A∪B =
∑

π : pairing of A∪B

(−1)xing(π)
∏

{u,v}∈π

〈σuσv〉, (2.4)

where the sum is over all pairings of A ∪ B, and where xing is defined as in (2.2).

Our last main result concerns the scaling limit at criticality of the parallel connection
probability in double random currents. The proof relies on the computation of Hongler [17]
of the scaling limit of the boundary two-point functions themselves. Analogous and more
general results were obtained by Kenyon and Wilson [24] for the double dimer model,
multichordal loop erased walk, and grove Peano curves.

Theorem 2.4 Let D be a bounded finitely-connected domain in the complex plane with a
piecewise C1 boundary. Let ∂sD be the straight part of the boundary, i.e., the part composed
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78 M. Lis

of intervals parallel either to the real or imaginary axis. Let A = {a1, a2, . . . , ak} ⊂ ∂sD
and B = {b1, b2, . . . bk} ⊂ ∂sD be such that a1, . . . , ak, bk, . . . , b1 is a counterclockwise
ordering of A ∪ B around the outer boundary of D. For ε > 0, let Dε be the maximal
connected component of the rescaled square nearest-neighbor lattice εZ2 contained in D.
Consider the double random current measure PAε∪Bε

d-curr on Dε with homogeneous critical
coupling constants Je = 1

2 log(
√
2 + 1), where Aε and Bε are sets of vertices on the outer

face of Dε approximating A and B. Then, the following limit exists

pA,B(D) := lim
ε→0

PAε∪Bε

d-curr (PAε ,Bε ).

Moreover, if H is the upper half-plane and ϕ : D → H is a conformal equivalence between
D and H, then

pA,B(D) = det M̃ A,B

Pf K̃ A∪B
,

where M̃ A,B is a k × k matrix, and K̃ A∪B is a 2k × 2k skew-symmetric matrix satisfying

M̃ A,B
i, j = 1

|ϕ(ai ) − ϕ(b j )| , and K̃ A∪B
i, j = 1

|ϕ(vi ) − ϕ(v j )| for i < j,

where v1, v2, . . . , v2k is a counterclockwise order on A ∪ B.

3 Random Currents

In this section G = (V, E) is a finite (not necessarily planar) graph. Note that the definitions
of the Ising model and the random current model generalize verbatim to arbitrary finite
graphs.

Let A ⊆ V be a set of even cardinality (possibly empty). With a current n ∈ �A, we
associate a pair of sets of edges ω(n) = (ω1(n), ω2(n)), where

ω1(n) = {e ∈ E | ne is odd}, and ω2(n) = {e ∈ E | ne is even, ne �= 0}.
Let EA be the collection of sets of edges for which A is the set of vertices with odd degree in
the induced subgraph. One can see that

	A := {ω(n) | n ∈ �A} = {(ω1, ω2) | ω1 ∈ EA, ω2 ⊆ E \ ω1}.
We will often identify ω ∈ 	A with the set ω1 ∪ ω2 ⊆ E . Note that for u, v ∈ V , u

n↔ v if
and only if u and v belong to the same connected component of ω(n).

Let xe = tanh Je and ye = (cosh Je)−1. The next result describes the measure P
A
curr on

	A induced from the random current measure.

Lemma 3.1 The probability of ω ∈ 	A induced from the random current measure is given
by

P
A
curr(ω) = 1

Z̄ A
curr

∏

e∈ω1

xe
∏

e∈ω2

(1 − ye)
∏

e∈E\ω
ye,

where Z̄ A
curr = Z A

curr
∏

e∈E ye.
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Proof We have

P
A
curr(ω) =

∑

n∈�A : ω(n)=ω

PA
curr(n)

= 1

Z A
curr

∑

n∈�A : ω(n)=ω

∏

e∈E

(Je)ne

ne!

= 1

Z A
curr

∏

e∈ω1

∞∑

k=1

(Je)2k−1

(2k − 1)!
∏

e∈ω2

∞∑

k=1

(Je)2k

(2k)!

