
47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition AIAA 2009-1461 
5 - 8 January 2009, Orlando, Florida 

A Surface Parameterization Method for Airfoil Optimization 

and High Lift 2D Geometries Utilizing the CST Methodology
 

Kevin A. Lane' and David D. Marshallt 

California Polytechnic State University, San Luis Obispo, CA, 93407-0352 

For aerodynamic modeling and optimization, it is desirable to limit the number of design 

variables  to  reduce  model  complexity  and  the  requirements  of  the  applied  optimization 

scheme. The Class/Shape Transformation (CST) surface parameterization method presented 
by Kulfan has proven to be particularly useful for this while maintaining a wide range of 

applications. These include everything from smooth airfoils to 3D axi-symmetric bodies and 

wings.  However,  the CST method is confined to smooth geometries.  This limits  the CST 

method in applications incorporating discontinuous surfaces such as high lift aerodynamics 

with circulation control (CC) slots and flaps. The trailing edge slot on a circulation control 

wing (CCW) airfoil is not well modeled by the CST method. A parameterization of a CCW 

airfoil will result in the trailing edge slot being smoothed over. Therefore, a modified CST 

method  must  be  utilized.  For  the  case  of  parameterizing  a  known CCW airfoil,  this  is 

accomplished  by  detecting  drastic  changes  in  curvature  and  beginning  a  new 

parameterization in a "multi-surface parameterization" method. For creating a new CCW 

airfoil, this is achieved by modifying the 2D CST equations to incorporate a slot thickness 
term that also includes the horizontal location. These two methods can then be extended into 

3D to model a circulation control wing (CCW) or even a blended wing body (BWB) aircraft 

incorporating CCW. The multi-surface parameterization modification can also be used to 

model other complex geometries to further enhance the robust nature of the CST method, 

thus creating a valuable design tool. 

Nomenclature 
a  angle of attack 
I  non-dimensional streamwise location 
1  non-dimensional semi-span location 
I  non-dimensional vertical location 
L  spacing 
A  2D curvature coefficient array 
b  wingspan 
B  3D curvature coefficient matrix 
c  chord length 
C  class function 
C  2D drag coefficient 
Cl  2D lift coefficient

  CST 2D geometry matrix 
i  index of streamwise binomial coefficient 
j  index of spanwise binomial coefficient 
K  binomial coefficient 
N  order of Bernstein polynomial 
Nl  first exponent in class function 
N2  second exponent in class function 
Nx  order of streamwise binomial coefficient 
Ny  order of spanwise binomial coefficient 
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S 
t 
x 
y 
z 

component shape function 
arc length 
streamwise location 
spanwise location 
vertical location 

Subscripts 
L 
LE 
U 
x 
y 

lower surface 
leading edge 
upper surface 
streamwise location 
spanwise location 

I. Introduction 
he CST surface parameterization method  is very powerful in its simplicity and ease of use. It is unique in that it Tcan model a wide array of smooth geometries with a small number of equations and parameters. It is very 

similar to Bezier curves in that the CST equations are the Bezier curve equations with an added class function term. 
The class function classifies a shape into a particular category, which forms the base that all other shapes in that 
class are derived from. It can represent many aerodynamic shapes including a Sears-Haack body, biconvex airfoil, 
elliptic airfoil, wedge airfoil, and a round nose/pointed aft end airfoil resembling a NACA airfoil, as well as several 
others. These can be revolved to create an axi-symmetric body or can be altered with the shape function to obtain a 
new shape. The shape function determines the specific shape of the geometry within its class as specified by the 
class function.  Other parameterization methods that have been used to model airfoils include Bezier curves, B-
Splines, and NURBS. B-Splines and NURBS can have problems with oscillations when performing curve fits. CST 
does not have this problem. It results in smooth curves. CST can also fit a curve to a given airfoil  with fewer  
coefficients than Bezier curves. This is because with a properly selected class function, the CST curve somewhat 
resembles the airfoil in question before any coefficients have been set. 

