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Abstract

CHARACTERIZATION AND IMPLEMENTATION OF A DECELLULARIZED PORCINE 

VESSEL AS A BIOLOGIC SCAFFOLD FOR A BLOOD VESSEL MIMIC

Aubrey Smith

Every 34 seconds, someone in the United States suffers from a heart attack.  Most heart 

attacks are caused by atherosclerotic build up in the coronary arteries, occluding normal blood 

flow.  Balloon angioplasty procedures in combination with a metal stent often result in 

successful restoration of normal blood flow.  However, bare metal stents often lead to restenosis 

and other complications.  To compensate for this problem, industry has created drug-eluting 

stents to promote healing of the artery wall post stenting.  These stents are continually advancing 

toward better drug-eluting designs and methods, resulting in a need for fast and reliable pre-

clinical testing modalities.  Dr. Kristen Cardinal recently developed a tissue engineered blood 

vessel mimic, with the goal of testing intravascular devices.  However, the scaffold component 

of this model exhibits several physiological limitations that must be addressed to create a truly 

biomemtic BVM.  The current model uses expanded poly(terafluorethylene) [ePTFE] or 

poly(lactic-go-glycolide) [PLGA] as the choice material for the scaffold.  EPTFE has several 

advantages as it is a widely recognized biomaterial.  However, ePTFE is very expensive and 

lacks native mechanical properties.  PLGA is another polymer that is created in-house to produce 

a uniquely tailored scaffold for use in the BVM; resulting in a cheaper alternative scaffold 

material.  However, PLGA again lacks the necessary native mechanical properties to properly 

mimic an in-vivo artery.  The creation of a biological scaffold will provide a unique biomimetic 

material to most accurately recapitulate the artery in-vitro.   

Decellularization is the process of removing all cellular components from a tissue, 

leaving an acellular structure of extracellular matrix.  Understanding the clinical problem and the 
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potential of the BVM, the aim of this thesis is to develop the decellularization process for the 

creation of a biologic scaffold as a replacement to the non-physiologic polymer scaffolds for the 

BVM. The first phase of this thesis was to develop and optimize an acceptable protocol for the 

decellularization of porcine arteries.  The use of a 0.075% sodium dodecyl sulfate detergent was 

sufficient for complete removal of all vascular cell types, without significant degradation to the 

scaffold wall.  In the second phase of this thesis, the decellularized scaffolds were mechanically 

tested to ensure retention of their native properties.  The longitudinal and radial properties of the 

scaffold were found to be similar to the native artery, indicating the decellularized scaffold 

improves several physiologically aspects when compared to a polymer scaffold.  These 

mechanical attributes improve the testing environment when evaluating sent deployment or new 

balloon angioplasty devices; as the decellularized scaffold has an phsyiolgical compliance. The 

final phase of this thesis examined the cellular adhesion capacities of the scaffold through 

recellularization with human umbilical vein endothelial cells (hUVECS).  Fluorescent 

microscopy analysis suggests uniform attachment of cells along the length of the scaffold 

creating a monolayer.  These results indicate this new scaffold type can develop an endothelium 

to complete the ideal, most physiologically relevant BVM system.  Further optimization of the 

decellularization procedures could enhance the ability of the scaffold to be cultured for long-term 

interaction with intravascular devices.
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Chapter 1 - Introduction

1.1 Motivation

In 2010 in the United States, the occurrence of cardiovascular disease (CVD) has recently 

reached an all time high, affecting more than 81.1 million people per year according to the 

American Heart Association (1).  Atherosclerotic build up in coronary arteries (known as 

coronary artery disease, or CAD) contributes to the majority of heart disease suffers; about 17.6 

million people in the U.S. (1).  Since 1987 the development of metallic stents has greatly 

improved the effectiveness of traditional balloon angioplasty as a treatment for CAD (2).  Stent 

design is an ever-improving technology.  Specific areas of improvement include stent 

architecture, drug-eluting designs, deployment methods, and adjuvant drug therapies (3).  

Current methodologies for testing stents and other intravascular devices require the use of in-vivo

animal models.  The use of animal models requires money, time, and resources. As new stent 

designs develop daily, there is an increased need for a fast and reliable form of testing to bridge 

these devices to market.  One potential solution is to create and implement a living in-vitro test 

model that serves as a conduit to represent a simplified human vessel.  

The recently developed “blood vessel mimic” (BVM) has been shown to successfully 

evaluate the endothelialization of bare metal and coated stents, by using specific tissue 

engineering techniques to create a living in-vitro model (4, 5).  Although most tissue engineered 

blood vessels are created with a goal being a treatment of CAD by creating bypass or 

replacement grafting, there is great potential for the use of engineered blood vessels as a

consistent, accurate, and relevant pre-clinical testing modality for intravascular devices.  The 

implementation of such a testing modality would improve the cost and accuracy of pre-clinical 

testing and potentially reduce the number of animal studies.   
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Previously, the BVM system was created using a synthetic polymer scaffold lined with 

human microvessel endothelial cells (HMVECs).  However, this model has several limitations 

with regard to its physiological and mechanical properties.  The ‘gold standard’ for the polymer 

scaffold material in the BVM has been, and is currently, expanded poly(tetrafluoroethylene), 

which is non-degradable and biocompatible.  The ePTFE scaffold has been well characterized to 

support the development necessary to mimic the native vessel’s endothelium.  It is however,

subject to several disadvantages such as high cost, poor mechanical compliance, and inability to 

mimic the native extracellular (ECM) microstructure (physically and chemically).  Therefore, the 

purpose of this thesis was to create a biologic scaffold to serve as an alternative scaffolding 

material to improve the BVM model.

The following sections of this Introduction will provide the background and foundation 

on which this thesis is based.  A summary of coronary artery disease and treatments, including

bypass grafting, angioplasty, and stenting will be provided.  A review of tissue engineered 

vascular grafts (TEVGs) will be presented, with an emphasis on scaffolding.  The Introduction 

will also include a review of the decellularization process, including the theory and methodology 

specific to TEVG development.  The Introduction will conclude with the aims and overall goals 

of this thesis.

1.2 Cardiovascular Disease

The leading cause of death in the United States is heart disease, claiming more than 2300 

lives per year (1 in every 2.9 American deaths) (1).  On average 1 in 3 Americans is affected by 

one or more types of cardiovascular diseases (CVD) (1).  CVD is an umbrella term for many 

specific types of heart and artery problems such as heart attacks, congenital heart defects, heart 

failure, stroke, CAD, peripheral artery disease (PAD), and some arrhythmias.  High cholesterol, 
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poor diet, inactivity, high blood pressure, and obesity contribute to a person’s increased risk for 

the occurrence of CVD (1).  CAD is one of the most common types of heart disease, claiming 

approximately 1 in every 6 CVD patients and costing an average of $11.7 billion per year (1).  

CAD occurs when there is plaque build-up in an isolated area of the artery as illustrated in Figure 

1.1.  When the plaque builds to the extent pictured in Figure 1.1B, a restriction of the blood flow

occurs, which can cause angina, shortness of breath, heart attack, stroke and often death (6).

Figure 1.1. Development of plaque in the coronary artery.  This type of  blockage leads 

to CAD (7).

1.3 Treatment of Coronary Artery Disease

Common approaches and therapies used to treat CAD include changes in life style, drugs,

a stent, or bypass surgery (8). Life style changes include a better diet, increased exercise, and 

quit smoking, or drinking.  Drugs can be taken to help treat heart disease, by lowering blood 

pressure such as, hydrochlorothiazide and atenolol (9).  A stent can be inserted into the occluded 

artery to re-open the artery to restore normal blood flow.  Bypass surgery is performed only in 
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the worst case scenarios to create a new flow path for the blood around the blockage. All of 

these therapies can help to treat different severities of the disease.  Due to their relevance to this 

thesis, bypass surgery and stenting will be reviewed in greater detail in the subsequent sections.

1.3.1 Coronary Artery Bypass Grafting

From 1996 to 2006 the number of cardiovascular operations and procedures increased by 

33% annually, according to the American Heart Association’s Heart Disease and Stroke 

Statistics in 2010 (1).  Over 176,138 coronary artery bypass graft (CABG) surgeries were 

performed in 2007 (1).  A bypass surgery aims to use an artery from the patient to use as a graft 

on the heart to redirect blood flow around the blocked portion of the artery, as illustrated in 

Figure 1.2.  This procedure is the most common type of open-heart surgery, and is highly 

invasive to the patient (10).  While CABG is expensive and requires a long recovery time, it has 

been successful long term with a lower rate of mortality, angina, and revascularization 

procedures than alternative methods (11).
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Figure 1.2.  The procedure for bypass grafting.  The graft is connected from the aorta to the 

distal part of the epicardial coronary arteries to redirect flow around the blocked portion of the 

coronary artery (10).

There are three main classifications for a biological bypass graft: autografts, allografts, or 

xenografts.  Autografts utilize ones own vessels, usually the internal mammary artery or the 

greater saphenous vein.  Less commonly used are the radial artery and lesser saphenous vein 

along with a few others (12).  In any of these cases, bypass surgery is performed by isolating the 

graft from the host’s leg, arm, or chest.  It is then connected proximally and distally to the 

blockage in order to reroute the blood flow as shown previously in Figure 1.2.  The chance of an 

immune response is low since the graft is from the host’s body.  Unfortunately only 60% of 

patients needing bypass surgery have suitable vessels for grafting (13).  In most cases the patient

suffers from a number of pre-existing cardiovascular diseases and therefore may have 
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atherosclerotic build up rendering any possible autologous vessels non-viable for grafting (13).  

If this is the case, either allografts or xenografts must be used.

The next most commonly utilized vessel type is an allograft, where the vessel is donated 

from an individual of the same species.  Although donors are matched with a host, allografts 

have an increased risk for immune rejection, and patients will normally be placed on 

immunosuppressants to increase the graft’s success (14).  This is a suitable alternative for a 

native vascular graft, but the number of donors is in short supply.  Finally, with the shortage of 

donor allografts and viable autologous vessels there has been an increase in exploration into 

xenogenic grafting.  A xenogenic graft is donated from a different species, usually porcine.  Pig

vessels closely mimic the human physiology and size, but will elicit an immune response from 

the host (15, 16).  This rejection is just as severe as allograft responses and will require the 

patient be on immunosuppressants (16, 17).  Due to the limitations of xenogenic grafts, along 

with other biologic grafts, a synthetic graft is another plausible alternative to be utilized for 

CABG.

Synthetic grafts are well characterized for use in peripheral locations in the body and can 

be scaled up for high-throughput clinical uses.  These types of grafts are commonly used for the 

larger diameter bypass procedures, but are currently not viable options for CABG, which 

requries a small diameter graft.  For over 50 years, synthetic grafts have primarily been made of 

poly(ethylene terphalates) [Dacron] and expanded poly(tetrafluoroethylene) [ePTFE] (18).  Both 

of these materials have been used clinically for peripheral applications and have become well 

characterized and clinically tested with successful outcomes for large diameter (>6 mm) vessels

(18).  Although a synthetic material is a seemingly suitable choice for an alternative CABG 

material, there are several disadvantages regarding the lack of physiological attributes.  Synthetic 
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grafts lack the appropriate endothelium, have little to no compliance, and have high thrombosis 

rates in small diameter grafts (19).  Specifically, the lack of an effective endothelium contributes 

to the onset of intimal hyperplasia and thrombus formation, rendering the graft not functional for

use in CABG grafting procedures (20-22).  To improve the functionality of the graft, the 

development of a surface endothelialization of Dacron and ePTFE has shown a reduction of the 

thrombogenic effects normally seen in-vivo (23).  There are several other treatments that can be 

performed on synthetic grafting material such as chemical modifications, heparization and 

protein coatings to improve the functionality of the graft (24).  These treatments do help in short 

term, in-vivo applications, but still tend to end in a graft failure via hyperplasia or thrombosis

long term evaluation (24, 25).  Table 1.1 and 1.2 summarize the potential bypass grafts for 

synthetic grafts (Table 1.1) and a comparison of biological grafts (Table 1.2).  To summarize, the 

use of either a synthetic or natural graft as a CABG material has specific individual limitations, 

resulting in a high demand for new materials and/or alternative treatments for CAD.
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Table 1.1.  The Most Clinically Used Synthetic Graft (18).

Table 1.2.  Comparison of Biologic Grafts (18).

1.3.2 Angioplasty and Stenting

There is one procedure that is commonly performed on CAD patients that does not 

require open-heart surgery and can open a partially blocked artery to restore normal blood flow.  
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This procedure is called angioplasty and it is mainly used on CAD patients who have not reached 

a life threatening point. It has been performed in over 1,300,000 patients in the United States, in 

2006 according to the American Heart Association (1, 26).  To perform angioplasty, a balloon 

catheter is inserted into the patient’s heart via their femoral artery near the groin.  The balloon is 

expanded at the blockage area, compressing all the plaque to the outer most diameter of the 

vessel, and re-augmenting restoring proper blood flow, as illustrated in Figure 1.3 (27).  

Figure 1.3. The angioplasty procedure.  A balloon catheter is inserted to the blocked area(A), 

expanded to compress the plaque (B), then deflated and removed (C) (27).

Unfortunately, this procedure restores blood flow temporarily, this simple compression 

does not maintain long lasting results; and restenosis, narrowing of the artery, commonly occurs.  

To augment a longer compression on the plaque, a bare metal support (stent) was developed to 

deploy with the help of the balloon during angioplasty (26, 27).  When deployed, the metal stent 
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expands to its full diameter, it pushes the blockage radially towards the wall of the vessel, 

reopening flow through the artery, as illustrated in Figure 1.4 (26).  This stent would remain in 

place permanently to keep the vessel open.  Since 1987 approximately 80% of all angioplasties 

incorporated the deployment of a stent, consequently the restenosis rate was reduced by 50 % 

(1).

Figure 1.4. Stenting procedure.  The balloon catheter with a collapsed stent is placed in the area 

of the blockage (A).  The balloon is expanded along with the metal stent to deploy the stent, (B).  

Then the balloon is deflated and removed while the stent remains in place (C) (27). 

While the use of a stent extends the effects of the angioplasty procedure, in-stent 

restenosis is an common complication with bare metal stents (26).  In-stent restenosis occurs

when plaque starts to re-form near and around the stent, recreating the original blockage 

problems (26, 27).  This process is illustrated in Figure 1.5, the bare metal stent displaces and 
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disrupts the normal layer of plaque and the endothelium of the vessel causing an increase in 

inflammation.  The inflammation expands the vessel wall and becomes extremely sticky causing

components in the blood stream to attach to the build up and cause further narrowing of the 

vessel.