= 1

Z A
curr

∏

e∈ω1

sinh Je
∏

e∈ω2

(cosh Je − 1)

= 1

Z̄ A
curr

∏

e∈ω1

xe
∏

e∈ω2

(1 − ye)
∏

e∈E\ω
ye.

��
For ω ⊆ E , let E∅(ω) = E∅ ∩ {ω′ | ω′ ⊆ ω}. The main result of this section gives a

formula for the probability measure P
A
d-curr on 	A induced from the double random current

measure.

Theorem 3.2 The probability of ω ∈ 	A induced from the double random current measure
is given by

P
A
d-curr(ω) = 1

Z̄ A
d-curr

|E∅(ω)|
∏

e∈ω1

xe
∏

e∈ω2

x2e
∏

e∈E\ω
(1 − x2e ),

where Z̄ A
d-curr = Z A

currZ
∅
curr

∏
e∈E (1 − x2e ).

Proof Let n1 ∈ �A, n2 ∈ �∅, n = n1 + n2, and ω1 = ω(n1), ω2 = ω(n2), ω = ω(n).
Note that e ∈ ω1 if and only if e ∈ ω1

1�ω2
1. Therefore, by Lemma 3.1, each e ∈ ω1 carries

a multiplicative weight of xe[(1 − ye) + ye] = xe in the double random current measure.
Similarly, e ∈ ω2 if and only if e ∈ ω1

1 ∩ ω2
1 or e ∈ (ω1

2 ∪ ω2
2) \ (ω1

1 ∪ ω2
1). By Lemma 3.1,

the multiplicative contribution of e ∈ ω2 is hence x2e = (1 − ye + ye)2 − y2e in both cases.
The contribution of an edge e ∈ E \ ω is then 1 − x2e . It is now enough to show that there
are exactly |E∅(ω)| choices of ω1

1 and ω2
1 such that ω

1
1�ω2

1 = ω1 and ω1
1 ∩ ω2

1 ⊂ ω2. Indeed,
this is equivalent to freely choosing ω2

1 ∈ E∅(ω) and setting ω1
1 = (ω1 \ ω2

1) ∪ (ω2
1 ∩ ω2)

∈ EA. ��
We note that one can express |E∅(ω)| in terms of the number of vertices, edges, and

connected components of ω (see Lemma 4.2).

4 Random Alternating Flows

In this section we assume that G is planar, and we explain how the double random current
measure is related to a measure on alternating flows. To this end, we define a directed
modification �G = (V ∪ W+ ∪ W−, �E) of G as follows. Each edge e ∈ E is replaced
by three directed edges �e ∈ �E : one middle edge �em , and two side edges �es1, �es2 (see Fig. 2).
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wi

wi−1

wi+1

wi

wi−1

wi+1
w+

i+1

w−
i+1

w−
i

w+
iw+

i−1w−
i−1

G G

Fig. 2 A choice of orientations of edges in a directed modification �G of G. For each boundary vertex w, a
source w+ and a sink w− are added in an order depending on whether w ∈ W◦ or w ∈ W•

The side edges lie on opposite sides of �em and have the opposite orientation to �em . The
orientation of each middle edge is chosen arbitrarily, and the edge weights are given by

x�em = sinh 2Je
2

= xe
1 − x2e

, x�es1 = x�es2 = tanh Je
2

= xe
2

. (4.1)

Moreover, for each w ∈ W , two vertices w+ ∈ W+ and w− ∈ W−, and two directed edges
(w,w−), (w+, w) ∈ �E are placed in the external face of G so that w− becomes a sink and
w+ becomes a source. The weights of these edges are set to 1. The vertices are placed in such
a way that w− is comes immediately before (resp. after) w+ if w ∈ W◦ (resp. if w ∈ W•) in
the counterclockwise order around the external face of G (see Fig. 2).