II. Overview of CST Methodology 
A) CST Airfoils 

Any smooth airfoil can be represented by the general 2D CST equations. The only things that differentiate one 
airfoil from another in the CST method are two arrays of coefficients that are built into the defining equations. These 
coefficients control the curvature of the upper and lower surfaces of the airfoil. This gives a set of design variables 
which allows for aerodynamic optimization. This method of parameterization captures the entire design space of 
smooth airfoils and is therefore useful for any application requiring a smooth airfoil. The upper and lower surface 
defining equations are as follows: 

Nl (I )ISU'U (I )=C N2 (I )+II/'U 

Nl (I )ISL (I )+II/'L'L(I )=C N2 
( ) 

where 

I = x lc and '= z lc 

The last terms define the upper and lower trailing edge thicknesses. Equation uses the general class function to 
define the basic profile and the shape function to create the specific shape within that geometry class. The general 
class function is defined as: 

Nl
C
Nl (I )= I I( _I)N2 

(2)N2 

For a general NACA type symmetric airfoil with a round nose and pointed aft end, N is 0.5 and N2 is  .0 in the 
class function. This classifies the final shape as being within the "airfoil" geometry class, which forms the basis of 
CST airfoil representation. This means that all other airfoils represented by the CST method are derived from the 
class function airfoil. This is due to the fact that if the shape function equals one everywhere, the resulting airfoil is 
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equivalent to that given by the class function. Therefore, to represent an airfoil with the CST method, N  and N2 can 
be replaced with 0.5 and  .0 respectively. Equation  then becomes: 

' (I )=C0.5 (I )IS (I )+II/'U  .0 U U 
(3) 

' (I )=C0.5 (I )IS (I )+II/'L  .0 L L 

Many other classes exist, but the 2D analysis will be limited to airfoils for now. Figure displays the NACA type 
airfoil as represented by the class function. 

Figure l: General airfoil  efine with class function. 

The shape function defines the specific shape within the airfoil class. The overall shape functions for the upper and 
lower surfaces are as follows: 

NU 

SU (I) =L AU ( i)IS (I , i) 
i=0 

(4) 
N L 

SL (I )=L AL (i)I S(I , i) 
i=0 

where S is the component shape function and is represented by a Bernstein polynomial. N is the order of the 
Bernstein polynomial used for either the upper or lower surface. This is also equal to one less than the number of 
curvature coefficients used. The component shape function is scaled by the curvature coefficients which determines 
the specific airfoil shape. The component shape function is given as the following: 

N i _i
S(I ,i) =  Ki II I( _I )N 

(5) 

where K is the binomial coefficient, which is directly related to the order of the Bernstein polynomials used. The 
binomial coefficient is defined as: 

n n !
K i = (6) 

i !  (n_i )! 

Equations 2-6 can be combined to form the complete equations to represent the upper and lower surfaces of CST 
airfoils. 

0.5
_I )

 .0 L 
NU ! i _ i

U' (I )=I I( A (i)I II I( _I)N +II/ ' U U U 

NU 

� �i!(N _i)!i=0 U 
(7) 

0.5
_I )

 .0 L 
N ! i _i

' (I )=I I( A (i)I L II I(  _I )NL +II/'L L L 

NL 

� �i !(Ni=0 L_i) ! 

Equation  7 fully describes any smooth airfoil given the correct curvature coefficients. These coefficients can be 
optimized to represent a known airfoil, which can also serve as a starting point for an airfoil geometry optimization. 
Having an airfoil parameterized by the CST method gives an equation for the upper and lower surfaces. This allows 
points to be added at desired locations to refine areas such as the leading edge of an airfoil that has high curvature. 
Figure 2 shows some examples of parameterized airfoils to display the power of the CST surface parameterization 
method. The circles show the exact airfoil coordinates and the lines correspond to the CST airfoil surface calculated 
using optimized curvature coefficients. The coefficients were calculated by minimizing the root mean squared error 
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between the exact coordinates and the CST coordinates. This was performed using the MATLAB2 optimizer 
fminunc. 

Figure 2: Airfoils parameterize  using curvature coefficient optimization. 

B) CST Wings 

The 2D process for airfoils is easily extended to wings as a simple extrusion of parameterized airfoils. This greatly 
increases the number of design variables for an optimization scheme. However, it is no less powerful. By controlling 

the distribution of airfoils, any smooth wing can be represented. Also, such characteristics as sweep, taper, 
geometric twist, and aerodynamic twist can be included. The definition of a 3D surface follows a similar structure to 
that of a 2D surface. The upper and lower surface defining equations for a 3D CST surface are as follows. 