Figure 1.5. Restenosis. The stent remains in place throughout time (A), but the endothelium 

becomes inflamed and restenosis occurs (B) (27).

To reduce restenosis, researchers have recently improved the bare metal stent by coating 

it with a time-releasing drug, known as a drug-eluting stent (26).  The released drugs typically 

prevent cell proliferation, thereby inflammation.  Through this specific, localized application of 

the drugs to the intima of the blood vessel, the responses to stenting have become more 

successful.  Additionally, researcher’s focused on the characterization and development of the 

specific drugs and their elution profiles, as well as the acute and chronic healing responses.  To 

encourage the continued advancement with the stenting technology, these devices should be 
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carried through for FDA approval for use in the clinical setting as quickly as possible.  Thus, the 

development of a high throughput, consistent in-vitro testing modality could serve as a primary 

way to assess the utility of these specific and unique stents in a timely manner. 

1.4 Tissue Engineered Blood Vessels

In the past 10 – 15 years there has been extreme progress in cell biology and cell culture, 

leading to the creation of the tissue engineering field (28).  As tissue engineering is newer 

science, many human tissues have recently been researched and developed; to name a few, 

TEBV, skin, bladder, heart valves, and cartilage (29).  Tissue engineers have focused on these 

areas not only because of the large clinical need, but also because they have relatively simple 

structures that can be mimicked with synthetic or natural scaffolds.  The main goal of tissue 

engineering is to recreate functional tissues and organs with cultured human cells for the 

production of replacement tissues (28).  In the case of a TEBV, the goal is to create an 

autologous vascular graft for bypass surgery.  However, as previously mentioned, it is also 

possible to engineer a blood vessel for use in preclinical device evaluation.  Tissue engineering

manipulates material properties to produces a unique configuration to mimic a specific tissue and 

help thousands (4).  

1.4.1 Highlights of Tissue Engineered Blood Vessels

The development of tissue engineered blood vessels made its debut in published 

literature in the 1980’s, with vessels utilizing a synthetic (Dacron) or biologic (collagen) scaffold

(30, 31).   As TEBVs have developed, the addition of endothelial cells (ECs), smooth muscle 

cells (SMCs), and fibroblasts have modeled a more physiologically relevant scaffold, 

representing the various layers of a blood vessel (4, 19, 32).  In 1986, Weinberg and Bell were 

the first to develop a vessel composed primarily of biological components: bovine aortic ECs
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(BAECs), SMCs, and fibroblasts on a layer of collagen (33).  The collagen and SMCs were 

jelled together using a casting media in a tubular mold with a centrally located mandrel, to 

represent the media of a vessel.  Then a Dacron sleeve was placed around the exterior of the 

tissue engineered ‘media’ and drip sodded with fibroblasts to enhance mechanical properties of 

vessel and mimic the adventia.  After one week of culture, the central mandrel was removed to 

present a lumen to be pressure sodded with BAECs.  The mechanical strengths along with the 

scaffold structure of this vessel mimicked the mammary muscular artery, representing the first 

TEBV with increased physiological relevance and durability (31).

Soon after Weinberg and Bell’s biologic scaffold, Foxhall et al. experimented with the 

application of endothelial cells on Dacron grafts (30).  In attempts to simplify the development of 

a TEBV, Foxhall et al. worked with different coatings to promote endothelization.  Collagen and 

fibronectin were coated on the luminal surfaces of Dacron resulting with a surface that 

significantly increased the proliferation of endothelial cells (30).  This synthetic scaffold was 

thought to have a greater potential for use as a small diameter vascular graft (30).  Results 

indicated that the scaffold had similar in-vitro properties as a mammalian muscular artery and 

could be used to study the cellular interactions with a vascular ECM. 

In 1998 L’Heureux et al. developed a construct to improve upon Weinberg and Bell’s

mostly biological scaffold (28).  This scaffold utilized a simple collagen sheet which was seeded 

with human vascular SMCs and wrapped around a small mandrel, to represent the media of a 

vessel.  Then a similar sheet seeded with fibroblasts was wrapped around the exterior of the 

SMCs, to mimic the adventia, as seen in Figure 1.6.  Finally, the mandrel was removed and the 

lumen was seeded with ECs (28).  The L’Heureux et al. vessel was completely biologic and had

the potential for natural remodeling and reduced foreign body reactions.  Unfortunately, this 

model had limited mechanical strength and tears would occur when used on its own (28).  The
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development of these and several other scaffold types created the ground work for future 

TEBVs.  These scaffolds have many basic qualities, such as the proper cell type, natural shape,

and a microstructure that increased the scaffold’s physiological relevance (34).  With these 

strong foundations, many researchers branched out to create countless types of tissue engineered 

grafts with the goal of transitioning these models into clinical applications for CABG.

Figure 1.6. Completely biological vessel (28).

Through the development of TEBV, several qualities have been identified tto be 

extremely important to the graft function.  The development of the microstructure is one of the 

most important aspects to be taken into consideration during the scaffold selection process.  To 

create a comfortable ‘living environment’ for cells, the microstructure of a TEBV scaffold 

should have small fibers that are randomly interconnected to create a unique porous scaffold.  

Having the proper structure onto which the cells can anchor will encourage strong cell adhesion, 

and contribute to the ability of the cells to proliferate and express normal endothelial cell 

markers, to communicate with the surrounding tissues for potential remodeling, thus increasing 

the scaffolds overall physiological relevance (18).  These are achieved by having a 

microstructure that closely mimics the native ECM (18).  The ECM for native blood vessels is 
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constructed of nanofibers about 100 nm that are layered in random orientation, eventually 

producing a porous wall (29, 35-37).  Blood vessel ECM consists of mostly collagen, fibronectin, 

gylcoaminoglycans, elastin, and laminin (29).  These components will interact with the ECs to 

aid in cell adhesion, integration with neighboring tissues as well hemodynamic interactions (35).  

To create a TEBV, the graft which best represents the native microstructure and components will 

be the most advantageous for a successful vessel.  

  1.4.2 Synthetic Scaffolds for TEBV

Synthetic scaffolds have been most frequently used in recent history for clinical and 

investigational applications of a TEBV(18).  The material properties for synthetic scaffolds are 

generally well characterized with reproducible and consistent results when tested for the ability 

to physically function as a graft (28).  Synthetic scaffolds have a high but acceptable burst 

strength, positive surgical handling, and is usually biocompatible (28).  Non-degradable 

synthetic polymers which are most often utilized in a TEBV are poly(ethylene terphalates) 

[Dacron] and ePTFE (4, 18, 28).  Dacron and ePTFE are both a highly crystalline and 

hydrophobic materials, that reduce the overall elusion of particles (contributing to the overall 

biocompatibility) and structural integrity (18, 32).  The widespread use of synthetic scaffolds 

occurs because the material characteristics have widely accepted microstructure, reproducibility, 

and biocompatibility (32).  Scaffold properties can be changed by specifically manipulating 

given components of the polymer makeup, thus changing the microstructure (32).  For example, 

ePTFE can be manufactured to have varying intermodal distances by knitting the basic polymers 

together (32).  This manipulation will contribute to the way the cells interact with the scaffold; 

knitting the polymers will produce a microstructure with a large surface area increasing the 

ability for coatings and cells to anchor to the material (32).  The knitted construction of the 
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scaffold increases the intermodal distance from the well characterized 30μm to and experimental 

60μm (32).  Although cells adhere better to these more porous surface, the mechanical properties 

are weakened, causing the scaffold to undesirably kink (32).  Even though these materials are 

well characterized, many researchers are trying to improve upon the basic design to create new 

scaffolding material.  

In addition to the non-degradable scaffolds summarized above, there are also other 

degradable synthetic scaffolds, such as polyglycolic acid (PGA) (32), which have quickly 

become more prevalent than non-degradable materials for TEBV.  PGA along with other 

degradable scaffolds can be manufactured to have unique microstructures.  Scaffold 

microstructure alterations may include increased porosity for better cell adhesion, a variety of 

degradation profiles for drug delivery or integration with the host, as well as specific mechanical 

properties for improved surgical handling or overall strength improvement (32, 38).  These are 

only a few select examples of scaffold properties that may be manipulated to tailor the 

capabilities of a particular scaffold.  The properties of synthetic scaffolds have encouraged their 

wide spread acceptance as a tissue engineering material and will continue to be used for TEBV.

While synthetic scaffolds are extremely controllable, predictable, and reproducible, there 

are still downfalls in their fundamental construction.  For example, ePTFE does not contain a 

media or adventitia layer, which contributes greatly to the scaffold’s ability to mimic an artery.  

This downfall limits the physiological relevance of the scaffold, because it has an inability to 

remodel and react to signals sent by the endothelium (4, 32, 39).  The inability to have a

communication with the cells on the scaffold will limit the abilities of the scaffold to naturally 

heal and change with the environment, if used in a CABG procedure (39).  The lack of 

communication may lead to an increase in the foreign body response and chronic inflammation 

(28).  Low performance as a physiological scaffold will increase the rate at which an in-vivo
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vessel will have thrombogenic occurrences (40).  Some of these downfalls of a synthetic material 

can be improved by conditioning or coating the scaffold with native proteins (such as collagen or 

fibronectin) or molecules (such as nitric oxide or adhesion molecules) to improve cellular 

interaction with the material (32).  To address the limitations of synthetic materials biologic 

materials have been explored and developed for TEBV.

The production of a combination scaffold aims to combine the best of a synthetic and 

biologic material.  These scaffolds are fabricated by combining a synthetic material with a 

biologic component (usually collagen) to produce a tubular vascular scaffold.  There are several 

different manufacturing processes to create different mechanical properties of the material and 

can be a highly controlled process.  This control will directly influence the mechanical 

properties, as well as the cellular interface with the biologic components (32).  These 

improvements help to improve the physiological relevance of the scaffold.  The production of 

these types of scaffolds relies heavily on creating a unique, intricate, porous scaffold as a 

structural foundation.  One way researchers have been able to create these types of scaffolds is 

through a process termed electrospinning (32).  Electrospinning is the process of charging a 

solution as it is pushed out of a syringe towards a spinning mandrel, which is grounded as a 

collector for the polymer/biologic solution (32).  This process creates a tubular scaffold that can 

have micro to nano-sized fiber diameter with randomly orientated porous walls (32).  While the 

composition and core development of the scaffold is more ideal than other synthetic materials, 

there are ways to improve the basic structure to better mimic the ECM.  In the case of 

electrospinning, altering the voltage charge on the syringe or the distance between the source and 

the collected will alter the fiber diameter of the scaffold (41).  Electrospinning has produced 

nanofibers that have enhanced mechanical properties while maintaining biocompatibility (41).  

However, the process for determining the right combination and concentration of the blend is 
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difficult, time consuming, and can become quite costly.  If the electrospun scaffold has the 

proper fiber size, porosity, and mechanical strength, the fibers may still have limited cell 

adhesion, migration, proliferation, and differentiation properties due to the unique material made 

up of the scaffold (41).  Continued research with the various combinations of parameters may 

produce a better scaffold.  While the combination of biologic and synthetic materials produces a 

scaffold with more physiological attributes, the more biologic components that are incorporated 

can only improve the capabilities of the scaffold.  The biological components are derived from 

natural growth factors and proteins, which mimic the ECM and should be maximized for the 

most physiologically relevant scaffold.

As will be described in more detail in the next section, there are several methods to create 

a biological scaffold or manipulate a synthetic scaffold.  However, the most efficient and 

pertinent construction of a scaffold will depend on the desired properties and applications of the 

scaffold.  To narrow the choices down, many properties of the scaffold should be considered 

including mechanical strength, biocompatibility, porosity, and cellular interaction to better 

classify the material.  Identification of the properties that are crucial to the functionality of the 

scaffold’s final application is imperative to select the most appropriate scaffolding material.  To 

better understand the information previously described, Table 1.3 represents a summary of the 

essential differences between a biologic scaffold and a synthetic scaffold.  Once a scaffold 

material is selected, it can be used for many different applications, all leading towards improving 

knowledge and treatments for CVD.
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Table 1.3. The Comparison of the Biologic Verses the Synthetic Scaffolds.

Charact-
eristics

Mechanical 
Properties

Ability For 
Structural 
Manipulation

Compli-
ance

Protein 
Interactions

Immune 
Response

Small 
Diameter 
Potential

Repair and 
Remodeling 
Potential

Consis
-tency

Synthetic Strong Strong Weak Weak Weak Weak Weak Strong

Biologic Weak Weak Strong Strong Strong Strong Strong Weak

1.5 Biologic Scaffolds for TEBVs 

 Although synthetic scaffolds have certainly demonstrated significant progress and 

success for use in TEBV research, another significant scaffold choice for a TEBV is the use of 

biologic material.  A biologic scaffold, is commonly composed of materials naturally found in 

the ECM of vessels or arteries, such as collagen or fibrin (32, 42, 43).   These scaffolds can be 

composed of the entire ECM by decellularizing a native vessel, or contain a combination of a 

polymer and biologic components as discussed earlier (32).  Once again the desired properties of 

the scaffold will determine which of these methods may best be utilized for the proper result.  

The following is a brief overview of the development of various biologic scaffolds. 

As discussed previously in the history of TEBV, Weinberg and Bell along with Foxall in 

1986 were among the first to develop a TEBV composed of biological components using ECs, 

SMCs, and fibroblasts mixed with collagen (30, 33).  This ground work provided a solid 

foundation for other researchers such as Yuan et al. in 1994 and L’Heureux et al. in 1998 to 

develop similar constructs (28, 33).  While these scaffolds improved the biological interfaces 

compared to synthetic materials, the man-made completely biologic vessel lacked the mechanical 

strength to be used in-vivo (28).  In attempts to increase the mechanical strength and overall 

construction of a biologic vessel, researchers looked into isolating the primary tissue source and 

removing all of its cellular components (40).  This cellular removal process is known as 

decellularization and has been utilized to develop a scaffold that maintains its structural integrity, 
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while retaining its native biological components (40).  The use of primary tissues as a scaffold 

was first developed in the 1960’s when researchers thought that by cross-linking the tissue, the 

immunogenic effects would be reduced enough to create a viable scaffold source (44).  The 

lowered immune response occurred through crosslinking, but mechanical properties were lost 

and cell death occurred (44).  Laka et al. in 1989 decided to use a detergent to break cellular 

bonds from the ECM, leaving an acellular, biological graft (44, 45).  This chemical 

decellularization process provided more desirable mechanical results without the detrimental 

effects of fixation (45).  From this original paper, many other researchers further developed the 

decellularization process (44).  There are many applications for which decellularization may be 

utilized; essentially any tissue that can be isolated can be decellularized.  The major benefit of 

decellularization is not only the potential to create scaffold with ideal microstructure and 

mechanical properties, but also its reduction to the basic biological components that are seen 

throughout the animal kingdom, thus limiting immunogenic effects of a graft while increasing 

the potential tissue sources (45, 46).  