A flow on �G is a set of edges F ⊆ �E such that each vertex has the same number of ingoing
and outgoing edges in F . An alternating flow is a flow such that for each v ∈ V , the edges
of the flow alternate in orientation around v (edge oriented towards v or away from v). For
U ⊆ W , we will write U+ ⊆ W+ and U− ⊆ W− for the the corresponding sets of sources
and sinks in �G. For two (possibly intersecting) sets A, B ⊂ W of equal cardinality, let

FA,B = {alternating flow F on �G | V (F) ∩ W+ = A+, V (F) ∩ W− = B−},
where V (F) is the set of vertices incident on at least one edge of F .

Following Talaska [37], we define the weight of an alternating flow F ∈ FA,B by

w(F) = 2|A|+|F |−|V (F)| ∏

�e∈F
x�e, (4.2)

and we consider the probability measure on alternating flows with boundary conditions A, B
given by

PA,B
a-flow(F) = w(F)

Z A,B
a-flow

, F ∈ FA,B,

where Z A,B
a-flow = ∑

F∈FA,B
w(F) is the partition function. Note that in [37] general oriented

planar graphs are considered, and the connection with double random currents described in
this section is realized by our particular choice of �G and its edge weights.

There are four different types of local (interior) edge configurations in an alternating flow
F on �G according to the total amount of flow at the endpoints (the number of incoming
edges minus the number of outgoing edges) and the orientation of the edges (see Fig. 3).
Note that it is not possible that F contains �eR1 and �eR2 but not �eB since then the alternating
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The Planar Ising Model and Total Positivity 81

Fig. 3 Four types of local edge
configurations in alternating
flows on �G

(1a) (2a) (2b)(1b)

condition is violated. Also note that there are three different configurations of type (1a) which
are indistinguishable from the point of view of alternating flows—they can be interchanged
without forcing any other changes in the flow.

With each F ∈ FA,B , as in Sect. 3, we associate a pair of sets ω(F) = (ω1(F), ω2(F)),
whereω1(F) is the set of edges e ∈ E such that the local configuration of F at e is of type (1a)
or (1b), and whereω2(F) is the set of edges e ∈ E with the local configuration of type (2a) or
(2b). We denote by 	A,B the image of FA,B under this map. Note that ω1(F) ∈ EA�B since,
by the flow condition, one can split ω1(F) into a sourceless part in E∅ and a collection of |A|
edge-disjoint directed paths starting at A and ending at B. In particular, every v ∈ A ∩ B
is the starting and ending point of exactly one such path, and hence, the degree of ω1(F) at
v is even. This means that 	A,B ⊆ 	A�B , and hence the map above induces a probability

measure P
A,B
a−flow on 	A�B , which is supported on 	A,B .

The main result of this section casts this measure into a form related to that of the induced
double random current measure from Theorem 3.2.

Theorem 4.1 Let A, B ⊂ W be such that |A| = |B|, and let �G be one of the directed
modifications of G described above. Let ω ∈ 	A,B, and let k′(ω) be the number of connected
components of ω that contain a vertex in A ∪ B. Then, the probability of ω induced from the
random alternating flow measure is given by

P
A,B
a−flow(ω) = 1

Z̄ A,B
a-flow

2|A|−k′(ω)|E∅(ω)|
∏

e∈ω1

xe
∏

e∈ω2

x2e
∏

e∈E\ω
(1 − x2e ),

where Z̄ A,B
a-flow = Z A,B

a-flow

∏
e∈E (1 − x2e ). In particular, P

A,B
a-flow = P

B,A
a-flow.

Before proving the theorem, we need to recall a standard result about the cardinality of
E∅(ω). We give a proof for completeness. For ω ⊆ E , we denote by k(ω) the number of
connected components of ω.

Lemma 4.2 Let ω ⊆ E be such that E∅(ω) is nonempty. Then,

|E∅(ω)| = 2|ω|−|V (ω)|+k(ω).

