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Abstract Informational completeness and the possibility of state distinction and determina-
tion are among the more important issues of quantum statistics. We use spectral and semis-
pectral (POV) measures to analyse these questions. For a given W ∗-algebra and a family of
normal states on it we investigate the relation between sufficiency in Petz’s sense of a W ∗-
subalgebra generated by a spectral measure, and the possibility of determination of these
states by means of an observable.
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1 Introduction

In the algebraic approach to quantum mechanics a physical system is described by the op-
erator algebra M, and a subalgebra N of M is generated by experimental observation, that
is by measurement. The information about the states of the system, which are given by the
predual of algebra M, after the measurement is limited to the states restricted to subal-
gebra N . The purpose of measurement is the determination of properties of the physical
system under investigation. That is why it is necessary to analyse the W ∗-algebra generated
by semispectral measure e, representing the measurement, and its sufficiency for family of
states “chosen by e”, that means giving good probability measure describing the measure-
ment outcome. We will define them as states determined by e.

Sufficiency of a quantum statistic in Petz’s sense was introduced in [9] (under the name
of ‘sufficiency’), and afterwards analyzed in [7, 8]. State determination and distinction was
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investigated in [2] and [1]. Two questions are dealt with in this paper: when the W ∗-algebra
generated by spectral or semispectral measure e is sufficient for a family of states De (the
set of states determined by e) and what is the characterization of more general set DN of
all states determined by W ∗-algebra N . In particular, we are interested in the question when
the equivalence class [ρ]N consists of only one element.

2 Preliminaries, Notation and the Quantum Setup

Let H be a Hilbert space with a scalar product 〈·, ·〉. By P(H) we shall denote the lattice
of all orthogonal projections acting in H. B(H) will stand for the algebra of all bounded
linear operators on H. For ϕ ∈ H we shall denote by P[ϕ] the orthogonal projection onto the
subspace spanned by ϕ (in Dirac notation P[ϕ] = |ϕ〉〈ϕ| for ‖ϕ‖ = 1). Let B(H)+ denote the
set of all self adjoint positive operators from B(H).

By a von Neumann algebra M of operators acting on H we mean a ∗-algebra M ⊂ B(H)

which contains the identity operator 1 and closed in the strong operator topology on B(H),
i.e. the topology given by the family of seminorms

B(H) � x 	→ ‖xξ‖, ξ ∈ H.

For a von Neumann algebra of operators M acting on a Hilbert space H we denote by
M′ the commutant of M, i.e. the algebra of all bounded operators on H which commute
with all the operators from M. In particular, if M is Abelian then M ⊂ M′. For basic facts
about von Neumann algebras the reader is referred to [5, 6, 13].

The σ -field of Borel subsets of the real line R will be denoted by B(R).
The probability space employed to describe a quantum system consists of a separable

Hilbert space H and a state ρ. Assume now M = B(H). There is a 1-1 correspondence
between normal states ρ on B(H) and positive operators of trace one Dρ on H, called
density matrices, such that

ρ(a) = traDρ, a ∈ B(H).

Observables on H are represented by semispectral measures (POVM) e, where e : B(R) →
B(H)+ satisfies the conditions:

(i) 0 ≤ e(�) ≤ 1 for any � ∈ B(R)

(ii) e(∅) = 0, e(R) = 1
(iii) for any pairwise disjoint sets �n ∈ B(R),

e

( ∞⋃
n=1

�n

)
=

∞∑
n=1

e(�n),

where the series converges in the weak operator topology.
For spectral measures (PVM) we will use E, where E : B(R) → P(H) (≡ projection

valued measure).
Let e or E be semispectral or spectral measure respectively. For a state ρ ∈ M∗ we can

define the probability measure

� 	→ ρ
(
e(�)

)
for any � ∈ B(R).

This is interpreted as the probability distribution of measurement outcomes when the
system is in the state ρ.
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3 Sufficient Quantum Subalgebra

The first idea of sufficiency in the noncommutative setting goes back to H. Umegaki (see [11,
12]) and can be described as follows.