NxU NyU
 

Nl
' U (I ,1) =  C N2 (I )ILL {� BU (i , j )IS y (1 , j )�IS x (I ,i )}+I I{_tan ��TWIST (1)�} 
i=0 j =0 

NxL Ny L
 

Nl
' L(I ,1) =  C N2 (I )ILL {� BL (i ,  j )IS y (1 , j )�IS x (I , i )}+I I{_tan �� TWIST (1)�} (8) 
i=0 j =0 

where 

x_x LE  (1) 2y
I = and 1 = 

c (1) b 

and where the unit streamwise and unit spanwise shape functions are: 
Nx i _I )Nx _iS x (I , i ) =  Ki II I( 

(9) 
Ny j _1)Ny_ j

S y (1 , j ) =  K j I1 I( 

Just as with a CST airfoil,  a CST wing  is based on  an extension of an airfoil defined with the class function.  
Therefore, Eq. 8 can be rewritten to represent a wing by using 0.5 for N  and  .0 for N2. 
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NxU NyU 

0.5
' U (I ,1) =  C .0 (I )ILL {� BU ( i , j)ISy (1,  j)�ISx (I ,i)}+I I{_tan ��TWIST (1 )�} 

i =0 j =0 
( 0) 

NxL Ny L 

' (I ,1) =  C0.5 (I )ILL {� B (i , j )IS (1 ,  j )�IS (I , i )}+I I{_tan �� (1)�} L	  .0 L y x TWIST
 
i=0 j =0
 

The last terms in Eq.  0 allow for geometric twist by simply entering the desired angle of twist. Also, by controlling 
the leading edge location and chord length distributions, wing sweep and taper can easily be achieved. This is 
displayed in Figure 3. 

Figure 3: CST generate  wing with sweep an  taper. 

The BU and BL terms are essentially matrices of the curvature coefficients discussed for airfoils. This permits easy 
implementation of aerodynamic twist. By controlling the distribution of curvature coefficients in the spanwise 
direction, the cross-section of the wing can be varied. The wing from Figure 3 is rotated and cross-sections are 
shown along the span in Figure 4 to better display this. Aerodynamic twist can be seen by the change in the airfoil 
throughout the cross-sections shown. The airfoil warps slightly between each cross-section to provide a smooth 
transition from the root airfoil to the tip airfoil. Aerodynamic twist is shown by the difference in the tip and root 
airfoils. The root airfoil is symmetric while the tip airfoil is cambered. 

Figure 4: Spanwise slices of wing generate  via CST  emonstrating aero ynamic twist. 

See Kulfan for a more thorough discussion of the application of the CST method to smooth airfoils and wings, as 
well as other aircraft components such as nacelles. 

III. Improvements to the CST Method 
Starting from the basic CST methodology, important improvements have been made to improve the speed of solving 
for the unknown coefficients, via pseudo-inverses, and the accuracy of the representation, via modifying the class 
function terms. In addition, a parameterized variation of the CST method was explored in order to improve the 
robustness of the representation of vertical edges. 
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A) Analytical Solution for Curvature Coefficients 

An analytical solution for the curvature coefficients was recently discovered and implemented for this work. The 
general CST equations for two-dimensional curves given above can be represented as: 

A'=  IAA+IAI/' 

Nl N _0 Nl N _
C I (0)�IK II (0) 0I� _I (0)� N 

C I (0)�IK II (0) I� _I (0)� N  
(  )N2 0 N2 

Nl N _0 Nl N _= C I ( )�IK II ( ) 0I� _I ( )� N 
C I ( )�IK II ( ) I� _I ( )� N 

N2 0 N2 

where AA is the Bernstein polynomial coefficients and is the only unknown term. Since D is only a square matrix 
if the order of the Bernstein polynomial equals the number of points used to represent the airfoil, the pseudo inverse, 

+ 
, is used to solve for the curvature coefficients. This minimizes the least squared difference between the 

given 'A values and the calculated ones. 

A (A ( 2)A = + '_AI /')  

This analytical solution was compared to the optimizer solution to determine its merits. It was discovered that the 
analytical solution either matched or bettered the optimizer solution throughout the entire range of orders tested and 
had a significantly shorter runtime. Therefore, it became the method of choice over the optimizer method. 