Proof Consider amaximal spanning forest T ⊆ ω ofω, and note that |ω\T | = |ω|−|V (ω)|+
k(ω). It is hence enough to construct a bijection between E∅(ω) and the set of subsets ofω\T .
To this end, to each e ∈ ω \ T we assign the unique cycle Ce ⊆ (ω \ T ) ∪ {e}. Note that
Ce ∈ E∅(ω). The bijection is given by assigning to each ω′ ∈ E∅(ω) the set ω′ ∩ (ω \ T ), and
its inverse by assigning to each {e1, . . . , el} ⊆ ω \ T the set Ce1� · · · �Cel ∈ E∅(ω). ��
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Proof of Theorem 4.1 Let ω̄ be a modification of ω seen as a subset of E where each edge
in ω2 is replaced by two parallel edges. By an alternating orientation of ω̄ we mean an
assignment of orientations to the edges of ω̄ such that for each v ∈ V , the edges alternate
in orientation around v. Let F be such that ω(F) = ω, and let F̃ be its equivalence class
under identifying the three local edge configurations of type (1a). Note that such equivalence
classes are in one-to-one correspondence with alternating orientations of ω̄. We claim that
the number of such alternating orientations is

2k(ω)−k′(ω). (4.3)

Indeed, consider a connected component κ of ω̄ that does not contain a vertex in A ∪ B.
We claim that κ has exactly 2 different alternating orientations. To see this, consider the
outer boundary ∂outκ of κ , i.e., the set of edges in κ incident on the unbounded face of κ .
Because of the alternating condition, the choice of the orientation for one edge determines
the orientation of all other edges in ∂outκ . Moreover, there are no conflicts of orientations
since each vertex of κ has even degree, and hence ∂outκ can be deformed to a cycle by
splitting vertices incident on more than 2 edges from ∂outκ . Then, the orientations of all
edges agree with the clockwise or anticlockwise order on the cycle. After orienting ∂outκ ,
one has to consider all connected components of κ \ ∂outκ , and repeat the reasoning with
the only difference being that there is no more freedom of choice of the orientation (if ∂outκ

was oriented clockwise (resp. counterclockwise), then all outer boundaries of the connected
components of κ \∂outκ have to be oriented counterclockwise (resp. clockwise)). One repeats
this procedure until all edges of κ are oriented. On the other hand, there is no freedom of
orientation for components containing a vertex in A ∪ B since each such component has to
be oriented from a vertex in A to a vertex in B. Therefore (4.3) holds true.

We now turn to the total weight w(F̃) of each equivalence class F̃ , which we define to be
the sum of weights of all flows in F̃ . By (4.1), the total multiplicative contribution to w(F̃)

of configurations of type (1a) is

23
( xe
2

)2 xe
1 − x2e

+ 2xe = 2xe
1 − x2e

,

where we took the factor 2# edges and did not take the factor 2|A|−# vertices from (4.2) into
account. This contribution is therefore equal to the contribution of a configuration of type
(1b). The contributions of configurations of type (2a) and (2b) also agree and are equal to

22
( xe
2

) xe
1 − x2e

= 2x2e
1 − x2e

.

Hence, by (4.2), we can write

w(F̃) = 2|A|−|V (ω)| ∏

e∈ω1

2xe
1 − x2e

∏

e∈ω2

2x2e
1 − x2e

= 2|A|+|ω|−|V (ω)| ∏

e∈ω1

xe
1 − x2e

∏

e∈ω2

x2e
1 − x2e

.

Note that the map ω is constant on each equivalence class F̃ , and hence, with a slight
abuse of notation, we can write ω(F̃) for the value of ω evaluated at any representative of
F̃ . Combining all the previous observations, and using the definition of PA,B

a-flow, we can write
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P
A,B
a-flow(ω) =

∑

F : ω(F)=ω

PA,B
a-flow(F)

= 1

Z A,B
a-flow

∑

F : ω(F)=ω

w(F)

= 1

Z A,B
a-flow

∑

F̃ : ω(F̃)=ω

w(F̃)

= 1

Z A,B
a-flow

∑

F̃ : ω(F̃)=ω

2|A|+|ω|−|V (ω)| ∏

e∈ω1

xe
1 − x2e

∏

e∈ω2

x2e
1 − x2e

= 1

Z̄ A,B
a-flow

∑

F̃ : ω(F̃)=ω

2|A|+|ω|−|V (ω)| ∏

e∈ω1

xe
∏

e∈ω2

x2e
∏

e∈E\ω
(1 − x2e )