Let M be von Neumann algebra, and N be subalgebra of M. Thus N is said to be
sufficient in Umegaki’s sense for a family of states {ρθ : θ ∈ Θ} if there exists a normal
conditional expectation E : M → N such that for any θ ∈ Θ we have

ρθ ◦ E = ρθ .

i.e. the states ρθ are E-invariant. The requirement that the map E : M → N is a normal
conditional expectation was afterwards replaced in the papers [4, 9, 10] by a weaker condi-
tion that we have α : M → N completely (or two)-positive map; nevertheless, the very idea
of sufficiency as the possibility of state-invariantly mapping an algebra into its subalgebra
remained intact. This replacement leads us to “sufficiency in Petz’s sense”.

Definition Let M be a von Neumann algebra and {ρθ : θ ∈ Θ} a family of normal states on
M. We say that a von Neumann subalgebra N of the algebra M is sufficient in Petz’s sense
for the family {ρθ : θ ∈ Θ} if there exists a normal unital two-positive map α : M → N such
that for all θ ∈ Θ ,

ρθ ◦ α = ρθ .

Sufficiency of algebra N for the family of states {ρθ } was investigated in [7, 8] in some
special situation i.e. for

N = W ∗(E)

=
{
Φ(E) =

∫ ∞

−∞
Φ(λ)E(dλ) : Φ—a complex-valued bounded Borel function

}

where E-spectral measure and {ϕθ : θ ∈ Θ}-vector states (we use ϕ instead ρ for vector
states). The result obtained gives a necessary and sufficient condition for N to be sufficient
in Petz’s sense for family {ϕθ : θ ∈ Θ}:

Theorem 1 Let {ϕθ : θ ∈ Θ} be a family of vector states on B(H) and N = W ∗(E)-the von
Neumann algebra generated by a spectral measure E. N is sufficient in Petz’s sense for the
family {ϕθ : θ ∈ Θ} if and only if the following conditions hold:

(i) vectors {ϕθ }θ∈Θ are pairwise orthogonal, in particular, we have {ϕθ } = {ϕn}
(ii) there exists a family of orthogonal projections En in N , such that |ϕn〉〈ϕn| ≤ En.

Proof Assume that N is sufficient in Petz’s sense, and let α be normal positive unital map
B(H) into N , such that for each A ∈ B(H) and for each θ ∈ Θ

ϕθ

(
α(A)

) = ϕθ (A)

in Dirac notation:

〈ϕθ |α(A)|ϕθ 〉 = 〈ϕθ |A|ϕθ 〉.
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N is the Abelian algebra generated by spectral measure E, thus for each A ∈ B(H) there
exists a bounded Borel function Φ(·;A) such that

α(A) =
∫ ∞

−∞
Φ(t;A)E(dt).

Moreover,

sup ess
t

∣∣Φ(t;A)
∣∣ = ∥∥α(A)

∥∥ ≤ ‖A‖.

For some orthonormal basis of H denote by H0 the set of all finite linear combinations of
elements from this basis with “rational complex” coefficients, that is numbers a + bi, such
that a and b are rational. Then H0 is a countable dense subset of H, closed with respect to
taking sums and multiplying by rational complex numbers. For any ξ1, ξ2, ξ, η1, η2, η ∈ H
we have(|ξ1〉 + |ξ2〉

)〈η| = |ξ1〉〈η| + |ξ2〉〈η|, |ξ 〉(〈η1| + 〈η2|
) = |ξ 〉〈η1| + |ξ 〉〈η2|,

so for any ξ1, ξ2, η ∈ H0 we get∫ ∞

−∞
Φ

(
t; (|ξ1〉 + |ξ2〉

)〈η|)E(dt) = α
((|ξ1〉 + |ξ2〉

)〈η|)
= α

(|ξ1〉〈η|) + α
(|ξ2〉〈η|)

=
∫ ∞

−∞

[
Φ

(
t; |ξ1〉〈η|) + Φ

(
t; |ξ2〉〈η|)]E(dt),

thus

Φ
(
t; (|ξ1〉 + |ξ2〉

)〈η|) = Φ
(
t; |ξ1〉〈η|) + Φ

(
t; |ξ2〉〈η|) E − a.e. (1)