1.5.1 The Use of a Decellularized Biological Scaffold

Utilizing a decellularized scaffold may improve the current issues with ‘man-made’ 

TEBV.  As described in the previous section, decellularization is the systematic removal of all 

cellular and nuclear components from tissues to leave the complex mixture of functional and 

structural proteins that form the native ECM (47).  The removal process is gentle enough to 

minimize its effects on the composition, biological activity, and mechanical integrity of the 

remaining ECM (47).  When the cellular components are removed from the native ECM, most of 

the protein material that remains is conserved among species (47).  Having a native structure that 
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is tolerable across many species opens a huge field for the potential to use xenogeneic and 

allogeneic grafts, which makes scaffold sources easily and widely available (47).  

The process of decellularization usually entails physical agitation and a chemical 

treatment.  Trypsin, ionic solutions, or detergents can be utilized to disrupt cellular membranes 

and their bonds to the ECM (47). Physical agitation is usually performed via sonication, 

mechanical pressure, or a freezing and thawing cycles in order to pull cells away from the 

scaffold once the cellular bonds are broken (47).  Once all of the cells are removed the 

extracellular matrix of the original tissue is all that remains.  Through this relatively simple 

process, a scaffold with the native microstructure and protein make-up can potentially serve as 

an ideal scaffold to engineer new tissues.  

To elaborate on the widespread used of decellularization in the creation of tissue 

engineered materials, the following will briefly describe a few applications of this process.  Ott 

et al. have worked to decellularize an intact rat heart.  Perfusing a sodium dodecyl sulfate (SDS) 

solution, a common detergent, through dissected rat hearts produced an enacted acellular rat 

heart (48).  After numerous rinses to remove excess SDS, the heart scaffold was recellularized

with neonatal cardiac cells, and contractions occurred with an electrical stimulus (48).  This work 

effectively showed how the decellularization process can be utilized to create tissues with the 

most accurate native architecture, encouraging this process’s continued used.  The development 

of a decellularized vessel can be seen through Schanner et al.’s work in 2004 (49).  The protocol 

used SDS to break cellular bonds from a porcine carotid blood vessel to produce a natural 

scaffold, composed only of blood vessel ECM.  Another example of decellularization for tissue 

engineering can be seen with decellularized bladders, where the native viscoelastic behavior of 

the scaffold is vital to the overall function of the bladder (50).  Through decllularization, the 

architecture of the scaffold remains intact and thus enables the bladder to maintain the 
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mechanical strength needed for contraction and relaxation (50).  Though these are only a few 

specific examples of decellularized tissues, the overarching idea behind decellularizing tissues is 

to keep the essential properties of that tissue intact to produce the most physiologically relevant 

scaffold.

Although the potential attributes are numerous, there are some disadvantages to using the 

decellualrization process.  The production of the scaffold tends to be a more laborious process 

while not consistently showing improvement over many synthetic scaffolds (40, 47).  The 

decellularization process is a time consuming treatment to perform on a tissue, but is similar to 

the time needed to specifically manipulate synthetic grafts which encompass similar 

microstructural properties.  There may also be trace amounts of the decellularization chemicals 

on the scaffold, potentially affecting the scaffolds ability to house cells.  While these are some 

potential limitations of a decellularized scaffold, the advantages of proper mechanical properties 

and essential biologic components typically out-weigh the risks and make it a highly desirable 

material for TEBV

After decellularization, several components of the ECM remain in the scaffold (51).  A 

decellularized blood vessel has the tissue specific components and the unique capacity to interact 

with intravascular devices, such as a drug-eluting stents, the cellular monolayer, enabling the 

material to mimic an artery.  This scaffold type also maintains a native microstructure throughout 

various treatments, making it the well-suited to house cells and to culture an effective 

endothelium.  Additionally, a decellularized scaffold has a unique composition that is unmatched 

by other scaffolding material.  It innately houses all the layers of an artery and can be used to 

study the inflammation pathway found during restenosis.  Together these properties encourage 

the use of a decellularized scaffold in the BVM because it’s a simplistic way to mimic a native 

blood vessel. 
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1.6 Purpose of a Blood Vessel Mimic

As summarized previously, researchers have developed several different kinds of stents, 

including bare metal and drug eluting stents, and degradable stents, which are currently 

emerging.  With new devices being developed at a rapid rate, there is a need for improved 

methods of testing.  Currently, there are two main modes for evaluating the functionality of 

stents.  Testing can be done either in a highly controlled, usually two-dimensional, in-vitro

environment or in the environment of in-vivo animal models.  In-vitro environments and animal 

models can both potentially provide highly effective and reliable methods for evaluating key

properties of stents and other intravascular devices.  Tests that are conducted within in-vitro

environments typically lack physiologic conditions, and tend to focus on one aspect of the 

material properties such as, toxicity, proper expansion, and mechanical strength (52, 53).  In-vivo

animal testing provides vital information about the device’s interactions and integration with the 

body; focusing on biocompatibility, healing responses, biodegradation, inflammatory responses, 

and elusion profiles (54, 55).  To create a bridge between the in-vitro and in-vivo testing Dr. 

Kristen O’Halloran Cardinal has developed an in-vitro ‘blood vessel mimic’ (BVM) for the 

purpose of testing intravascular devices (4, 5).  

The purpose of the BVM is to create a living model of a blood vessel with the goal of creating a

more physiologic in-vitro preclinical testing system (4, 5).  The BVM enables a platform for high 

throughput analysis of newly developed intravascular devices, intravascular imaging modalities, 

and drug delivery systems, (4, 5).  The model consists of a cylindrical scaffold with an intimal 

endothelial cell lining housed in a biochamber, and luminal perfusion with media via a peristaltic 

pump (Figure 1.7) (4).  The intimal cell lining acts as a living human tissue for physiologic 

interaction with a device (4).  This interaction allows for the potential assessment of various 

coatings and configurations of intravascular devices, providing more data for the identification of 
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the best candidates to proceed to further evaluation (4).  Thus, this methodology has the 

capabilities to improve the traditional methods of preclinical testing (4).

Figure 1.7. The BVM system.  The solidworks model of the current BVM system (Left).  The 

actual set up of the BVM in an incubator (Right).

1.6.1 The BVM Scaffold

To create a physiologically relevant bioreactor system several aspects of the scaffolding 

must be considered, such as size, orientation, material, microstructure, and biocompatibility. The 

BVM design allows for variations to the overall composition of the scaffold and bioreactor 

system.  A scaffold’s size can be varied from 3 mm to 4 mm inner diameter, and from 3 cm to 5 

cm in length via exchangeable lure lock fittings.   Also, through some configuration alterations,

the bioreactor can house scaffolds with more natural curvatures, such as 90 degree or 180 degree 

bends and bifurcations for more native orientations.  Changes in orientation of a scaffold may

increase the physiological aspects of the BVM, while presenting more realistic geometries to 

evaluate newly developed intravascular devices.  These versatile components make the BVM

design a promising preclinical testing method.  The scaffold plays a critical roles in the over 

function and physiological relevance of the BVM system.
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The physical orientation of the scaffold is an important attribute of the BVM, but the 

scaffold choice is a key aspect as well.  As previously described, there are several types of 

scaffold materials that can be utilized in a TEBV.  Currently in Dr. Cardinal’s research, ePTFE 

has been the gold standard for use in the BVM.  The synthetic scaffold is well known and 

characterized for its use as a TEBV, and will continue to be a consistent choice for countless 

testing applications.  Although the properties of ePFTE are not ideal, lacking in radial 

compliance and native porosity, ePFTE has the ability to support the development of an

endothelium.  The question remains if the scaffold can be made better?  A scaffold that has a 

native porosity, essential proteins of the ECM, native mechanical properties, and the potential to 

grow and develop would be a more physiologically relevant option for the BVM.  Based on 

current work in the TEBV field, as summarized previously, decellularized scaffolds present a 

potential option that has not been previously explored for the BVM.  Through the 

decellularization of porcine arteries, all of these properties are possible.

1.7 Overview and Aims of the Thesis

This Introduction has described the background for which this thesis is based.  The 

clinical problem of CVD is prevalent in the United States, where CAD is one of the most 

commonly treated disorders.  As described previously, the development of a metallic stent device

has been widely used to treat CAD, by effectively re-opening the blood flow through the vessel.  

New stents are being developed constantly to greatly improve the long-term results of stenting.  

To enable the most promising new devices make it to clinical applications, new methods for

preclinical, informative evaluation are required.  Thus, a highly specialized testing modality, the

BVM, has been created to provide preliminary endothelialization data in an in-vitro setting.
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As stated, the purpose of the BVM is to create a simplified physiological representative 

model of a human blood vessel with the intention of testing intravascular devices.  In the current 

BVM model, the scaffold must primarily be able to support a functional endothelium.  Thus, the 

specific characteristic of supporting an endothelium is vital to fulfilling the BVMs main goal.  To 

achieve this, the scaffold must support cell adherence, proliferation, and phenotypic expression.  

The scaffold’s ability to maintain the endothelium will improve the BVM’s capabilities (46).  

Once the development of a strong endothelium is ensured, the mechanical properties of the 

scaffold become the next characteristic for consideration.  Mechanical properties of the scaffold 

will determine its capacity to withstand the stent deployment (29).  The radial compliance is a 

major aspect to investigate when choosing a scaffold material (20, 46).  A scaffold with little to 

no compliance may prevent the stent from deploying properly, or if it’s too compliant the stent 

may not interact with the wall in an ideal manner.  Currently, the ePTFE scaffold lacks 

physiologic compliance and a new scaffold may have the potential to improve these limitations.  

In addition to the mechanical relevance of a decellularized scaffold, integral for stent 

deployment, it can be used to improve knowledge of sent interactions with the smooth muscle 

cells of an artery to develop knowledge regarding the common problem of restenosis.  Further 

more, a decellularized scaffold may help to develop novel imaging modalities, as it is a unique 

composition and light can penetrate through the material.

Based on published use of decellularized tissues as biologic scaffolds, and specific 

successes in the use of decellularized vessels for TEBVs, this thesis explored the development of

decellularized porcine vessels for use as a scaffold in Dr. Cardinal’s BVM.  To investigate the 

potential use of this scaffold in the BVM, there were three main aspects of this thesis: 

establishment of a decellularization protocol, mechanical characterization of the decellularized 

scaffold, and finally re-cellularization of the scaffold.  These experiments characterized the 
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decellularized scaffold’s potential to be used in the BVM system.  The mechanical properties and 

the ability to support an endothelium will provide the basic proof of concepts needed to support 

further investigation into the consistent use of decellularized blood vessels.  

The following is a summary of the specific aims pursued in this thesis.  

 Aim 1: Establish a decellularization protocol for the complete decellularization of 

porcine arteries and evaluate the success of the decellularization protocol using 

histology.  

 Aim 2: Determine the ability of the decellularized scaffold to maintain the native 

mechanical properties by assessing Young’s Modulus and Critical Yield via tensile 

testing.  Evaluate burst pressure for the radial compliance of the treated vessel.  

 Aim 3: Create a protocol for sodding the vessel with cells and evaluate the re-

cellularized scaffold. 

In conclusion, this thesis will provide documentation of the previously mentioned 

experiments to support the potential for a decellularized porcine scaffold to be utilized as a 

specific scaffold testing modality for the BVM.
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Chapter 2 - Development and Evaluation of Decellularization Protocol

2.1 Introduction

As described in Chapter 1, a range of synthetic polymeric materials exist for various 

biomedical applications.  One of the widely used polymers previously mentioned, ePTFE, is a 

readily used biomaterial for several in-vitro and in-vivo applications.  Polytetrafluoroethylene 

(PTFE), commonly known as Teflon, was discovered in 1937.  Teflon is an inert material and is 

considered to be one of the most ideal electrical insulating materials currently on the market (56).  

The polymer is composed of highly crystalline and hydrophobic molecules.  This particular 

combination of molecules prevents hydrolysis from occurring to keep the polymer as an intact 

structure (56).  One of the first medical uses of PTFE was in the early 1960’s as an implanted 

heart valve (56).  In 1969, a company called Gore patented an expanded version of the polymer 

(ePTFE), which became known as Gore-tex (56).  

To create ePTFE, the polymer is manufactured differently than just PTFE.  The polymer 

is put through a series of stretching and extruding processes, in a heated environment to produce 

a microporous, non-woven material (56).  Through this manufacturing process along with the 

biostable molecules and electronegative surface, ePTFE is capable of supporting tissue adhesion 

(Figure 2.1) (56).  The tubular ePTFE grafts are manufactured via stretching the material over a 

solid polymer shaft.  This stretching causes the non-woven material to crack, creating the 

micropores (56).   This manufacturing process is well defined leading to a predictable 

microstructure; there will be node-fibril structures running parallel on the length of the tube 

(Figure 2.1) (56).  The node-fibrils are approximately 30μm apart with interconnecting fine 

fibrils (Figure 2.1) (56).  

EPTFE was manufactured to be used for vascular grafting, because once created the 

resulting combination of the molecules and expanded micro-porous structure closely mimics the 
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native structure of a blood vessel.  This material has been used during vascular surgeries for 

large diameter bypasses such as aneurysms and aortoiliac occlusive disease, (57).  There is a 5-

year lifetime of this scaffold, which is a large improvement compared to the widely used Dacron 

and even the Gelatin coated Dacron grafts (57).  Today, ePTFE is the gold standard for large 

diameter vascular prostheses in clinical practice.  However, when ePTFE is used for small 

diameter vascular prostheses, thrombosis occurs within a few months due to the low polymer 

compliance (56, 58).  

Figure 2.1.   Scanning Electron Microscope (SEM) image of ePTFE. The microporous structure, 

with nodes running horizontally, parallel to the tubing length and the internodal fibers run 

vertically (59).