= 1

Z̄ A,B
a-flow

2k(ω)−k′(ω)2|A|+|ω|−|V (ω)| ∏

e∈ω1

xe
∏

e∈ω2

x2e
∏

e∈E\ω
(1 − x2e )

= 1

Z̄ A,B
a-flow

2|A|−k′(ω)|E∅(ω)|
∏

e∈ω1

xe
∏

e∈ω2

x2e
∏

e∈E\ω
(1 − x2e ),

where the second to last equality follows from (4.3), and the last one from Lemma 4.2. ��
In two special cases the measures induced from double random currents and alternating

flows are the same.

Corollary 4.3 We have that P
∅
d-curr = P

∅,∅
a-flow and P

{a,b}
d-curr = P

{a},{b}
a-flow for any a, b∈W, a �= b.

Proof By Lemma 5.4, we have that 	∅,∅ = 	∅ and 	{a},{b} = 	{a,b}, and the statement
follows from Theorems 3.2 and 4.1. ��

5 Proofs of Main Results

We need to state a few necessary lemmas. The first one goes back to the work of Griffiths,
Hurst and Sherman [15], and we give a proof for completeness. We will write Za,b = Z {a,b},
and we define Za,b

curr = Z∅
curr for a = b.

Lemma 5.1 For a, b ∈ V , we have

〈σaσb〉 = Za,b
curr

Z∅
curr

.

Proof If a = b, then the equality is trivial. Otherwise, for a vertex v and a current n, we
define nv = ∑

u: {u,v}∈E n{u,v}, and we have

〈σaσb〉 =

∑

σ∈{−1,1}V
σaσb

∏
{u,v}∈E

exp(J{u,v}σuσv)

∑

σ∈{−1,1}V
∏

{u,v}∈E
exp(J{u,v}σuσv)

=

∑

σ∈{−1,1}V
σaσb

∏
{u,v}∈E

∞∑
k=0

(J{u,v})kσ k
u σ k

v /k!
∑

σ∈{−1,1}V
∏

{u,v}∈E

∞∑
k=0

(J{u,v})kσ k
u σ k

v /k!
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=

∑

σ∈{−1,1}V
σaσb

∑
n∈�

w(n)
∏

v∈V
σ
nv
v

∑

σ∈{−1,1}V
∑
n∈�

w(n)
∏

v∈V
σ
nv
v

=

∑

σ∈{−1,1}V
∑
n∈�

w(n)
∏

v∈V
σ
nv+1{v∈{a,b}}
v

∑

σ∈{−1,1}V
∑
n∈�

w(n)
∏

v∈V
σ
nv
v

=
2|V | ∑

n∈�{a,b}
w(n)

2|V | ∑
n∈�∅

w(n)

= Za,b
curr

Z∅
curr

.

The second to last equality holds true since the only currents that survive the summation
over the symmetric set {−1, 1}|V | are the ones for which the exponent of σv is even at every
vertex. ��

The next lemma expresses the two-point spin correlation function as a ratio of partition
functions of alternating flows. Recall that we defined 	A,B ⊆ 	A�B to be the image ofFA,B

under the map ω from Sect. 4.

Lemma 5.2 For a, b ∈ W, we have

〈σaσb〉 = Za,b
a-flow

Z∅
a-flow

.

Proof Note that for each F ∈ F{a},{b}, the graph ω(F) contains exactly k′ = 1 connected
component that connects a and b. Moreover, by Lemma 5.4 we have that 	{a},{b} = 	{a}�{b},
and 	∅,∅ = 	∅. Hence, by comparing the formulas in Theorem 3.2 and 4.1, and using
Lemma 5.1, we get

Za,b
a-flow

Z∅
a-flow

= 2|{a}|2−k′ Za,b
currZ∅

curr

Z∅
currZ

∅
curr

= Za,b
curr

Z∅
curr

= 〈σaσb〉.