This means that there exists set �ξ1,ξ2,η of full E-measure, such that for all t ∈ �ξ1,ξ2,η

equality is (1) fulfilled. Similarly, with summing on the second place and multiplication by
a rational complex number, therefore taking the intersection of all sets of full E-measure,
we get the set �1 of full E-measure, such that for all t ∈ �1, for all ξ1, ξ2, η1, η2 ∈ H0, and
for all rational complex numbers c we have

Φ
(
t; (|ξ1〉 + |ξ2〉

)〈η1|
) = Φ

(
t; |ξ1〉〈η1|

) + Φ
(
t; |ξ2〉〈η1|

)
,

Φ
(
t; |ξ1〉

(〈η1| + 〈η2|
)) = Φ

(
t; |ξ1〉〈η1|

) + Φ
(
t; |ξ1〉〈η2|

)
,

Φ
(
t; c|ξ1〉〈η1|

) = cΦ
(
t; |ξ1〉〈η1|

)
.

(2)

Moreover, for each ξ ∈ H0, |ξ 〉〈ξ | ≥ 0, thus

0 ≤ α
(|ξ 〉〈ξ |) =

∫ ∞

−∞
Φ

(
t; |ξ 〉〈ξ |)E(dt),

so

Φ
(
t; |ξ 〉〈ξ |) ≥ 0 E − a.e.

This means that there exists set �ξ of full E-measure, such that for all t ∈ �ξ

Φ
(
t; |ξ 〉〈ξ |) ≥ 0. (3)



3266 Int J Theor Phys (2014) 53:3262–3272

Putting

�2 =
⋂

ξ∈H0

�ξ,

we get the set �2 of full E-measure, such that for all t ∈ �2 and all ξ ∈ H0

Φ
(
t; |ξ 〉〈ξ |) ≥ 0.

For any fixed ξ, η ∈ H0 there is a set �ξ,η of full E-measure, such that for all t ∈ �ξ,η

we have ∣∣Φ(
t; |ξ 〉〈η|)∣∣ ≤ sup ess

u

∣∣Φ(
u; |ξ 〉〈η|)∣∣ ≤ ∥∥|ξ 〉〈η|∥∥ = ‖ξ‖‖η‖.

Put

�3 =
⋂

ξ,η∈H0

�ξ,η.

Then �3 is of full E-measure, and for all t ∈ �3, and for all ξ, η ∈ H0 we have∣∣Φ(
t; |ξ 〉〈η|)∣∣ ≤ ‖ξ‖‖η‖. (4)

Put

� = �1 ∩ �2 ∩ �3.

Then � is of full E-measure, and for all t ∈ �, and all ξ1, ξ2, ξ, η1, η2, η ∈ H0, and for all
rational complex numbers c relations (2), (3) and (4) hold.

For t ∈ � we can define function h(t; ·, ·) on H0 × H0 by the formula

h(t; ξ, η) = Φ
(
t; |ξ 〉〈η|).

For all ξ, η ∈ H0, h(·; ξ, η) is a Borel function, h(t; ·, ·) is a sesquilinear form on H0 × H0

with respect to multiplication by rational complex numbers; moreover∣∣h(t; ξ, η)
∣∣ ≤ ‖ξ‖‖η‖ and h(t; ξ, ξ) ≥ 0.

Let H0 � ξn → ξ , H0 � ηn → η. Then for all t ∈ � we have∣∣h(t; ξn, ηn) − h(t; ξm,ηm)
∣∣ ≤ ∣∣h(t; ξn, ηn) − h(t; ξn, ηm)

∣∣
+ ∣∣h(t; ξn, ηm) − h(t; ξm,ηm)

∣∣ = ∣∣h(t; ξn, ηn − ηm)
∣∣ + ∣∣h(t; ξn − ξm,ηm)

∣∣
≤ ‖ξn‖‖ηn − ηm‖ + ‖ξn − ξm‖‖ηm‖ −→

n,m→∞ 0, (5)

thus for t ∈ �, we can define function h̃(t; ·, ·) on H × H by the formula

h̃(t; ξ, η) = lim
n→∞h(t; ξn, ηn),

where ξn, ηn are as above. Reasoning as in relation (5) above shows, that h̃(t; ξ, η) doesn’t
depend on the choice of approximating sequences {ξn}, {ηn}.