Also as described in Chapter 1, ePTFE has also found use in the BVM as the primary

scaffold material.  The goal of the BVM model is to create a pre-clinical testing system to 
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evaluate intravascular devices.  This in-vitro model aims to be high-throughput, cost effective, 

reliable, and physiologically relevant to simulate an in-vivo environment.   The use of ePTFE in 

the BVM model has many advantages.  Some of these include the extensive existing pre-clinical 

and clinical data on the endothelialization on ePFTE, the ability to be autoclaved or gas 

sterilized, good biocompatibility, non-biodegradability, proper EC orientation encouraged via the 

unique microstructure, and it’s availability in several different dimensions.  The fabrication 

methods of ePTFE produce a consistent scaffold and hence more consistent results.  Although 

this is an appropriate material for the development of a high throughput system, ePTFE is costly, 

dependent on the suppliers, and has non-native mechanical or physical properties.  Simply, the 

ePTFE is a limited material that cannot be easily tailored to incorporate specific properties to 

further advance the BVM model.  The production of a new scaffold which is created in house 

scaffold could improve the cost effectiveness and the physiological relevance of the BVM 

model.  One such scaffold that, which is the focus of this thesis is created through 

decellularization of a native tissue.

The production of a decellularized scaffold could potentially result in the production of a 

more physiologically relevant scaffold, improving the ePTFE scaffold.  In 2004, Schaner et al.

produced a completely decellularized vessel that maintained its native structural properties (49).  

This work became the basis for the development of the biologic scaffold for the BVM, using the 

decellularization on porcine vessels (49).  

The decellularization of arteries for tissue engineering has been used for over two 

decades and was first utilized by Malone et al. in 1984 where autologous small diameter carotid 

arteries were decellularized and then implanted in dogs (60).  These scaffolds were found to 

function properly 80% of the time.  Since this first experiment, the process of decellularization 

has grown exponentially and is now recognized as a legitimate method for the creation of 
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scaffolds for uses both in-vivo and in-vitro (61).  This thesis intends to further investigate the use 

of decellularized scaffolds for in-vitro use specifically.  The development of a decellularization 

protocol will aid in determining the potential utility of a decellularized biologic scaffold for use 

in the BVM.

2.2 Methods for Decellularization

2.2.1 Protocol Development

All vessels were harvested from pigs at the Cal Poly swine unit or at Creston Valley 

Meats.  Pigs about 2-6 months old were sacrificed and vessels were harvested within one hour of 

death.  The jugular vein, carotid artery, arteries from the brachiocephalic trunk, subclavian vein 

and artery, femoral artery and vein, as well as other superficial arteries throughout the body were 

the choice vessels during harvesting.  The locations of these vessels are relatively well known, 

but the differences between an artery or vein, and the precise locations were not always clear.  

Harvested vessels were taken to the lab for cleaning, or the removal of all the connective tissue 

using a scalpel, razor blade, and scissors.  Extra attention was focused on removing only the 

connective tissue, not the adventia of the vessel wall.  Care was also taken to ensure the vessel 

was not ‘nicked’ by the cutting instrument.  Vessels were then cataloged based on their outer 

diameter; smaller than 2 mm were recorded as small, from 2-5 cm were recorded as medium, and 

larger than 5 cm were recorded as large vessels.  Vessels were then stored in a -20°C freezer 

within 8 hours of harvesting and remained usable for up to two years.  In preparation for 

decellularization, vessels were thawed in a 37°C water bath until the structure was malleable.  At 

this time the vessel was able to be used for any experimentation. 
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2.2.1.1 Static Decellularization Methods

  The preliminary decellularization parameters were based on the work of Schaner et al., 

including the duration of decellularization and concentration of SDS (49).  Primary experiments 

focused on determining the ideal concentration of SDS, as was done in Schaner et al’s. work 

(49).  To optimize the decellularization protocol, different concentrations of SDS, ranging from 

0% to 0.125%, were evaluated on the ability to remove all cells from the tissue without altering 

the native properties of the vascular wall ECM.  A high concentration of SDS, it results in the 

degradation of the vessel wall structure.  Conversely, a low concentration of SDS will leave all 

of the existing cells on the vessel may not be removed. The other experimental parameters were 

taken directly from Schaner et al.; the decellularization process took place for 15 hours on a 

Daigger orbital shake table (model SH 06050597).  The experimental procedure is provided in 

Appendix B: B.1, which describes the detailed steps for decellularization.  The first test 

evaluated concentrations of 0%, 0.075%, 0.1%, and 0.125% SDS to elucidate the optimal 

concentration for complete decellularization.  The ideal concentration from this experiment 

optimized the static decellularization protocol.  For these studies, small and medium sized 

vessels were utilized.

2.2.1.2 Perfusion Decellularization Methods

Once the vessels were found to be decellularized, further experimentation was required to 

evaluate the potential for use as a scaffold in the BVM.  The lumen of the vessel needed to 

remain open in order to perform these additional experiments.  However, during static 

decellularization, the vessel became swollen and the lumen was lost in the remaining connective 

tissue and adventia.  Therefore, to ensure the lumen remained accessible, it was essential to keep 
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the lumen open during the decellularization process. A male luer lock barb was inserted into the 

lumen.  The lure lock barbs were sutured onto either ends of the vessel just after thawing or

during the “clean-up” portion of the harvesting (Figure 2.2).  The protocol was further altered by 

adding a Thermo Fisher Scientific Masterflex L/S 3 roller peristaltic pump (model 7519-05), to 

perfuse the lumen during the decellularization process, rather than the orbital shake table for 

mechanical agitation.  The change in mechanical agitation is to keep the lumen open was the 

only modification to the static decellularization protocol (0.075% SDS for 15 hours).  This 

modified profusion protocol is in Appendix B: B.2.  The SDS solution perfused the lumen at 140 

rpm for 15 hours.  

Figure 2.2. Luer lock barbs sutured to the scaffold.  Sutured during cleaning (right) and 

during decellularization (left),

The consequent experiments to improve the perfusion decellularization, the flow rate of 

SDS through the lumen was optimized.  The perfusion rate through the vessel with SDS was 

lowered to 20 rpm.  Also, the use of a shake table was reinstated to improve decellularization by 

providing two types of agitation to the vessel wall.  The final protocol used a 3-roller peristaltic 
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pump at 20 rpm for 20 hours on a shake table rotating at 30 rpm (see Appendix B: B.3).  The 

final set-up with the shake table and peristaltic pump, is pictured in Figure 2.3.  

Figure 2.3. Peristaltic pump and orbital shake table utilized for decellularization.

2.2.2 Protocol Assessment

For both static and perfusion decellularization, histology was used to evaluate the 

decellularization process.  Samples were fixed in histochoice overnight to ensure the proteins in 

the sample were crosslinked. Samples were then processed using a Thermo Scientific, Shandon 

Excelsior ES tissue processor and then embedded in paraffin wax via a Thermo Scientific EC350 

embedding center.  Samples were embedded with a cross sectional orientation to view the 

scaffold lumen.  Sections approximately 6μm thick were cut from the block, using a Lyca RM 

2255 microtome.  Samples were stained with hematoxylin, a purple nucleic dye, and eosin, a 

pink cytoplasmic and collagen dye (hematoxylin from Fisher Scientific 7211 and eosin from 

Fisher Scientific 7111).  This staining process is called H&E staining and the full protocol is in 

Appendix B: B.4 Histology Staining.  Stained and cover slipped slides were imaged using white 

Shake Table

Peristaltic Pump

Scaffold
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light on an Olympus BX41 Microscope at 10x magnification.  The primary evaluation to assess 

decellularization consisted of nuclei identification within the image.  Secondly, the status of the 

tissue was evaluated for any noticeable degradation from the SDS solution.  Degradation was 

evaluated based on a visual evaluation of the vessel wall structure. 

The evaluation of the decellularization was based on the classification of the histological 

pictures.  There were three classifications of the vessel status: not decellularized, decellularized, 

and degraded.  A not decellularized scaffold had similar nuclei and wall structure as the control.  

A decellularized scaffold had similar wall structure as the control but no nuclei are present.  

Finally, a degraded scaffold had no nuclei and an altered structure from the control.  With these 

classes, all of the images from each sample concentration were evaluated.  

2.3 Results

2.3.1 Static Decellularization Results

In Figure 2.4, two images from each concentration of SDS are compiled together. All 

sections were stained with H&E and imaged at 10x magnification (higher magnification pictures 

are in Appendix C: C.1). Table 2.1 summarizes the classifications given to each sample.  A 

concentration of 0.075% SDS was considered to be the optimal concentration for 

decellularization without degrading the vessel wall.
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Figure 2.4. Images of static decellularized porcine arteries at various concentrations of SDS. 

Higher magnification images in Appendix C.1.

Control

0.0% SDS

0.075% SDS

0.01% SDS

0.0125% SDS
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Table 2.1. Summary of Classifications for Each Concentration Sample.

Sample SDS Classification

A Control Not decellularized
B 0% SDS Not decellularized
C 0.075% SDS Decellularized
D 0.1% SDS Decellularized, Degraded
E 0.125%SDS Degraded

2.3.2 Perfusion Decellularization Results

To optimize the decellularized scaffold for use in the BVM (or for any use requiring 

access to the lumen) the protocol was altered to keep the lumen of the vessel open.  The protocol 

alteration included the addition of a luer lock barb, which is easily integrated into a simple 50mL 

conical bioreactor.  The conical bioreactor enables decellularization via luminal perfusion.  The 

static shaking method focuses on decellularizing from the outside of the vessel into the lumen; 

where as perfusion methods have a particular focus on decellularization in the reverse direction,

from the lumen to the outside of the vessel.  Using this theory, mechanical agitation by an orbital 

shake table from the static protocol was changed in the perfusion protocol.  This experiment used 

a 0.075% solution of SDS to perfuse the lumen at 140 rpm for 15 hours.  Figure 2.5 are the 

images from the resulting histological analysis from the perfusion procedure.  The vessels were 

again scored with the same three classifications: not decellularized, decellularized, and degraded.  

Overall, the perfused vessel was scored as ‘not decellularized.’  The flow rate was too high for 

the given application and considered to be the main problem with the protocol since it was the 

only altered from the working static protocol.
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Figure 2.5.  Perfusion decellularization.  Perfusion decellularization scaffold (left) and 

control vessel (right). 

Investigations into the literature revealed that a lower flow rate, for a longer duration 

would allow the SDS to better interact with the scaffold, and improve the decellularization of 

tissue.  Also, a combination of the rotary shake table and perfusion methods was determined to 

be the ideal mode of mechanical agitation for complete decellularization.  Therefore, the final 

decellularization protocol perfused the lumen of the vessel at 20 rpm for 20 hours while on an 

orbital shake table (Appendix B: B.3 Final Perfusion Decellularization).   Figure 2.6, is the 

histological results from this new method compared to a native control and a statically 

decellularized vessel.  This final protocol was successful for the complete decellularization of a 

porcine artery and vascular wall, while maintaining the opening of the lumen.  Further verifying 

the efficiency of this protocol, the same protocol was repeated over ten times with a similar 

result.   It is important to note, that with the addition of the luer lock barb the whole tissue was 

not decellularized.  Through H and E analysis, the portion of the scaffold which was sutured to 

the barb was not completely decellularized and the scaffold was always cut from the barb before 

further processing.
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Figure 2.6. Successful perfusion decellularization.  Static decellularized scaffold (right), 

perfusion decellularized scaffold (center), and native control vessel (right). 

2.4 Discussion 

Several groups have done static decellularization using similar methodologies; where 

various methods of agitation were applied to the tissue, helping to remove all the cellular debris.  

Singelyn et al. utilized a stir bar to continuously move the tissue in an SDS solution for several 

days for full decellularization (51).  Licthenburg et al. suspended tissue in an Erlenmeyer flask 

with a stir bar to move the solution of SDS continuously around the tissue.  The decellularized 

scaffold was then re-suspended in a similar manner to for all other in-vitro testing (62).  The 

methodology from Shanner et al. is the bases for the static protocol used in this experimentation, 

where scaffolds were physically submerged repeated times into a SDS solution as the main form 

of agitation for cellular removal.  This method worked well for decellularization, but all other in-

vitro tests preformed by this group did not require access to the lumen (49).  These groups and 

others have demonstrated that static decellularization is possible with simple agitation methods, 

but the ultimate goal of the research will tailor what methodology works best.  In some 

applications the structure of the scaffold may remain intact, while for other applications, the 
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structure can be lost.  Thus, the most vital parameters of any decellularization protocol include 

only the concentration of the SDS and some means of agitation to the tissue.

Static decellularization was found to successfully remove all cellular components at a 

concentration of 0.075% SDS.  It could be debated whether the concentration was best at 0.075% 

or at 0.1% SDS, because both were fully decellularized with little damage to the vessel wall.  By 

looking at several other sections of the different concentrations, 0.1% SDS had more apparent 

degradation of the adventia layer of the vessel wall.  Also, limiting the amount of SDS present in 

the process would be ideal if this scaffold is to be used in biologic experiments.  Thus, the lower 

and most successful concentration of 0.075% SDS was chosen to be part of the optimal static 

decellularization protocol.  The other variables of the protocol had been determined through the 

literature and were repeated in this experiment.  Thus, there was no reason to perform additional 

experimentation for the optimization of these parameters. 

After successfully establishing a static protocol for decellularization, using 0.075% SDS 

and an orbital shake table to agitation, the next phases of in-vitro testing needed to be evaluated.  

These alternative in-vitro tests required access to the luminal space.  Specifically, to 

mechanically evaluate the scaffold is cut open and laid flat to determine its elastic modulus.  In 

addition when then scaffold is used in the BVM the scaffold to be sutured into the system and 

luminally pressure sodded with cells.  Therefore, it would be ideal to alter the decellularization 

techniques to provide luminal access for down stream testing. 

During static decellularization, the vessel became swollen and structures were 

unidentifiable from one another thereby rendering the lumen inaccessible.  By adding lure locks 

and perfusion step to the decellularization process, the vessel lumen could remain open for future 

experimentation.  By inserting the male lure lock barb into the vessel lumen of a frozen or fresh 

vessel, the lumen would remain opened throughout storage and decellularization.  The perfusion 
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step ensures the lumen is exposed to SDS and with the combination of the shaker have the 

mechanical agitation enabled complete cellular debris removal.