��
The next lemma describes an alternating property of sources and sinks in a connected

component of an alternating flow.

Lemma 5.3 Let F ∈ FA,B, and let κ ⊂ F be one of its connected components. Then, the
sources and sinks of κ interlace, i.e., as one goes around the external face, the vertices in
V (κ) ∩ (A+ ∪ B−) alternate between the sources in A+ and the sinks in B−.

Proof Note that κ is an alternating flow itself. Take a source vertex v ∈ V (κ) ∩ A+, and
traverse the edges of the external face of κ in a counterclockwise order. Since at each vertex
in V that you visit, you take the rightmost possible turn, and since κ is alternating, all the
directed edges are aligned with the direction of traversal until you encounter the consecutive
vertex in v′ ∈ V (κ) ∩ (A+ ∪ B−). Since v′ is either a sink or a source, and since there exists
an edge directed towards v′, it must be a sink. An analogous argument can be made when
starting at v′ but this time the edges are directed against the direction of traversal. Hence, the
next vertex encountered in V (κ) ∩ (A+ ∪ B−) is again a source, and the lemma is proved. ��
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The following is the reverse of the lemma above.

Lemma 5.4 Let ω ∈ 	A�B be such that for each connected component κ of ω, the vertices
in A+ ∪ B− that are adjacent to V (κ) alternate between the sources in A+ and the sinks in
B− as one goes around the external face. Then, there exists F ∈ FA,B such that ω(F) = ω.

Proof Fix a connected component κ ofω. Similarly to the proof of Theorem 4.1, we consider
a graph κ̄ where each edge of κ ∩ ω2 is replaced by two parallel edges, and moreover, the
edges connecting each vertex in V (κ) ∩ W to the corresponding vertices in A+ ∪ B− are
added. It is now enough to show that there exists an alternating orientation of κ̄ where each
vertex in V (κ̄) ∩ A+ becomes a source and each vertex in V (κ̄) ∩ B− becomes a sink. By
the assumption on κ , we can add (in one of two possible ways) |V (κ̄) ∩ (A+ ∪ B−)|/2
vertex-disjoint edges connecting in pairs consecutive vertices in V (κ̄)∩ A+ and V (κ̄)∩ B−.
We call the resulting graph κ̄ ′. It is now enough to construct an alternating orientation of κ̄ ′
such that each of the additional edges is directed from a vertex in V (κ̄) ∩ B− to a vertex
in V (κ̄) ∩ A+, and then restrict the orientation to κ̄ . To this end, note that each vertex of κ̄ ′
has even degree. Therefore, as in the proof Theorem 4.1, the outer boundary of κ̄ ′ can be
deformed to a cycle, and can be directed clockwise or counterclockwise so that the additional
edges are directed properly. We can then orient the rest of κ̄ ′ consistently as in Theorem 4.1,
and the lemma is proved. ��

The next lemma is an adaptation of a result of [37].

Lemma 5.5 [37, Corollary 4.3] Let N A,B be as in Theorem 2.1. We have

det N A,B = Z A,B
a-flow

Z∅
a-flow

.

Proof The proof is a matter of translation of the results of [37] to our setting. To this end,
consider the boundary measurement matrix M from Definition 2.4 of [37] defined for �G with
weights as in Sect. 4. By Corollary 5.3 of [37], the entry corresponding to source a+ and sink
b− is equal to Za,b

a-flow/Z∅
a-flow, and hence, by Lemma 5.2, to 〈σaσb〉. Therefore, the boundary

measurement matrix for �G is the matrix of Ising boundary spin correlation functions.
By Corollary 4.3of [37], it is hence enough to check that the signs in N A agree with those

in the matrix in Corollary 4.3 of [37] where only the columns corresponding to sinks are
considered. In [37], the sign of the entry corresponding to source a+ and sink b− is negative
if the number of sources strictly between a+ and b− in a fixed clockwise order is odd,
and it is positive otherwise. By our choice, for every w ∈ W◦ (resp. w ∈ W•), the sink w−
immediately precedes (resp. succeeds) the sourcew+ in the counterclockwise order. One can
easily check that as a result, s(i, j) from the definition of N A,B counts the number of sources
strictly between the source w+