Again we find immediately, that for all ξ, η ∈ H, h̃(·; ξ, η) is a Borel function.

It can be easily seen that h̃(t; ·, ·) is a sesquilinear form on H × H and∣∣̃h(t; ξ, η)
∣∣ = lim

n→∞
∣∣h(t; ξn, ηn)

∣∣ ≤ lim
n→∞‖ξn‖‖ηn‖ = ‖ξ‖‖η‖.
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There is, therefore, the operator A(t) of norm ≤ 1, such that

〈η|A(t)|ξ 〉 = h̃(t; ξ, η), ξ, η ∈ H;
moreover, the operator function t 	→ A(t) is weakly Borel measurable (that is for all ξ, η ∈
H, t 	→ 〈η|A(t)|ξ 〉 is a Borel function). For ξ, η ∈ H0 we have

〈η|A(t)|ξ 〉 = h(t; ξ, η) = Φ
(
t; |ξ 〉〈η|). (6)

In particular, for ξ ∈ H0 the following inequality holds

〈ξ |A(t)|ξ 〉 = Φ
(
t; |ξ 〉〈ξ |) ≥ 0,

showing that

0 ≤ A(t) ≤ 1. (7)

Let now ϕ be an α-invariant vector state. Define an operator A (depending on ϕ) as weak
integral

A =
∫ ∞

−∞
A(t)

∥∥E(dt)ϕ
∥∥2

,

i.e.

〈η|A|ξ 〉 =
∫ ∞

−∞
〈η|A(t)|ξ 〉∥∥E(dt)ϕ

∥∥2
, ξ, η ∈ H.

For ξ, η ∈ H0 we have

〈η|ϕ〉〈ϕ|ξ 〉 = 〈ϕ|ξ 〉〈η|ϕ〉

= 〈ϕ|α(|ξ 〉〈η|)|ϕ〉 =
∫ ∞

−∞
Φ

(
t; |ξ 〉〈η|)∥∥E(dt)ϕ

∥∥2

=
∫ ∞

−∞
〈η|A(t)|ξ 〉∥∥E(dt)ϕ

∥∥2 = 〈η|A|ξ 〉,

which shows that

A = |ϕ〉〈ϕ|.
Consequently,

1 = 〈ϕ|A|ϕ〉 =
∫ ∞

−∞
〈ϕ|A(t)|ϕ〉∥∥E(dt)ϕ

∥∥2
,

and since

〈ϕ|A(t)|ϕ〉 ≤ 1,

we get

〈ϕ|A(t)|ϕ〉 = 1
∥∥E(·)ϕ∥∥2 − a.e.

Taking into account inequalities (7), the above equality yields

A(t)ϕ = ϕ
∥∥E(·)ϕ∥∥2 − a.e.
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For ξ⊥ϕ we have

0 = 〈ξ |A|ξ 〉 =
∫ ∞

−∞
〈ξ |A(t)|ξ 〉∥∥E(dt)ϕ

∥∥2
,

hence

〈ξ |A(t)|ξ 〉 = 0
∥∥E(·)ϕ∥∥2 − a.e.,

and thus

A(t)ξ = 0
∥∥E(·)ϕ∥∥2 − a.e.

Consequently, we obtain

A(t) = |ϕ〉〈ϕ| ∥∥E(·)ϕ∥∥2 − a.e.,

thus there is a set �ϕ ∈ B(R) such that

∥∥E(�ϕ)ϕ
∥∥2 = 1 (8)

and for all t ∈ �ϕ we have

A(t) = |ϕ〉〈ϕ|.
From (6) we get for all ξ, η ∈ H0 and all t ∈ � ∩ �ϕ

Φ
(
t; |ξ 〉〈η|) = 〈η|ϕ〉〈ϕ|ξ 〉 = 〈ϕ|ξ 〉〈η|ϕ〉. (9)

Observe that since E(�ϕ) is a projection, from equality (8) we get

E(�ϕ)ϕ = ϕ. (10)

Let now ϕ and ψ be two α-invariant vector states. Then we have

� ∩ �ψ ∩ �ϕ = ∅.