Perfusion methods have been used in literature to decellularize scaffolds where keeping 

an intact the macrostructure is imperative.  Ott et al. was the first group in 2008 to decellularize 

an intact rat heart using the perfusion methods.  The rat hearts were carefully dissected from the 

animals, then the chambers of the heart were perfused (flowing the path of blood flow) with PBS 

and SDS for several days (48).  Using the perfusion method, most of the macrostructures 

remained intact, including: ventricles, atriums, coronary arteries, purjinke fibers, atrioventricular, 

and semilunar valves (48).  Keeping these macrostructures intact was important for whole heart 

decellularization because the scaffold maintains it complexity and intricacy, which is currently 

impossible for any man-made scaffold.  The end goal for a whole heart decellularization is to 

reach the clinic, where it is promised to one day improve the organ transplant process (48).  For 

this goal, having all of the complexities and intricacy of a normal heart is vital to the usability for 

this type of scaffold.  Overall, this perfusion method enables the decellularization from the inside 

out, without drastically harming the macro- or microstructure.  Using a similar perfusion method 

to decellularize a single artery, should retain the native macrostructure intact.  This has been 

preformed in the vascular decellularization literature; produce a physiologically relevant scaffold 

(40, 49, 63).  Thus in theory and as shown in these experiments, the established perfusion 

decellularization protocol maintains the scaffold structure very similar to that of a native artery.  

To further evaluate the perfusion decellularization protocol, the reproducibility of the 

protocol was evaluated.  Reproducibility of a scaffold was designated by efficiently and 

repeatedly decellularizing scaffolds of all sizes.  Small, medium, and large sized vessels were 

decellularized using the final perfusion decellularization protocol (Appendix B: B.3).    Over 50 

vessels have been decellularized in this fashion, with continued successful results.  To further 
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investigate the potential for this procedure transition to a high throughput model, three scaffolds 

were successfully decellularized at once time.  

In summary, perfusion decellularization did not remove the cells as efficiently as the 

static decellularization methodology had done previously.  Without changing the concentration 

of SDS, the duration of the SDS rinse was extended and the flow rate was decreased in order to 

increase the exposure time to the detergent.  Finally, a combination method including both 

perfusion and rotary agitation was discovered to be ideal at not only for decellularization, but 

also for the set-up of future in-vitro testing.  Essentially, the final protocol is reproducible, 

effective at maintaining an open lumen, efficient at decellularization, and leaves the 

microstructure intact.  Maintaining the native structure is vital to ensuring the conservation of all 

native properties; mechanical for compliance, integral for sent deployment, and biologic 

composition, critical for stent-wall evaluations or vascular pathway modeling of disease.
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Chapter 3 - Characterization of Decellularized Vessels 

3.1 Introduction

Chapter 2 determined the optimum decellularization protocol for complete removal of 

cellular material, without apparent harm to the integrity of the ECM.  The goal of the next 

investigation was to quantitatively evaluate the condition of decellularized vessels post 

decellularization.  It was necessary to evaluate the damages sustained to the ECM during the 

decellularization treatment, as it may lower the physiological relevance of the vessel scaffold.  

Excessive scaffold degradation can prove problematic because the lack of a porous, intact 

scaffold wall could hinder endothelium growth and viability in both the short and long term (61).  

Currently, one of the key limitations of cell-based tissue engineering is the lack of mechanical 

strength within the scaffold wall, resulting in the subsequent reliance on synthetic scaffold 

materials (64).  The development of a decellularized scaffold promises to bridge the gap between 

weak cell-based or biologic scaffolds and synthetic materials.  In order for a scaffold to be 

incorporated into the BVM, the mechanical, structural, and basic biological properties of the 

scaffold should not differ from that of a native vessel.  Therefore, the evaluation of the scaffold’s 

mechanical properties prior to its use in the BVM is important.  The scaffold must effectively 

fulfill the goal of the BVM, by maintaining the structural stability necessary to support an 

endothelium throughout the course of an intravascular device evaluation.  

The structural properties were visually analyzed by Hematoxylin and Eosin staining, as 

well as with scanning electron microscopy (SEM). These images were used to examine if the 

decellularization treatment had any lasting effects on the wall structure, which is important to the 

overall functionality of the scaffold.  To evaluate scaffold mechanics, tensile and burst pressure 

evaluation were performed on both native and decellularized vessels.  The mechanical testing 
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methods utilized were modeled from the work done by Montoya et al. in 2009 for the evaluation 

of a decellularized scaffold (65).  

In addition to structural and mechanical assessment, biological evaluation of the 

decellularized scaffold examined its bacterial content post harvesting and post decellularization.   

These results provided information regarding the sterility of the harvest and decellularization 

process.  These experiments characterize and support the ability of the decellularized protocol to 

efficiently remove all cellular components from a blood vessel without disrupting its natural 

structure, which further demonstrates its potential to be incorporated into the BVM.  All 

scaffolds used in this investigation were prepared following the final protocol described in 

Chapter 2 of this thesis (Appendix B: B.3). 

3.2 Methods

3.2.1 Structural Evaluation

3.2.1.1 Hematoxylin and Eosin Staining

Two imaging techniques were utilized to visualize the potential effects of the 

decellularization process on the structural integrity of a scaffold.  As discussed in Chapter 2, 

Hematoxylin and Eosin (H and E) staining can be used to visualize cross-sections of the vessel 

wall for specific identification of cell nuclei as well as other macro-structures in the vessel (66).  

The H and E staining provides a basic image for comparisons between pre- and post-

decellularization; regarding not only the presence of cells as in Chapter 2, but also for the 

maintenance of basic structures. 

As described in Chapter 2 section 2.2.1.2 (‘Perfusion Decellularization Methods’),

decellularization was performed by perfusing SDS through the lumen while simultaneous 

shaking for 20 hours.  Once decellularized scaffold sections were fixed in histochoice to fix the 
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sample.  Then samples were process and embedded in paraffin wax.  Sections approximately 

6μm tick were taken from each sample and stained with H and E, as discussed in Chapter 2 

section 2.2.2 (‘Protocol Assessment’).  

The images were again scored based on the amount of degradation present within the 

vessel wall.  The scoring system for degradation coincides with the decellularization scoring, as 

the two evaluations are similar.  There were two classifications of the vessel status: not intact or 

intact.  All of the images evaluated were considered to be properly decellularized.  The 

classifications are further described as either an intact vessel wall, where the wall of the vessel is 

continuously touching and each pink collagen line remains within close proximity to its 

neighboring fiber, or not intact, where the pink collagen lines of the vessel do not retain their 

close proximity and continual interaction.  Examples of “intact” versus “not intact” are provided 

in Figure 3.1.  The evaluated scaffolds followed the decellularization protocol listed in Appendix 

B: B.3.  

Figure 3.1.  Intact vs. not intact.  Decellularized scaffold classified as intact (A).  Decellularized 

and classified as not intact (B).
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3.2.1.2 Scanning Electron Microscope Imaging

A scanning electron microscope (SEM) provides a micro- or nano- scale view of a 

material’s surface topography (67).  SEM images produce an image of the material’s surface at 

10-20,000 times magnification (67, 68).  This high resolution imaging technique reveals 

information regarding the material’s porosity, fiber diameter, and composition (67).  SEM 

images were used to visualize the luminal structure of the decellularized artery; specifically

looking at the fiber topography and possibility of cellular presence.  The combination of SEM 

and H and E images helped to define the structure of the scaffold pre and post decellularization, 

to asses any damage to the scaffold wall from the decellularized treatment. 

To obtain an SEM image, the sample was placed in a vacuum, then a high powered 

electron beam was directed on the sample.  The width of the beam can be altered by the coils to 

increase or decrease the magnification (68).  The electrons that were not absorbed by the sample 

were scattered back towards the walls of the SEM (68).  The walls have several detectors to 

absorb the backscattered electrons; the angle at which deflected electrons hit the detector and are 

computed into topographical image of the sample’s surface (68).  Figure 3.2 depicts the 

procedure for SEM imaging. The samples were dehydrated prior imaging to ensure quality 

images and a functioning SEM.  Dehydration is an essential step for SEM images as the electron 

beam will heat up any water molecules present in the sample, causing damage to the sample and 

potentially to the sensitive instruments within the SEM.  The exact dehydration protocol is 

provided in Appendix B: B.5.  SEM images were acquired using a Hitachi High Technologies’ 

TM3000 Tabletop Microscope (Figure 3.3)
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Figure 3.2.  A diagram for how an SEM operates. Depicting the electron beam, scanning 

coils, and backscattered detectors (69).

Figure 3.3.  The TM3000 Tabletop Microscope used for imaging.
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3.2.2 Mechanical Evaluation 

3.2.2.1 Tensile Testing

The decellularization process requires strong chemical agitation, which may degrade 

components of the ECM and weaken the structure.  Tensile testing a sample will determine the 

elastic modulus and yield strength for a decellularized vessel compared to a control vessel.  The 

elastic modulus describes the amount of elasticity in a material, while the yield strength 

determines the point at which the material begins plastic deformation (70).  These results 

quantitatively describe how the decellularization treatment affects the mechanical strength of the 

vessel wall.  All tensile testing was performed on an Instron In-Spec 2200 Portable Tester with 

PDA Data Management Software equipped with a 250 N (50 lb) load cell tensile machine for data 

collection.  

Samples were placed in the tensile testing machine and stretched until failure.  The 

machine pulls the sample 1 mm every 0.1 seconds and records the resistance of them material 

every stem.  Equation 3.1 below describes the relationship graphed between extension and load.  

The extension of the sample is the distance stretched during the test and the load is the amount of 

resistance felt by the machine as it increases the length of the sample.  Using the raw data 

(extension versus load measurement) and measured specifications (surface area and width) of the 

sample, stress and strain was plotted and were then used to calculate the elastic modulus.  The 

relationship between stress and strain is known as “Hooke’s Law” (seen in Equation 3.2 (70)) 

and is derived in the following equations (equations 3.3 and 3.4) (70). The elastic modulus (E) 

seen in Equation 3.2 is the relationship between stress (σ) and strain (ε) (70).  Stress in Equation 

3.3 is the load from the raw data divided by the cross-sectional area of the sample 

(thickness*width).  Strain in Equation 6 is given by the change in length of the sample over the 

original length of the sample.  Equations 3.1-4 were used to determine the elastic stress and 
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strain curve for any given point of the experiment.  Young’s Modulus and yield strength were 

then calculated for all the raw data points using these stress and strain values.  The elastic 

modulus was measured by the linear portion of the stress versus strain curve, while the yield 

strength was taken where elastic deformation ended and plastic deformation began (just after the 

linear portion) (70).
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To tensile test samples, a control group was first cut from each native vessel.  Then 

samples were decellularized using the protocol from Appendix B: B.3.  Samples were cut into 

pieces approximately 5cm in length (Figure 3.4).  The smaller samples were then cut 

longitudinally and laid flat for placement in the tensile tester (Figure 3.5).  From Figure 3.5, the 

sides indicated by “width” were placed in the clamps of the tensile tester.  Once samples were 

cut into a flat section, they were oriented longitudinally and edges were placed in the clamps of 

the tensile tester.  About 1 cm of the sample was aggressively clamped down on either end.  The 

sample was then stretched until taught; the machine was calibrated at this point to zero for force 

and length.  The original length (between the two clamps), width, and thickness of the sample 

were recorded for later calculations of Young’s Modulus and yield strength.  Finally, the tensile 

tester was started; samples were pulled 1mm per second, producing a slow and consistent 

longitudinal pulling force on the sample, until the sample was broken.  For more detailed 
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methods see Appendix B: B.6 Tensile Testing Protocol.  The stress and strain was calculated 

from the raw data using a macro program (full macro program Appendix B. B.7).  A two-sample 

T test was used to evaluate the statistical significance of the Young’s Modulus for the control 

and decellularized scaffolds.  Significance is given by a p-value less than 0.05, with six samples 

for each group (n=6). 
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Figure 3.4.  A visual depiction of the cutting preparations for a tensile test.  Sections A, B, C, 

and D are approximately 5 cm long each.

Figure 3.5. A representative image of the longitudinal cut made (seen in red on the top images) 

to each of the samples for preparation in the tensile tester.  The bottom images show the flat 

sample of tissue placed in the tensile tester, again red indicates the side of the sample that was 

cut.  The sides indicated by “width” were placed in clamps to produce a longitudinal tensile 

force.
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3.2.2.2 Burst Pressure Evaluation

A burst pressure evaluation was used to further evaluate the mechanical integrity of the 

scaffold post decellularization treatment.  Burst pressure measures the maximum circumferential 

stress that a scaffold can maintain.  The scaffold should at minimum be able to withstand normal 

physiological pressures from 70 to 150 mmHg (71).  Burst pressure was measured via a pressure 

transducer.  The pressure transducer equipment was controlled using Data Acquisition Software 

(ADQ) and AD Instruments (ADI).  Samples went through a three-staged process for testing the 

maximum burst pressure of the scaffold.  Stages included calibration, scaffold set-up, and burst 

procedure.  

The pressure transducer was calibrated first using the ADI system, a pressure transducer, 

blood pressure cuff, and Lab Chart.  To calibrate, see Appendix B: B.8 for the detailed steps.  

Decellularized and native scaffolds were then connected to the system, one at a time.  The distal 

end of the sample was capped off and the proximal end was connected to a pressure transducer 

(all decellularized scaffolds followed the protocol in Appendix B: B.3).  On the transducer side, 

extra tubing and a stop cock was attached a water-filled syringe that supplied the pressure into 

the scaffold (Figure 3.6).  The transducer was also attached to the ADI system to record the 

pressure changes throughout the experiment.  Finally, the burst pressure was tested by slowly 

injecting fluid into the lumen of the decellularized scaffold until it burst open, and the maximum 

pressure was recorded.  The detailed protocol for this procedure is in Appendix B: B.8.
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Figure 3.6.  The complete set up of pressure transducer, syringe, stop cock, cap end, and scaffold

3.2.3 Biological Evaluation

To evaluate the potential contamination of the sample post harvest from the pig and post 

decellualrization, a bacterial assay was performed.  The harvesting process was not performed in 

a sterile environment, thus it is important to assess any level of contamination that may have 

occurred.  If these scaffolds are to be used in the BVM system and eventually sodded with cells, 

thus an aseptic scaffold is ideal.  Therefore, determining the amount of biological contamination 

was imperative to understanding the scaffold’s potential use in the BVM.  