li
∈ A+ and the sink w−

j ∈ B−. Therefore, the signs in the

definition of N A agree with those in [37] (up to changing a clockwise to a counterclockwise
order). Hence, the result follows from Corollary 4.3 of [37]. ��
Remark 3 The proof of Corollary 4.3 of [37] uses the signed walk interpretation of the
boundary measurement matrix of Postnikov [33]. One can compare this with the Kac–Ward
representation of the planar Ising model [20], where the Ising boundary two-point functions
can be expressed as partition functions of signed non-backtracking walks on the undirected
graph G (see e.g. [21], or [26] for a concise proof of the Kac–Ward formula).

We are now ready to prove our first two main results.
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Proof of Theorem 2.1 It is a direct consequence of Lemma 5.5. The interpretation of empty
paths as counterclockwise or clockwise loops follows from the way the sources and sinks
are placed around the external face (see Sect. 4). ��

Proof of Corollary 2.2 Note that every square submatrix of MA,B satisfies the assumptions
of Corollary 2.2. Hence, it is enough to prove that det MA,B ≥ 0, and det MA,B > 0 if and
only if there are k vertex disjoint paths connecting A and B. To this end, note that by (2.1),
(2.2) and Lemma 5.5,

det MA,B = det N A,B = Z A,B
a-flow

Z∅
a-flow

≥ 0.

Furthermore, by Lemma 5.3 and 5.4, Z A,B
a-flow > 0 if and only if there are k vertex disjoint paths

connecting A and B. Indeed, in a flow F ∈ FA,B there cannot be a connected component that
contains more than 2 vertices in A ∪ B since then the alternating condition from Lemma 5.3
would be violated. On the other hand, if there exists k vertex disjoint paths connecting A and
B, then by Lemma 5.4, there exists a flow in FA,B which maps to these paths under ω. ��

Before proving the rest of our main results, we will need a classical Pfaffian formula
of Groeneveld, Boel and Kasteleyn [16]. We present here a different proof involving the
connection between double random currents and alternating flows. For yet another proof
involving the dimer model, see the recent treatment of the combinatorics of the planar Ising
model [6].

Lemma 5.6 [16, Theorem A] Let K A∪B be as in Theorem 2.3. We have

Pf K A∪B = Z A∪B
curr

Z∅
curr

.

Proof By (2.2), for any A′ ⊂ A ∪ B with |A′| = |A| and B ′ = (A ∪ B) \ A′, we have

det N A′,B′ =
∑

π : bijection A′→B′
(−1)xing(π)

∏

{a,b}∈π

〈σaσb〉

Recall that a bijection between A′ and B ′ can be thought of as a pairing of A ∪ B, i.e., a
partition of A∪ B into pairs {a, π(a)}, a ∈ A′. Note that each pairing π of A∪ B appears in
a sum as above for exactly 2|A| choices of A′. Indeed, for each of the |A| pairs in π , we can
choose one vertex that will belong to A′. Hence, by (2.4) and by Lemma 5.5, we have

Pf K A∪B = 2−|A| ∑

A′,B′
det N A′,B′ = 2−|A|

Z∅
a-flow

∑

A′,B′
Z A′,B′
a-flow. (5.1)

Recall that 	A′,B′ ⊂ 	A∪B is the image ofFA′,B′ under the map ω from Sect. 4. We claim
that each ω ∈ 	A∪B belongs to 	A′,B′ for exactly 2k

′(ω) choices of A′, where k′(ω) is the
number of connected components of ω containing a vertex in A ∪ B. Indeed, by Lemma 5.3
and 5.4, for each connected component κ of ω that intersects A ∪ B, there are exactly two
ways of distributing the vertices in V (κ) ∩ (A∪ B) between A′ and B ′ (choosing one vertex
to be connected to a source or a sink fixes the choices for all other vertices in V (κ)∩ (A∪ B)
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by the alternating property). Hence, by combining Theorem 3.2 and 4.1, we have