B) Nt and N2 Optimization Study 

It was desirable to study the effects of varying N and N2 to see if there existed better choices for N and N2 than 
the given values of 0.5 and  .0 respectively. N and N2 were optimized using the MATLAB optimizer fminunc and 
the analytical solution mentioned in the previous section. Figure 5 displays a comparison of the RMS error and the 

Figure 5: Error for optimize an fixe Nl an N2 coefficients in the class function.
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maximum residual for the fit of an RAE2822 airfoil over a range of Bernstein polynomial orders. It clearly shows 
that the optimized N  and N2 coefficients yield a better fit than using N and N2 values of 0.5 and  .0 respectively. 
While optimization results in more accurate solutions, given the scale of the y-axes, an N  of 0.5 and an N2 of  .0 is 
often acceptable for achieving a good fit without having to perform an optimization. However, using optimized N 
and N2 values would prove to be useful when highly accurate representations are required. 

One thing to note is that while 0.5 and  .0 are not optimal values for N and N2, they are close. This is why they 
were selected as the general coefficients to represent the airfoil class. The optimized values of N and N2 do not 
differ much from the given values of 0.5 and  .0. Table displays the optimized values of N  and N2 for each order 
tested for the same test case of the RAE2822 airfoil. 

Table l: Optimize  values of the class function 
parameters for an RAE 2822 airfoil. 

Order Nt 

2 0.4843

3 0.4703

4 0.4973 

5 0.4977 

6 0.4780

7 0.4829

8 0.493 

9	 0.4956 

0 0.4926 

C) Parameterized CST 

N2
 

.0684 

.0330 

0.9262 

0.9277 

.00 7 

.028 

0.96 4 

0.9752

0.9946 

It was desirable to develop a fully parameterized CST method where the \ and  t coordinates are calculated at a 
given arc length t along the curve as opposed to the current method of solving for an t coordinate at a given \ value. 
This would permit parameterization of shapes with vertical segments, such as CCW airfoils. This was performed by 

creating a parameterized equation for the \ values. A Dx matrix similar to the aforementioned D matrix can be 
Aconstructed that is dependent upon arc length. This can be used to solve for the A coefficients that represent x 

the given \ values. 

N	 _0 N _
K 0 It (0)

0I� _t (0)� N K It (0) I� _t (0)� N 

N	 _0 N _ 
x = K 0 It ( )

0I� _t ( )� N K It ( ) I� _t ( )� N	 ( 3) 

AThe A  coefficients are determined as the product of the pseudo inverse of the Dx matrix and the known \ x

values. 

A +
A = I AI	 ( 4) x x 

A similar Dy matrix is equivalent to the D matrix in Eq. where the  \ values correspond to the parameterized 
values above. 

Nl N	 _0 Nl N _
C I (0)�IK II (0) 0I� _I (0)� N 

C I (0 )�IK II (0 ) I� _I(0)� N 
N2 0 N2
 
Nl N _0 Nl N


y = C I ( )�IK II ( ) 0I� _I ( )� N 
C I ( )�IK II ( ) I� _I ( )� N_ ( 5) 

N2 0	 N2 
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ASimilarly, the A  coefficients are determined by using the pseudo inverse of the Dy matrix. y

AAy y 
+ '_AI /')  ( 6) = (A

Therefore, the parameterized 2D CST equations become: 
N 

I (t ) =L Ax (i )IK i
NIt iI( _t)N_i 

i=0 
( 7) 

N 
Nl N _i'(t )=  CN2 I ( t)� IL{A y (i)IKi II (t ) iI� _I ( t)� N }+I (t )I/' 

i=0 

This method  introduces additional variables into the system. Two sets of curvature coefficients are required to 
represent a parameterized CST airfoil. However, it is a more general representation in that both coordinates are 
calculated at a specific distance along the curve as opposed to the original method where a t value is calculated 
using a given \ value. 

IV. Airfoil Optimization 
As previously explained, the CST method gives equations for the upper and lower surfaces of an airfoil in terms of 
the curvature coefficients. These coefficients can be used as design variables in an aerodynamic optimization 
scheme. Such a scheme is currently being developed to maximize the lift to drag ratio (L/D) of a supercritical airfoil 
for use on a next generation commercial airliner. The optimization scheme uses the MATLAB function fmincon as 
the optimizer. This function was selected over fminunc so that constraints could be placed on the airfoil geometry. 