Trypticase soy agar (TSA) plates and lysogeny broth (LB broth) tests were utilized for 

this bacterial content assay.  The detailed procedures for these tests are provided in Appendix B: 

B.9.  This assay was conducted with four variables: pre and post decellularization, as well as pre 

and post decellularization with 1% penicillin:streptomycin (penstrep).  The 1% penstrep is a 
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common antibiotic used to prevent bacterial growth.  These variables described the condition of 

the scaffold post harvesting and post treatment, as well as the potential strength of the antibiotic, 

in case there was contamination did occur during the harvesting process. Each of the four 

samples were placed on TSA plates and in the LB broth.  Evaluation was performed by visual 

inspection of the bacterial contamination; if contaminated bacterial colonies will formed on the 

TSA plate and the LB broth will become cloudy, if no contamination then both medias will 

remain clear.

3.3 Results  

3.3.1 Structural Evaluation

3.3.1.1 Hematoxylin and Eosin Imaging

Hemotaoxylin stain was useful for visualizing decellularization (by staining the nuclei), 

while the Eosin staining was useful for the structural analysis (by staining the structural 

components).  The H and E images were then used again to evaluate the changes in the scaffold 

wall from the decellularization treatment.  Figures 3.7 and 3.8 are images that represent the each 

of the classifications (‘Intact’ or ‘Not Intact’); Figure 3.7 were ‘Intact’ scaffolds and Figure 3.8 

were ‘Not Intact’ scaffolds. Please note, these images are meant only for comparison purposes; 

as these images were taken after further processing and not after the decellularized treatment 

alone.  Table 3.1 is a summary of the number of scaffolds found to be ‘Intact’ verses ‘Not 

Intact’.  Interestingly, there was some correlation between the size of the scaffold and the 

classification of the scaffold; the larger the scaffold the more likely it was classified as ‘Not 

Intact’.
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Figure 3.7. Scaffolds classified as ‘Intact’.  The wall of the vessel is continuously touching and 

each pink collagen line remains within close proximity to its neighboring fiber.

Figure 3.8. Scaffolds classified as ‘Not Intact’.  The pink collagen lines of the vessel do not 

retain their close proximity and continual interaction.  
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Table 3.1. Summary of Scaffold Classifications.

Decellualrized
Diameter 

(mm)
Intact 12 2 to 5

Not Intact 6 < 5

3.3.1.2 Scanning Electron Microscope Imaging

In Figure 3.9, the SEM images are the topographical images of the luminal surface of 

decellularized vessels at 400x and 1000x magnification.  The wavy structure seen in histological 

images were two dimensional pictures of the collagen fibers, where are a topographical view 

(given by the shade of gray).  There is some orientation, in that the fibers flow uniformly 

(horizontally in the 400x image on the top and vertically in the 1000x image on the bottom) in 

congruence with the orientation of normal blood flow through the vessel.  Yet there is random 

orientation between the fibers, which is characteristic of a porous scaffold having the capacity to 

house cells and encourage cell proliferation and migration (41).  These images are devoid of any 

cellular structure; where as in Figure 3.10, a native artery has a well defined endothelial cell 

lining.
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Figure 3.9.  SEM images illustrate decellularized arteries.  Top is at 400x magnification.  

Bottom is at 1000x magnification.  *Note: this SEM image was acquired from a cell-sodded 

decellularized vessel, where no cells remained in the lumen (confirmed by H and E). 
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Figure 3.10.  Images of intact native porcine arteries, with endothelial cell lining. Scale bars, 40 

μm (A); 5 μm (B and C) (72).

3.3.2 Mechanical Evaluation

3.3.2.1 Tensile Testing

The tensile tests produced over 1000 raw data points for the force at each length 

extension.  To summarize this data, a macro program in Excel was created and used (for full 

macro, see Appendix B: B.7).  From this macro, raw data was used to calculate the stress and 

strain of each sample based on equations 3.1-3.4.  The stress versus strain was graphed (Figure 

3.11, top), to examine total behavior of the sample.  The linear portion of the stress strain graph 

was re-graphed to show the elastic modulus and is determined by the slope of the equation of the 

line (Figure 3.11, bottom).  The yield strength was considered to be the highest point of the 

elastic modulus, or the last point before plastic deformation. The original parameters for the 

example in Figure 3.11 were: original length (Lo) 13.42mm, original width (W) 11.43mm, and 

thickness of the sample (T) 0.79mm.  
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Figure 3.11.  Sample stress versus strain graph (top) and linear component graph (bottom).  

Additional data is in Appendix C.2.

Once the raw data for all samples was tabulated using the macro program, the Young’s 

Modulus and yield strength was identified for each sample (a summary table of the raw data is 

present in Appendix C: C.3). The raw data was summarized to show the average and standard 

deviation for each sample group (Table 3.2).  A total of 12 scaffolds were tensile tested, 6 

decellularized and 6 native.  The average Young’s Modulus for the decellularized scaffold was 

4.84 ± 1.91 MPa, whereas the average native modulus was 6.15 ± 2.63 MPa.  These two groups 

were found to be statistically similar, with a p-value of 0.173 (Figure 3.12).  The decellularized 
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material’s elastic modulus was smaller than that of ePTFE which on the scale of GPa. The yield

strength for decellularized vessels was 1.79 ± 0.786 MPa, versus a native value of 2.69 ± 1.23

MPa.  When compared, the yield strength was statistically different between the groups with a p-

value of 0.015 (Figure 3.13).  

Table 3.2. Summary of the Average and Standard Deviation of Young’s Modulus and Yield

Strength (n = 6).

Treatment
Avg Young's 

(MPa)
Stdev Young's 

(MPa)
Avg Yield 

Strength (MPa)
Stdev Yield 

Strength (MPa)

Native 6.1553 2.6327 2.6901 1.2301

Decellularized 4.8463 1.9158 1.7997 0.78699
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Figure 3.12. The Young’s modulus of native and decellularized vessels.  Not statistically 

different (p = 0.173, n = 6).
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Figure 3.13.  Comparison of the critical yield for native and decellularized scaffolds.  Found to 

be statistically different (p-value = 0.015, n = 6).

3.3.2.2 Burst Pressure Evaluation

The burst pressure for native and decellularized arteries is summarized in Table 3.3.  A 

total of 2 scaffolds were evaluated, one decellularized and one native.  Literature regarding the 

burst pressure for native arteries have reported the burst pressure to average 3124 mmHg and the 

burst pressure for decellularized vessels at 2338 mmHg (71).  Several scaffolds failed to reach 

higher pressures because of holes in the graft or poor suturing onto the barbs, and are not 

included in the reported data.  When the scaffold broke, it appeared to tear longitudinally.  The 

literature describes an acceptable burst pressure for a decellularized scaffold to be at least 2,000 

mmHg (71).

*
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Table 3.3. Summary of Experimental Burst Pressures. 

Treatment Burst Pressure

Control 2197.38 mmHg

Decellularized 1848.43 mmHg

3.3.3 Biological Evaluation

Figure 3.14, displays the bacterial content of the native and decellularized scaffolds after 

12 hours of incubation.  Images C and D from Figure 3.14 were the native samples, which have 

no bacterial colony growth.  The decellularized samples in A and B had significant 

contamination, even in the presence of penstrep.  Figure 3.15 shows samples that were placed in 

the LB broth, where a cloudy liquid indicates a contamination.  Tubes 1 and 2 were 

decellularized samples and 3 and 4 are native samples; tubes 2 and 4 contained penstrep.  The 

first 3 tubes were cloudy and contaminated, only the 4th tube was clear (the native with penstrep).  

These results indicate harvesting had some contamination, but the penstrep was potent enough to 

reduce the spread of bacteria.  The contamination in both of the decellularized samples indicated 

the decellularization process was not performed sterilely.  
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Figure 3.14.  The TSA plate bacterial culture.  A and B are decellularized tissues, C and D are 

native tissues.  B and D received penstrep.  Dots indicated bacterial colony formation.
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Figure 3.15. Broth culture, from left to right 1 to 3 are contaminated and 4 is not.  Tubes 1 and 2 

were decellularized samples.  Tubes 3 and 4 were native samples.  Tube 4 was treated with 

penstrep.  Cloudiness indicates the presence of bacterial contamination.

3.4 Discussion

3.4.1 Structural Evaluation 

As seen in Chapter 2, the SDS treatment for decellularization was successful and did not 

have extreme effects on the structure of the scaffold.  After H and E evaluation, the 

decellularization treatment did not extensively degrade the scaffold.  Specifically, the collagen 

fibers appeared to remain intact, while the detergent successfully removed all cellular material; 

these results coincide with results found in literature (63, 64, 71, 73).  The literature indicates 

that a change in the thickness of the scaffold is indicative of the decellularization process, 

identified by a decrease in the wall thickness of the scaffold after being decellularized (71).  
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However, in the decellularization process presented, the wall thickness appeared to increase 

rather than decrease.  Although the wall thickness was not measured in the data presented, visual 

comparisons indicate an increase in overall vessel width.  The change in thickness may possibly 

occur from the lack of smooth muscle cells (SMCs) in the media of the vessel wall, causing the 

structure to be more porous because there are fewer cellular bonds holding it together (73).  The 

media and adventitia have some separation, having the appearance of slight degradation, but is 

considered superficial and caused by the release of fibroblasts from the connective tissue (64).  

From the experiments presented, the scaffold remains wavy indicating that collagen fibers 

remain in the scaffold (71).  Although the increase in the wall thickness shows slight geometry 

changes within the scaffold, the gaps are characteristic of SMCs leaving the scaffold and do not 

seem to profoundly break-down the scaffold beyond recognition.  Thus, the removal of cellular 

components from a native scaffold using the protocol presented in Chapter 2, does not present 

any drastic morphological complications.

Using the SEM to image the lumen of the scaffold reiterates the lack of drastic changes to 

the scaffold wall.  The decellularized scaffolds on a micro-scale were not degraded, and showed 

no gaps, cells, or odd shapes.  These images translate the cross-sectional views of the H and E 

images into a longitudinal topographical image.  Again the wavy lines indicate the collagen 

fibers remaining intact, while the absence of small round cells embedded in the structure 

supports the complete decellularization of the scaffold.  From the SEM images, the scaffold also 

appears to have a porous interconnected structure, which could encourage cellular adhesion if the 

scaffold is to be re-cellularized.  As a proof of concept, these images along with the visual 

classifications of ‘Intact’ were indications that the decellularization treatment did not 

significantly deteriorate the scaffold structure.
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3.4.2 Mechanical Evaluation

3.4.2.1 Tensile Testing

The elastic modulus is useful for describing the elasticity of the scaffold.  This 

experimentation represents the biomechanical properties of a decellularized scaffold, thus having 

implications about the physiological relevance post decellularization (71).  Also, with the 

construction of any new scaffold it is important to stringently evaluate all the properties to better 

understand the scaffold and how it may potentially respond under various stresses (71).  The 

elastic, or Young’s Modulus, was found to have no statistical difference between the control 

vesssl and the decellularized scaffolds.  However, the modulus for decellularized scaffolds 

showed a trend of being lower than the control.  A lower elastic modulus implies the scaffold is 

more elastic, most likely due to a lack of cellular bonds that promote a firm structure.  This trend 

was supported in the literature and is summarized in Table 8 (65, 71, 73, 74).  However, it is 

difficult to compare all tensile testing methods.  There are several apparatuses for tensile testing 

and all of them have different clamping and pulling methods.  Even the way the sample is cut 

and prepared for testing varies between the published literature.  While the results do follow 

similar trends, direct comparisons should not be made.  Also, pig arteries are found to be more 

than three times as elastic as human arteries, and as such are not clinically translatable (75).

The yield strength is the measurement of the stiffness of a material.  This measurement 

occurs at the transition between elastic deformation and plastic deformation (70).  The stiffness 

was statistically decreased for the decellularized treatments versus the control, indicating the 

decellularized sample is stiffer.  A stiffer material post decellularization was also suggested 

throughout the literature (Table 3.4).  Thus, the decellularization treatment has no effect on the 

elasticity of the scaffold, but is more likely to reach plastic deformation before a native artery.  
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3.4.2.2 Burst Pressure Evaluation

Burst pressure provides information about the radial stress on the scaffold.  Radial stress 

is related to compliance, which is described by the pressure per cross-sectional area (71).  If the 

compliance is low in the scaffold, as in ePTFE, the stresses will be harsher because the scaffold 

does not have the capacity to dynamically react to the fluid flow (which is very dynamic in a 

physiological setting).  There was some difficulty testing for burst pressure on decellularized 

arteries because during the harvesting and clean up processes, some of the scaffolds were 

compromised.  Small nicks occurred from the razor blades or scissors when attempting to 

remove the sample or connective tissue.   These small nicks were exposed when the luminal 

pressure was increased and thus the maximum stress was not able to be determined.  Once an 

uncompromised vessel was tested, the burst pressure was found to be similar to that found in 

literature (Table 3.4).

Table 3.4. Summarized Averages Found in Literature (65, 71, 73, 74).

Average

Young’s 
Modulus 
(MPa)

Yield 
Strength 
(MPa) Burst (mmHg)

Contol 0.271 9.16 2338

Decellularization 0.812 7.19 3124

3.4.3 Biological Evaluation

Understanding the bacterial content in a scaffold that is difficult to sterilize is important 

for understanding its potential use in cell culture assays or as a tissue engineered construct.  The 

decellularization process was not done in a sterile environment, and as such resulted in

contamination that could not be ameliorated with simple antibiotics.  However, the harvesting 

process was considered to be an aseptic procedure; contamination was minimal and a small dose 

of penstrep sufficiently decreased the potential for contamination.  Thus, by decellularizing the 
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scaffold in sterile conditions and using a small dose of penstrep, an aseptic scaffold results for 

use in the BVM.  Although simple, this biological evaluation provides important information 

regarding the scaffold and its potential use in the BVM; the scaffold in combination with a small 

dose of penstrep should support cell viability.

In conclusion, the experiments presented in this Chapter examined the structural 

integrity, mechanical, and biologic properties of the scaffold post decellularization.   The 

structural, mechanical, and biological examinations helped to better characterize the scaffold and 

examined its physiological potential.  All of these experiments suggest that the decellularization 

treatment does not negatively harm the scaffold.  Images provided visual conformation of the 

lack of degradation within the scaffold, specifically compared to the native arteries.  Mechanical 

tests confirmed that the elasticity and stiffness of the decellularized scaffold were similar to a 

native artery, which is important for its physical use.  The biological evaluation illustrated the 

amount of contamination sustained throughout the harvesting and decellularization process, and 

suggested that using aseptic conditions for the decellularization process and a small does of 

penstrep the scaffold will produce an aseptic scaffold.  Since the scaffold is not affected by the 

decellularization treatment, the scaffold remains relatively similar to a native artery; thus, the use 

of a decellularized artery in the BVM model presents a relatively physiologic and appropriate 

scaffold.  
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Chapter 4 - Use of Decellularized Vessels in the Blood Vessel Mimic

4.1 Introduction

Chapters 2 and 3 of this thesis evaluated the potential to decellularize a porcine artery and 

the resulting mechanical properties to understand if the scaffold could be implemented in the 

BVM system.  These experiments characterized several aspects of the scaffold to support the 

potential for recellularization.  A successful protocol for complete decellularization was 

developed, ensuring that the native porcine cellular components were removed from the scaffold.  