Indeed, if t ∈ � ∩ �ψ ∩ �ϕ , then we would have for ξ, η ∈ H0

〈η|ψ〉〈ψ |ξ 〉 = Φ
(
t; |ξ 〉〈η|) = 〈η|ϕ〉〈ϕ|ξ 〉,

giving the equality |ψ〉〈ψ | = |ϕ〉〈ϕ|. In particular, because � is of full E-measure, by equal-
ity (10) we obtain

〈ψ |ϕ〉 = 〈
E(�ψ)ψ |E(�ϕ)ϕ

〉 = 〈
E(�ψ ∩ �)ψ |E(�ϕ ∩ �)ϕ

〉 = 0,

because from the disjointness of �ϕ ∩ � and �ϕ ∩ � it follows that

E(�ϕ ∩ �)E(�ψ ∩ �) = 0,

so two different α-invariant pure states are orthogonal.
Let now {ϕθ : θ ∈ Θ} be a family of α-invariant pure states. Because ϕθ are parwise

orthogonal, we have {ϕθ } = {ϕθn}. Let �ϕθn
be sets like above. Put

�n = �ϕθn
∩ �, En = E(�n).
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Sets �n are parwise disjoint, so En are orthogonal and from (10) we get |ϕθn〉〈ϕθn | ≤ En.
Assume now, that {ϕθn} is a countable family of orthogonal vector states, which we de-

note by ϕn, and that there are in N pairwise orthogonal En such that |ϕn〉〈ϕn| ≤ En. Put

P =
∑

n

En.

Let ψ be a fixed vector in H. Define on B(H) map α by the formula

α(A) =
∑

n

〈ϕn|A|ϕn〉En + 〈ψ |A|ψ〉P ⊥, A ∈ B(H). (11)

Of course α is a normal positive unital linear map from B(H) to N . Since

Emϕn =
{

ϕn, if m = n

0, if m �= n

and

P ⊥ϕm = 0 for each m,

we have

〈ϕn|α(A)|ϕn〉 =
∑
m

〈ϕm|A|ϕm〉〈ϕn|Em|ϕn〉 + 〈ψ |A|ψ〉〈ϕn|P ⊥|ϕn〉

= 〈ϕn|A|ϕn〉,

for each n, which proves that ϕn are α-invariant, so N is sufficient in Petz’s sense (from the
commutativity of N follows completely positivity hence so i two-positivity of α). �

4 State Distinction and State Determination

Let us first recall, following [2]

Definition States ρ and ϕ are distinguished by semispectral measure e if

ρ �= ϕ ⇒ ∃� ∈ B(R) ρ
(
e(�)

) �= ϕ
(
e(�)

)
Definition State ρ is determined by semispectral measure e if

∀ϕ ∀� ∈ B(R) ρ
(
e(�)

) = ϕ
(
e(�)

) ⇒ ρ = ϕ

For semispectral measure e the equality

ρ
(
e(�)

) = ϕ
(
e(�)

)
sets up the equivalence relation “∼”:

ϕ ∼ ρ ⇔ ∀� ∈ B(R) ρ
(
e(�)

) = ϕ
(
e(�)

)
.
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The implication given in the first of the definitions above

∀ϕ ∀� ∈ B(R) ρ
(
e(�)

) = ϕ
(
e(�)

) ⇒ ρ = ϕ

can be rewritten in the following form

[ρ]e = {ρ},
where [ρ]e is the equivalence class of relation “∼”.

The set of all states determined by semispectral measure e will be denoted by De and
defined by:

De = {
ρ : [ρ]e = {ρ}}.

The content of the set De depends on semispectral measure e.
For semispectral measures e and f , if Df ⊆ De then we say that the state determination

power of e is greater than or equal to f and write

Df ⊆ De ⇒ f ≺d e

It is known from [1] that for any spectral measure E and any state ρ the equivalence class
is a one-element set

[ρ]E = {ρ}
if and only if Dρ is a one dimensional projection from E, that is Dρ = |ϕ〉〈ϕ| for some unit
vector ϕ ∈ H (in other worlds, ρ is a vector state).