Computational fluid dynamics (CFD) was selected for the solution method because the optimization is performed in 
the transonic regime where many other solution methods are not valid. This complicates the process greatly. Since 
CFD is to be used by an optimizer, both the meshing and solution processes must be automated. Therefore, the 
meshing process must be robust enough to handle any airfoil selected by the optimizer. However, the meshing 
process will still be sensitive to the given airfoil geometry. If the airfoil selected by the optimizer is too unlike the 
airfoil used to develop the meshing automation, the meshing process is prone to errors. Therefore, constraints are 
used to force the optimizer to select airfoils that somewhat resemble the initial airfoil. Constraints implemented to 
ensure an airfoil successfully passes the meshing stage include limits on maximum thickness and minimum 
thickness. An additional constraint was placed so that the upper surface does not cross the lower surface. 

The objective function of the optimization scheme uses ICEM CFD3 for meshing and FLUENT4 for solving. Both 
these steps are fully automated and have been implemented in the objective function. The optimizer is currently 
being tested for a cruise condition of Mach 0.8 at an altitude of 35,000 feet. To ensure that a constant Cl is  
maintained, the objective function estimates the current airfoil's lift curve by fitting a line to Cl values taken from 
CFD solutions at different angles of attack. This is used to obtain the angle of attack that should produce the desired 
Cl. This angle of attack is used for the final CFD solution of the objective function from which L/D is taken and read 
by the optimizer. 

The initial airfoil selected for the optimization scheme was the RAE 2822 transonic airfoil previously used in the 
class function coefficient optimization study. A Cl of 0.322 was selected to correspond to the Cl at  cruise  of  the  
airfoil used by a next generation commercial airliner currently being studied at Cal Poly. Table 2 Displays a 
comparison between the performance of the initial and optimized airfoils. The Cl values differ somewhat and 
displays some error in the selection of angle of attack. However, the Cd of the optimized airfoil is dramatically lower 
than that of the initial airfoil. The Cd value drops from 273 drag counts to  40, which is a reduction of  33 drag 
counts or about 49%. This also causes the L/D to increase from  2.05 to 22.78, which is an increase of about 89%. 
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Table 2: Performance comparison of
 
initial an  optimize  airfoils.
 

Initial Airfoil Optimized Airfoil 

Cl 0.329 0.3 8 

Cd 0.0273 0.0 40 

L/D  2.05 22.78 

� (degrees) 0.96  .5 

Figure 6 displays the L/D throughout the optimization process. It shows that the optimizer makes two significant 
improvements in L/D and otherwise changes very little. This phenomena is interesting and is under further 
investigation. 

Figure �: �ariation of L�  throughout optimization 

V.Figure 7 displays contours of Mach number over the initial and optimized airfoils. The initial airfoil is displayed 
on the left while the optimized airfoil is shown on the right. The maximum Mach number in the flow over the initial 
airfoil is much higher than that of the optimized airfoil. This is because the upper surface of the optimized airfoil is 
much flatter than that of the initial airfoil, which causes the flow to accelerate less over the upper surface of the 
optimized airfoil. This is the cause of the dramatic drag reduction. The lowest point of the lower surface of the 
optimized airfoil is forward from that of the initial airfoil. This allows for lower speed flow and therefore higher 
pressure. 

Figure 8 displays contours of static pressure over the initial and optimized airfoils. The static pressure is much more 
negative over the upper surface of the initial airfoil than that of the optimized airfoil. This is to be expected given the 
higher velocity flow over the initial airfoil. Also, the suction peak is moved forward from that of the initial airfoil. 

Figure 9 displays contours of entropy over the initial and optimized airfoils. A weak shock exists near the trailing 
edge of the initial airfoil as evident by the light contour extending above the upper surface near the trailing edge. No 
shock exists on the optimized airfoil. There is no entropy contour extending above the upper surface as is the case 
with the initial airfoil. 
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 Figure 7: Contours of �ach number for the initial airfoil �left� an  the optimize  airfoil �right�.
 

Figure 8: Contours of static pressure for the initial airfoil �left� an  the optimize  airfoil �right�.
 