After decellularization, there was little damage sustained to the structural integrity of the scaffold 

wall, where most of the components from the ECM were visually maintained.  Furthermore, the 

mechanical properties were evaluated to further characterize the remaining ECM components. 

Mechanical testing revealed that the decellularization treatment did not change the elastic 

modulus or burst pressure of the scaffold.  The scaffold was also evaluated for potential 

contamination risks; some contaminations were identified, but the addition of 0.1% penstrep was 

sufficient to alleviate potential contaminants.  The results from these experiments provided 

conclusive background to support the use of a decellularized porcine artery as a scaffold in the 

BVM.  The scaffold was considered similar to a native scaffold with the potential to house cells, 

thus supporting the basic requirements needed to fulfill the goals of the BVM system.  The next 

step of characterization was to recellularize the scaffold and evaluated its ability to have a 

monolayer of cells.

The recellularization process entailed the incorporation of cells into a decellularized graft, 

thus completing the tissue engineering paradigm.  The paradigm describes the combination of a 

scaffold with cells to produce a ‘functional’ tissue (76).  In this case, the decellularized artery 

represented the scaffold by providing the support and essential structure of the tissue, while the 

addition of cells provides natural biological cues, creating a ‘functional’ vessel.  Cells have the 
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capacity to communicate by the exchange of growth factors or through proteins, either expressed 

or received, which results in various dynamic responses (77-79).  Thus, with the addition of cells 

to the scaffold, aids in integration with the body (or simulate a physiologic response in the in-

vitro testing system).  The decellularization process stripped the porcine of their native cells; 

therefore the addition of new cells was considered a recellularization procedure.  There are two 

ways to recellularized, either by sodding or seeding.  To seed a scaffold a small amount of cells 

are placed in the graft and expected to proliferate to cover the scaffold (80).  Seeding a scaffold 

is typically a static procedure, encourages maximum cell retention within the scaffold.  Sodding 

is done by introducing an excessive number of cells on the scaffold and expecting a high 

percentage to adhere, lowering the amount of proliferation needed (80).  With a perfusion system 

the stress on the cells can be severe and not conducive for cell adhesion or drastic cell 

proliferation.  Thus a sodding protocol was ideal for recellularization because the over 

compensations of cells necessary to fill the scaffold.  Sodding cells within a tubular scaffold was 

accomplished by injecting cells into the lumen via pressure sodding.

The creation of an effective sodding protocol was one of the final stages in the 

development, characterization, and implementation of a biological scaffold for the BVM.  The 

sodding protocols followed the work previously investigated by Dr. Kristen Cardinal utilizing 

human vascular endothelial cells sodded into the lumen of an ePTFE scaffold to create an 

endothelium (4).  Once a sodding density was deemed reasonable for short term cultivation, the 

scaffold was cultured for longer time points.  Equally important to the recellularization process 

was the use of a bioreactor, which housed the scaffold and allowed tissue cultivation.  A 

bioreactor served as a sterile containment device to culture the scaffold; it supplied the external 

environment to the scaffold by accounting for the physiologic flow, gaseous exchange, and 

culture for the scaffold and cells.  For the BVM, the bioreactor consisted of a peristaltic pump, a 
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media reservoir, a ‘glad ware’ type vessel chamber, and surgical grade tubing (Figure 4.1).  The 

bioreactor, which has been developed through previous student projects, was imperative to 

recreating a physiologic environment (81).  

Figure 4.1. Model of the bioreactor setup for the BVM system. Closed loop containing:

Peristalitic pump (A), media reserivor (B), housing(C), and tubing(D). Top depicts the actual set-

up. Bottom is a solidworks generated image.

A variety of cell types were used to develop the recellularization process for a 

decellularized scaffold.  Preliminary work utilized 3T3 fibroblasts for information regarding the 

ideal sodding density, the toxicity of the scaffold, the protocol for sodding, and the cell density 

and distribution throughout the length of the scaffold.  The 3T3 fibroblasts were ideal for this 
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work because they are an immortalized cell type, making them relatively inexpensive for 

preliminary work.  For physiologically relevant work, human umbilical vein smooth muscle cells 

(hUVSMCs) and human umbilical vein endothelial cells (hUVECs) were utilized.  The 

hUVSMCs comprise the main natural cell type in the media of an artery, while hUVECs make 

up the endothelium.  This chapter will describe the results of sodding the different cell types onto 

the decellularized scaffold to effectively mimic a native artery.  

4.2 Methods

4.2.1 Short-Term Cultivation – Trial 1

Initial work for recellularizing the scaffold began with determination of the optimal 

cellular sodding density in order to create a continuous monolayer on the lumen of the scaffold.  

The short term experiments, lasting 1-12 hours, examined the optimal sodding density for a 

decellularized scaffold and subsequently the potential toxicity of the scaffold from the SDS 

solution.  The optimal sodding density will coat the lumen with a single layer of cells 

consistently throughout the length of the vessel as well as around the circumference of the 

lumen.  Cells should be dispersed thinly and evenly throughout the scaffold limiting cell clumps 

while promoting cell integration and adhesion.  The preliminary work for a sodding density and 

protocol was based on previous work done by Dr. Cardinal, where a similar sized scaffold and 

BVM configuration was utilized (4).  

Dr. Cardinal’s original protocol for sodding the scaffold in Appendix B: B.10, used a 

scaffold approximately 3 to 4 mm inner diameter, 4.5cm in length, and sodded at a density of 

5x105 cells per cm2.  The previous work was modified for sodding the decellularized scaffold, 

mainly regarding scaffold preparation and media used.  Additional steps were also added to 

account for the decellularization of the scaffold.  These modifications are described in Appendix 
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AB: B.11; note the scaffold dimensions as well as the sodding density did not change from the 

previous work.  

For initial experiments, 3T3 fibroblasts were expanded to obtain approximately 10 

million cells per scaffold.  The native porcine artery was decellularized following the methods 

from Appendix B: B.3.  The decellularized scaffold was cut to approximately 3 cm in length with 

an inner diameter of 3 to 4 mm.  The scaffold was sutured to the male barbs and luer locked into 

the bioreactor.  The scaffold was perfused, using a syringe, with culture media to remove all 

bubbles from the scaffold.  The 3T3 cells were tryspinsized to a cells into suspension, and the 

cell solution, approximately 10 million cells, was perfused using transmural flow into the 

proximal portion of the scaffold.  Transmural pressure sodding ensures the cells are pushed into 

the pores of the scaffold.  An additional bolus of media was transmurally perfused through the 

scaffold to push all cells remaining in the lumen into the scaffold wall.  Transmural flow was 

continued using an 8 roller (model 7519-25 Cole Parmer) peristaltic pump (Model 7523-60 Cole 

Parmer Master Flex L/S) at a slow, steady rate of 10 rpm (0.5 ml/min) providing continuous 

pressure on the scaffold wall.  The transmural pressure pushes the cells into the scaffold 

encouraging cell adhesion and a high yield of cellular attachment.  

After 1 hour, the scaffold was carefully cut from the barbs in the bioreactor using a razor 

blade.  Extreme care was taken to not compress or jar the scaffold as to prevent accidental 

removal of cells.  Once removed, the scaffold was placed in histochoice for approximately 30 

mintues to cross-link the structure.  Scissors were then used to cut the scaffold longitudinally 

creating 2 hemispheres and exposing the lumen for examination, again extreme care was taken to 

keep the sodded cells intact (Figure 4.2).  The scaffold was stained with bisbenzimide (BBI, a 

Hoechst Stain Kit, St Louis, MO), which fluorescently labels the DNA in each cell to visualize 

individual cells on the surface of the lumen (protocol Appendix B: B.12).  Images were taken 
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from the proximal side (where flow originates from) to the distal side on both the top and bottom 

of the scaffold.  Cell density and consistency was evaluated for each of the images by counting 

the number of cells on the scaffold.  The counting method used five 1 mm2 squares were drawn 

on each image and then the cells within each square were counted.  The average number of cells 

on each image was used to determine if the sodding protocol and cell density effective created a 

monolayer of cells.  All scaffolds were imaged at 10x on an Olympus BX41 Fluorescence 

Microscope. 

Figure 4.2. Longitudinal cut of the recellularized scaffold.  Images were taken from 

proximal to distal edges to visualize cell consistency.

4.2.2 Long-Term Cultivation – Trial 2

The BVM is intended to evaluate intravascular devices which require extended culture 

duration.  Thus, the scaffold must be tested for its ability to remain in culture for longer than 12 

hours.  Ideally, long term culture of the cells on a tubular scaffold should result in the production 

of a nearly continious cellular monolayer and mimic a native artery.  Therefore, in addition to a 

long term culture, a more physiologic cell type was utilized to recreate the cellular layers of a 
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native artery.  hUVSMCs may be used to populate the media of the vessel, while hUVECs would 

be better suited to create the endothelium.  

Trial 2, Experiment A - Human Umbilical Vein Smooth Muscle Cell Sodding A 

HUVSMCs were the first physiologically relevant cell type to be sodded into the 

scaffold.  In addition to the new cell type it was also the first time performing a long-term 

cultivation.  Although hUVSMCs are not the prime cell type for effectively mimicking the 

endothelium, however they contribute to the vascular wall and would be acceptable for 

preliminary testing.  The set up for long term cultivation followed similar procedures as short 

term; only the cell culture media was HUVSMC specific, and the flow rate was slowly increased 

over time to ultimately reach a near-physiologic flow rate (Appendix B: B.14).  Three individual 

scaffolds/systems were set up.  Once each scaffold was sutured into the BVM and the systems 

were connected to the 8 roller peristaltic pump, scaffolds were pressure sodded with 

approximately 3.4 million cells per cm2 each (estimated 10 million cells per scaffold) with 

transmural flow at 7 rpm for 1 hour (Figure 4.3).  

Figure 4.3.  A setup of decellularized scaffold with the peristaltic pump and BVM.

After the 1 hour of transmural flow, the tubing was unclamped and flow was continued 

luminally at 10 rpm for one additional hour, after which flow was increased to 15 rpm over night 
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(approximately 12 hours).  The next day, the flow rate was increased by 10 rpm every 30 

minutes until reaching 90 rpm.  Once the flow rate reached 90 rpm (approximately 5 mL/min), 

the BVM was monitored daily.  Two of the scaffolds were cultured for 1 day, about 24 hours, 

and the third scaffold was cultured for 5 days.  The culture media was kept fresh by exchanging 

old media for fresh media via the reservoir every 3 days.  As previously described, extra care 

was taken when detaching the scaffold to prevent accidental removal of cells.  Once excised 

from the BVM, the scaffold was placed into histochoice for approximately 30 min.  Then the 

scaffold was cut longitudinally (Figure 4.2) and stained with BBI.  Images were taken from 

proximal to distal sides of the scaffold following the direction of flow.  BBI images were 

evaluated for cell density and consistency along the length of the scaffold by counting five 1

mm2 areas.  Comparing these counts across the length of the scaffold determined if the sodded 

cell density successfully created a cellular monolayer along the lumen of the scaffold.  All 

scaffolds were imaged on an Olympus BX41 Fluorescence Microscope.

To learn more about the scaffold and the sodding procedure on a decellularized scaffold it 

was deemed prudent to analyze all 3 of the scaffolds via sectioning and staining.  The experiment 

was repeated exactly as before with hUVSMCs sodded onto a decellularized scaffold at 3.4 

million cells per cm2.  The scaffold was again removed from the BVM and preserved in 

histochoice for embedding in paraffin wax for histological analysis via H and E staining.  

Sections of the scaffold were imaged on an Olympus BX41 Microscope.  Images of the sections 

were only analyzed for the presence and location of the cells throughout the scaffold.

Trial 2, Experiment B – Human Umbilical Vein Endothelial Cell Sodding

To produce the most ideal scaffold, it must contain the endothelial cell monolayer 

naturally found on the lumen of an artery.  HUVECs have been utilized in previous work to 

effectively mimic the endothelium on ePTFE scaffolds and should provide similar results on a 
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decellularized scaffold (4).  The successful culture of hUVECs on a decellularized scaffold 

provided the final proof of concept that this scaffold can house cells on the lumen of the scaffold, 

thus providing the necessary results to implement a decellularized scaffold as part of the BVM 

model. 

The decellularized scaffold was sodded and cultured similarly to the hUVSMCs in 

Appendix B: B.14, but again different cell types and medias were used (Appendix B: B.15).  

First, two porcine arteries were decellularized following the protocol from Appendix B: B.3.   

The hUVECs were labeled prior to sodding with Cell Tracker Green.  The hUVECs were 

cultured to 90% confluency.  Cells were stained with a 15 μM concentration of Cell Tracker 

Green following the manufacturer’s protocol, this protocol and optimization is further explained 

below in section: 4.2.3 Dual sodding Proof of Principle – Trial 3 (see Appendix B: B.16 for 

exact staining protocol).  The cells were trypsinized and pressure sodded onto two grafts, at 

approximately 1.5 million cells per cm2.  The sodding density was less than previously used 

because an unanticipated increase of vessel length.  After sodding, vessels were placed on a 

peristaltic pump with transmural flow at 10 rpm for 1 hour.  Then, flow was averted lumenally at 

10 rpm for 24 hours, no increase in flow rate over time occurred to reduce shear stress on the 

cells.  The vessels were taken down by cutting them from the barbs using a blade.  To image the 

vessels a longitudinal cut was made creating 2 semi circular halves.  The endothelium was 

exposed for imaging from proximal to distal, as seen in Figure 4.2.  

4.2.3 Dual Sodding Proof of Principle – Trial 3

The overarching purpose of this experiment was to develop a method to pressure sod two 

different cell types onto a scaffold for the BVM using two different fluorescent cell trackers.