5 The Main Problem

Given subalgebra N = W ∗(e) of M and family of states De it is natural to ask if W ∗(e)
is sufficient for De . The answer is positive for spectral measures and, more general, for
randomized semispectral measures, and it is given in the following theorems.

Theorem 2 If E is a spectral measure with values in P(H), and DE is the set of states
determined by E then N = W ∗(E) is sufficient in Petz’s sense for the family DE .

Proof On account of [1, 2] for spectral measure E, set DE consists only of vector states ϕ

such that their density matrices are one-dimensional projections from the range of E. So

DE = {
ϕ : |ϕ〉〈ϕ| = E(�) for some � ∈ B(R)

}
.

The Hilbert space H is separable so there are only countably many such ϕ’s, moreover
they are pairwise orthogonal and belong to N = W ∗(E). According to Theorem 1 this is a
necessary and sufficient condition for N to be sufficient in Petz’s sense for set DE of states
determined by E.

Observe that in our situation we can take in formula (11) Theorem 1 En = |ϕn〉〈ϕn|
because |ϕn〉〈ϕn| ∈ W ∗(E). �

The same result can be obtained for semispectral randomized measures but we need
different methods. The idea of randomized measurements comes from [3].
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Definition Semispectral measure e with values in B(H)+ is called randomized, if for any

�1,�2 ∈ B(R),

we have

e(�1)e(�2) = e(�2)e(�1).

The main theorem:

Theorem 3 If e is a randomized semispectral measure and De is the set of states determined
by e, then the algebra N = W ∗(e) is sufficient in Petz’s sense for the family De .

Of course, any spectral measure is a randomized semispectral measure, so the previous
theorem follows from this one.

Proof Let e be a semispectral randomized measure. For N = W ∗(e), W ∗ we say that two
states ρ and φ are N -equivalent, when for all A ∈ N , ρ(A) = ϕ(A). We write ρ ∼N ϕ and
∼N is an equivalence relation. In a natural way we define set DN of all states determined
by algebra N .

DN = {
ρ : [ρ]N = {ρ}}.

Let’s notice that for two algebras J and K such that J ⊂ K we have [ρ]J ⊃ [ρ]K, indeed
for ϕ ∈ [ρ]K,

∀K∈K ϕ(K) = ρ(K)

and from J ⊂ K

∀J∈J ϕ(J ) = ρ(J )

so ϕ ∈ [ρ]J .
Now it is easy to see that for J ⊂ K, DJ ⊂ DK . By virtue of the assertion above and the

fact that ∀�∈B(R) e(�) ∈ N we can claim that De ⊂ DN .
Each algebra generated by a randomized semispectral measure, like algebra N , is

Abelian. On the other hand each Abelian algebra is generated by some spectral mea-
sure. Therefore there exists a spectral measure E such that N = W ∗(E) and of course
De ⊂ DN = DE .

N = W ∗(E) is sufficient in Petz’s sense for the family DE by Theorem 2, so it is also
sufficient for De because De ⊂ DE . �

6 Corollary and Open Problems

There are different kinds of criterions for an optimal measurement. In the first part we have
investigated state determination power of a semispectral measure and its correlation with
sufficiency but it is also possible to consider distinction power. Following [2] we have:

Definition Let e, f semispectral measure. If for all states ρ1, ρ2

∀� ∈ B(R) ρ1
(
e(�)

) = ρ2
(
e(�)

) ⇒ ρ1
(
f (�)

) = ρ2
(
f (�)

)
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then we denote

f ≺i e

and say that state distinction power of e is greater or equal to f .

We can moreover recall that

f ≺i e ⇒ f ≺d e

Corollary 1 If N = W ∗(e) is sufficient in Petz’s sense for De then is sufficient for Df for
each f such that f ≺i e.

The problem of relationship between algebra generated by a spectral measure e and fam-
ily of states that is determined by e remains unresolved, as well as a structure of De for any
measurement e is open issue.
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4. Jenčová, A., Petz, D.: Sufficiency in quantum statistical inference. Commun. Math. Phys. 263, 259–276

(2006)
5. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Academic Press,

New York (1983)
6. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. II. Academic

Press, New York (1986)
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