Figure 9: Contours of entropy for the initial airfoil �left� an  the optimize airfoil �right�.
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Figure  0 displays contours of Mach number throughout the optimization. Iterations    and 2  are shown along with 

the initial airfoil and the optimized airfoil (iteration 23). Iterations and 2 were selected in the middle of the 
optimization because these are the iterations that showed the biggest change besides iteration 22. This was not 
shown because it very closely resembles the optimized airfoil. Iteration has a has much more rapid acceleration 
around the upper leading edge but with a lower maximum Mach number at the suction peak. The upper surface 
shock for this iteration is not nearly as severe and results in an increase in L/D to  7.43. Iteration 2 shows two 
shocks on the upper surface, one near the mid-chord and one near the trailing edge, with the trailing edge shock 
formed because of the thicker trailing edge compared to iteration   . However, they are both weaker than the shocks 
of the initial airfoil and iteration   . The lower surface shows an increase in the amount of decelerated flow which 
yields a larger pressure force associated with that surface. This results in an increase of L/D to  8.68. After this 
point, the optimizer reached airfoils very close to the optimized airfoil.  Figure  0 gives an indication of what the 
optimizer is doing. First, it finds a way to eliminate the shock on the upper surface by flattening the upper surface. 
This results in less acceleration over the upper surface. This is shown by the shocks getting weaker throughout the 
optimization. The optimizer then works on increasing the pressure on the lower surface. 

a� Iteration l b� Iteration ll
 

c� Iteration 2l c� Iteration 23 

Figure l0: Contours of �ach number throughout the optimization. 

VI. Application of CST to CCW Airfoils 
Since the CST method, when applied to airfoils, only works for those that are smooth, modifications must be made 
if the method is to be used to parameterize more complex geometries, such as a CCW slot. The general CST method 



                   

  

                   

                   

   

                  

                  

 

smooths over the slot when parameterizing a circulation control airfoil, which is illustrated in Figure where the 
red circles signify the airfoil coordinates and the blue line represents the CST curve approximation. 

Figure ll: Unsplit CST representation of a CCW airfoil. 

To account for this problem, the upper surface had to be split into three segments. This was performed by detecting 
the smoothness of the airfoil surface. The dot product of three consecutive points was taken and used to determine 
the angle between the vector from the first to the second point and the vector from the second to the third point. This 
was done along the entire airfoil surface and if the angle was determined to be too great, the surface was split at that 
location. This proved to yield a much better representation of the CCW airfoil in question. The multi-surface CST 
representation of the CCW airfoil is shown below in Figure  2.

Figure l2: �ulti-surface CST representation of a CCW airfoil.
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It is clearly evident that the multi-surface CST method well represented the CCW airfoil by splitting the airfoil at the 
top and bottom of the slot. This allowed CST curves to be created to represent three smooth sections as opposed to 
one surface with drastic changes in curvature. This method allows a designer to focus on specific sections of an 
airfoil, which is a valuable attribute when designing such complex geometries. 

VII. Future Work 
The airfoil optimization scheme is still in development and has room for improvement. The Cl values of the initial 
and optimized airfoils showed some variation during the optimization process (as much as 3% of the target). This 
needs to be rectified through a more refined process of estimating each airfoil's lift curve. Also, the optimized airfoil 
was much thinner than the initial airfoil, which could produce structural problems. Therefore, an additional 
constraint will be placed on the airfoil area to create a structural constraint without performing any structural 
analysis. 

A second CFD automation is being developed for CCW airfoils. Once completed, this can be used in a similar 
optimization scheme as the one previously discussed. Having a parameterized CCW airfoil gives several options for 
design variables in the optimization. The height of the CCW slot and the shape of the flap can be optimized in 
addition to the shape of the upper and lower surfaces. 

As previously mentioned, a wing is simply an extrusion of airfoil cross-sections in the CST method. This allows a 
CCW airfoil parameterized with one of the methods mentioned in the previous section to be included on a CCW. 

This allows the CCW slot to be placed along any portion of the trailing edge of the wing, permitting another aspect 
of the wing to be optimized. The root of the wing can also be modified to more closely represent a fuselage, thus 
allowing a BWB aircraft to be parameterized with the CST method. Work in this area is ongoing. 
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