(5.1) = 1

Z∅
a-flow

∑

A′,B′

∑

ω∈	A′,B′
2−k′(ω)|E∅(ω)|

∏

e∈ω1

xe
1 − x2e

∏

e∈ω2

x2e
1 − x2e

= 1

Z∅
a-flow

∑

ω∈	A∪B

2k
′(ω)−k′(ω)|E∅(ω)|

∏

e∈ω1

xe
1 − x2e

∏

e∈ω2

x2e
1 − x2e

= Z A∪B
curr Z∅

curr

Z∅
a-flow

= Z A∪B
curr

Z∅
curr

,

where in the last equality we used Corollary 4.3 to get Z∅
a-flow = (Z∅

curr)
2. ��

We are now in a position to prove the rest of our main results.

Proof of Theorem 2.3 Recall that A and B are placed around the outer face in such a way that
all vertices of A comebefore every vertex of B in a counterclockwise order. LetP A,B ⊆ 	A∪B

be the image of the event PA,B under the map from Sect. 3. Comparing the formulas in
Theorem 3.2 and 4.1, we have

PA∪B
d-curr(PA,B) = P

A∪B
d-curr(P A,B)

=
∑

ω∈P A,B

P
A∪B
d-curr(ω)

= Z A,B
a-flow

Z A∪B
curr Z∅

curr

∑

ω∈P A,B

2k
′(ω)−|A|PA,B

a-flow(ω)

= Z A,B
a-flow

Z A∪B
curr Z∅

curr

∑

ω∈P A,B

P
A,B
a-flow(ω)

= Z A,B
a-flow

Z A∪B
curr Z∅

curr
, (5.2)

where the second to last equality holds true since, by the definition of PA,B , k′(ω) = |A| for
every ω ∈ P A,B . Moreover, since P

A,B
a-flow is supported on 	A,B , to justify the last equality we

have to show that P A,B = 	A,B . To this end, note that by Lemma 5.3, for each F ∈ FA,B ,
we have that ω(F) ∈ P A,B , where ω denotes the map from Sect. 4. Indeed, for contiguous
sets A and B, there is only one way of distributing the sources A+ and sinks B− between
the connected components of an alternating flow in such a way that they alternate around the
external face for each component. Thismeans that each connected component of F connects a
single point in A to a single point in B. On the other hand, by Lemma 5.4, for eachω ∈ P A,B ,
there exists F ∈ FA,B such that ω(F) = ω. Therefore, P A,B = 	A,B and (5.2) holds true.
Furthermore, using Lemma 5.5 and 5.6, we get

det MA,B

Pf K A∪B
= Z A,B

a-flowZ
∅
curr

Z∅
a-flowZ

A∪B
curr

= Z A,B
a-flow

Z A∪B
curr Z∅

curr
,

where we used Corollary 4.3 to obtain that Z∅
a-flow = (Z∅

curr)
2. Together with (5.2), this

finishes the proof. ��
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Proof of Theorem 2.4 Hongler in his PhD thesis [17] showed that in the setting of Theo-
rem 2.4, for any a ∈ A and b ∈ B, the following limit exists

fa,b(D) := lim
ε→0

ε−1〈σaε σbε 〉, (5.3)

where aε and bε are vertices on the outer face of Dε approximating a and b. Moreover, the
limit is conformally covariant, i.e., for a domain D′ and a conformal equivalenceϕ : D → D′,
we have

fa,b(D) = fϕ(a),ϕ(b)(D
′)|ϕ′(a)ϕ′(b)| 12 . (5.4)

Furthermore, for real numbers a, b, we have

fa,b(H) = 2(
√
2 + 1)

π |a − b| .

The result now follows from Theorem 2.3 since, by the expansions of the determinant and
Pfaffian (2.1) and (2.4), the normalization factors from (5.3), the constants 2(

√
2 + 1)/π ,

and the factors containing derivatives of ϕ from (5.4) cancel out. ��
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