The concept of the cell tracker is to visually monitor a cell type as it migrates, divides or 

interacts with other cells types using a wide field fluorescent microscope.  This protocol aims to 
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provide successful dual sodding (i.e. pressure sodding two different cell types onto the 

vessel). Ultimately, it would be desirable to use both hUVSMCs and hUVECs to dual-sod 

BVMs, therefore the goal of these experiments was to develop and test two cell tracker dyes for 

concurrent use to assess a dual-stained BVM

Staining Protocol

The cell tracker dye was made following the manufacturers instructions.  Two cell 

trackers were utilized in this methodology: Cell Tracker Green CMFDA (5- Chloromethyl 

Fluorescin Diacetate; Invitrogen; Carlsbad, CA) catalog number C 7025 and Cell Tracker Red 

CMPX (Invitrogen; Carlsbad, CA) catalog number C34522.  The stock solution was created by 

adding high-quality DMSO (D8418, St Luis, MO) to the lyophilized dye product.  10.8μL of 

DMSO was added to the 50μg vial of cell tracker to produce a 10mM concentration of stock 

solution.  The stock solution was then diluted with serum free media to a concentration ranging 

from 0.5 to 20μM (this work shows a 5μM concentration, but other concentrations are 

characterized below in the graph), this was the working solution.  Differences in concentration 

depend upon the specific cell type and application of the cells.  Higher concentrations are used 

for cells which will go through several population doublings or for longer durations prior to 

imaging.  Lower concentrations of the working solutions can be utilized for less proliferative 

cells or for short term experiments.  Once the working solutions were made, the general dying 

process was preformed as described below. 

The cell culture media in a flask of cells was removed and the cell tracker working 

solution was added in a volume to cover the total surface area of the cell culture flask.  The Cell 

Tracker Green working solution incubated for 30 minutes, while the Cell Tracker Red working 

solution was incubated for 15 minutes, timing differences based on the lower range suggested by 

the manufacturers protocol.  Then the cell tracker working solution was aspirated from each of 
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the culture flasks and replaced with the normal cell media for that culture.  The cell culture 

media was incubated on the dyed cells for at least 30 minutes cells prior to use.  The cell culture 

was then imaged on an Olympus BX41 microscope; the green dyed cells were excited at 488 nm 

and with an emission at 520 nm (turret 4, S1, filter wheel one on 3, and filter wheel two on 2), 

where red cells were excited at 587 nm and had an emission at 615 nm (turret 4, S1, filter wheel 

one on 4, and filter wheel two on 3). The protocol for using cell tracker dyes to stain cells is 

summarized in Appendix B: B.16.

      Trial 3, Experiment 1 – Optimization of Cell Tracker Green Concentration

The purpose of experiment 1 was to determine the ideal concentration for the working 

solution, with the goal of using moderately proliferative cells for one-week duration.  The cell 

type used in this experiment was 3T3 fibroblasts in order to gain a sufficient amount of 

knowledge about the dye, while minimizing costs.  The fibroblasts were cultured to 90% 

confluency in a 6-well plate.  Each well had a different concentration of the working solution of 

Cell Tracker Green added; the concentrations were 0.5, 1.0, 5.0, 10.0, 15.0, and 20.0μM.  The 

previously mentioned staining methods were followed to dye the cells.  These cells were 

examined and imaged every other day for one week, assessing the changes in intensity.  

   Trial 3, Experiment 2 – Cell Tracker Green with Trypsin

The purpose of experiment 2 was to examine the effects of trypsin on the cell tracker dye.  

Trypsin is a harsh enzyme that is necessary for cellular disassociation and the sodding process, 

therefore it may affect the properties or intensity of the dye and needed to be evaluated prior to 

use in a sodding experiment.  3T3 fibroblast cells were cultured to 90% confluency and stained 

with a 5.0μM concentration of Cell Tracker Green in a T75 culture flask following the 

previously mentioned staining methods.  Once stained, the cells were trypsinized to make a cell 

solution.  Then approximately 0.5 million cells were placed in each well of a six-well plate.  
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Cells were left in the six-well plate overnight (14 hours) to allow for cell adhesion.  Cells were 

then imaged and the intensity of the Cell Tracker Green was assessed.    

   Trial 3, Experiment 3 – Cell Tracker Green and Red in Co-Culture

The purpose of experiment 3 was to evaluate the ability of two different cell trackers to 

be used together.  This was a proof of concept for the potential use of two cell trackers for 

analysis of a dual sodded vessel.  Two T75 flasks of 3T3 fibroblasts were cultured to 90% 

confluency.  One T75 was dyed with Cell Tracker Red, and the other T75 was dyed with Cell 

Tracker Green both at a concentration of 5μM, following the previously described staining 

methods.   Once dyed, the cell cultures were trypsinized and placed into a six-well plate.  The 

six-well plate contained two wells of Cell Tracker Green alone, two wells of Cell Tracker Red 

alone, and two wells containing a combination of cells with both cell trackers, as seen in Figure 

4.4.  There was approximately 0.5 million cells per well, and the cells were left for 14 hours to 

adhere for better imaging.  Cells were imaged to analyze their interaction.  The trials done 

throughout this Chapter are summarized below in Table 4.1.
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Figure 4.4. This image represents the six-well plates used in experiment 3.  The dyes are 

represented by the colors, left is Cell Tracker Green, center is Cell Tracker Red, and right is the 

combination of Cell Tracker Green and Red.

Table 4.1. Summary of Experiments From This Chapter.

Cell Type Duration Analysis Sub Experiments

Trial 1 3T3 1 hour BBI None

Trial 2
HUVSMC and 
HUVEC 1-3 Days BBI and H/E

Experiments A and 
B

Trial 3 3T3 1 Day Cell Tracker Green
Experiments 1,2, 
and 3

Experiment A HUVSMC 1-5 Days BBI and H/E

Experiment B HUVEC 1 Day Cell Tracker Green

Experiment 1 3T3 1 week

Optimization of Cell 
Tracker Green 
Concentration

Experiment 2 3T3 1 hour
Cell Tracker Green 
with Trypsin 

Experiment 3 3T3 1 day
Cell Tracker Red and 
Green Co-Culture
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4.2.4 Analyzing Images

Counting the cells

To quickly count cell numbers, an imaging program was utilized (full detailed 

instructions are in Appendix B: B.17).  Images were opened and analyzed in the ‘Image J’ 

program.  The image was made binary by going to Image, Color, split channels.  This created 

three images in grey scale labeled red, green, and blue.  The green labeled images in grey scale 

were selected.  Next, by selecting Image, Adjust, and Threshold the image was changed to black 

and white where black represents the most intense parts of the image (press dark background 

making the highlighted cells black).  To tabulate the average area of each cell and the number of 

cells in the image select Analyze, Analyze Particles.  A screen emerges asking for specificity of 

the Size, Circularity.  The size describes the range of pixels that must be found together to be 

counted as a ‘cell’.  The formula for circularity is given by equation 4.1. 









2Perimeter

Area
4πycircularit Equation 4.1

A value of 1.0 indicates a perfect circle.  For green images the size should be “20-

Infinity” and circularity should be “0.00-1.00”.  For red images the size should be “300-Infinity” 

and circularity should be “0.50-1.00”.  This effectively counts all the cells within the image.  It is 

important to note that the Cell Tracker Red dye was not optimized for the ideal concentration, 

therefore the concentration used was saturated and the stains appeared spotted throughout the 

cytoplasm of the cell.  The lack of optimization for Cell Tracker Red explanations the change 

required in analysis settings.  In future experiments, Trial 3 - Experiment 1 should be repeated 

for the Cell Tracker Red dye to determine the ideal concentration of dye that produces similar 

visual results within the cell as the Cell Tracker Green Dye.
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To determine the cells per cm2 a Ronchi ruling was used to calibrate the pixels of the 

image.  An image of the calibration slide was taken at the same magnification where vertical 

lines were the focal point of the image.  By counting how many lines (through the use of cell 

counter processing tool in Image J) span the width of the image, a ratio can be found to 

determine the total surface area of the image.  To calculate the size of one edge of an image is as 

follows (Figure 4.5 for visual descriptions).  In this case the numbers of pixels are seen in the top 

left corner.  The first number represents the number of pixels on the x-axis, which is 1392.  135 

vertical lines were counted (Figure 4.5) and using equation 4.2, the x–length was calculated 

using.  Then equation 4.3 was used to calculate the y-length.  These two numbers were then 

multiplied together to calculate the area of the images.
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Figure 4.5. Top is a representative image of a Ronchi ruling. Bottom is the actual image of a 

Ronchi ruling, although faint, the vertical lines are the incremental measurements. 

side that oflength  the
direction x in thePixelsofNumber 

LinesVerticalofNumber 
   Equation 4.2
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Example 1: 135 vertical lines at 1392 pixles.

mm9.0
1392

135


The ratio calculation can be seen as follows, where x is the length the other side:

2sideon Pixels

x 

1sideon Pixels

1sideofLength 
 Equation 4.3

Example 2: Known side is 0.9mm on 1392, the other side has 1040 pixels.

mmx
pixels

x

pixels

mm
67.0

10401392

9.


Once each side of the image has a calculated length, the sides can be multiplied together 

to find the surface area of the image (detailed protocol for counting is in Appendix B: B.17).  By 

calculating the surface area of the image and count the number of cells within that image, the 

cells per cm2 in the scaffold was determined. 

Calculating the Intensity of the Image

The intensity of the image was calculated in order to compare the effectiveness of the dye 

to remain in the cell through time and proliferation.  The dye will photobleach and fade with time 

and excess exposure to light, thus measuring the intensity describes any changes within the dyed 

cells. Images were opened and analyzed in the ‘Image J’ program.  The images were made 

binary by selecting Image, Color, split channels.  This created three images in grey scale labeled 

red, green, and blue select and the color of the image was selected.  Then, the circular button, on 

the tool bar was clicked.  This tool was used to circle a single cell on the image, allowing 

analysis of the intensity for that part of a given cell.  Once one cell was highlighted Analyze, 

Histogram was selected.  The histogram provided a mean number, which represented the mean 

intensity of the area circled.  This process was repeated for five cells in the image and the 

numbers were averaged to get the relative intensity of all the cells (Appendix B: B.17).  By 
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determining the relative intensity, combined with the surface area, it was possible to count the 

cells and examine the ability to retain the Cell Tracker Dye within the cells. 

4.3 Results

4.3.1 Short-Term Cultivation – Trial 1

Short term cultivation provided a proof of concept regarding the sodding procedures, 

specifically investigating the cellular density and consistency along the length of the scaffold.  

Short term cultivation from Trial 1 included pressure sodding 3T3 fibroblasts followed by 

transmural flow for 1 hour.  Cell density and consistency were determined based on a square 

counting method (Figure 4.6).  The average number of cells from the 1 cm2 squares for each 

image was used to compare the cell density throughout the length of the scaffold (Table 4.2 The 

Quantitative Characterization of the 3T3 Fibroblasts on the Scaffold – Trial 1).  After 1 hour of 

cultivation about 1.6x105 cells/cm2 of the original 3.5 million cells/cm2.  This remaining density 

was consistent on top and bottom from proximal to distal and was assumed to be a monolayer of 

cells on the scaffold as compared to densities found throughout literature, 2 x105 to 6 x 106

cells/cm2 was found to effectively create a monolayer of cells on several surface types (with 

hUVECs) (82-86). 
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Figure 4.6. Trial 1 with 3T3 fibroblasts sodded.  The top of a sodded scaffold (A) and is the 

bottom of the sodded scaffold (B).  The boxes represent the 1 mm2 section of cells that were 

counted.  
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Table 4.2. The Quantitative Characterization of the 3T3 Fibroblasts on the Scaffold – Trial 1

Position 
on the 
length 
of the 

scaffold

Bottom
Box 1

Bottom
Box 2

Bottom
Box 3

Bottom
Box 4

Bottom
Box 5

Top 
Box 

1

Top 
Box

2

Top 
Box

3

Top 
Box

4

Top 
Box

5

Avg Per 
square

Avg Per 
cm2

A 25 16 26 8 19 25 21 20 24 21 20.5 2.05x105

B 19 9 23 16 24 14 16 18 25 12 17.6 1.76x105

C 18 16 12 20 14 14 12 16 15 11 14.8 1.48x105

D 7 11 10 11 12 18 25 23 19 18 15.4 1.54x105

E 14 14 12 20 12 13 16 9 13 10 13.3 1.33x105

F 14 16 17 17 18 20 20 17 24 29 19.2 1.92x105

G 14 15 21 16 13 18 16 11 17 15 15.6 1.56x105

H 18 17 15 10 6 16 13 18 17 17 14.7 1.47x105

I 12 18 16 13 11 3 9 8 6 5 10.1 1.01x105

J 24 17 27 20 13 19 25 22 20 17 20.4 2.04x105

K 12 12 13 12 12 17 13 22 18 21 15.2 1.52x105

Average 1.60x105

4.3.2 Long-Term Cultivation – Trial 2

Trial 2, Experiment A - Human Umbilical Vein Smooth Muscle Cell Sodding 

The scaffold sodded with hUVSMCs was taken down and stained with BBI following the 

protocol from Appendix B: B11.  No cells were visualized on the lumen of the scaffold, hence no 

counting was performed (Figure 4.7).
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Figure 4.7. Trail 2, Experiment 1 with hUVSMC sodding.  Top (A) and bottom (B).

After not visualizing any hUVSMCs using BBI staining, the experiment was redone and 

the scaffold was embedded in paraffin wax for H and E staining.  This basic staining enabled 

easy visualization of the cell’s location post sodding.  These images revealed that the hUVSMCs 

migrated through the wall of the vessel and appeared to reside in the adventia (Figure 4.8).

Figure 4.8. Trial 2, Experiment A - H and E staining.  Top (A) and bottom (B), the cells are 

indicated by the arrows.
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Trial 2, Experiment B – Human Umbilical Vein Endothelial Cell Sodding

Experiment B assessed the ability of the Cell Tracker Green dye to remain within 

hUVECs following pressure sodding onto a decellularized porcine artery.  Fluorescent cells were 

observed on each of the two vessels when viewed using the Olympus BX41 wide field 

fluorescent microscope.  However, vessel A (Figure 4.9 A) displayed more even distribution of 

cells throughout the length of the scaffold than vessel B (Figure 4.9 B).   Figure 4.9 was imaged 

following a 24-hour incubation period with initial transmural flow for 1-hour at 10 rpm followed 

by luminal flow for 24-hours at 10 rpm. The decellularized porcine vessel A had a strong

disbursement of cells throughout the length, each retaining some degree of fluorescence, while 

vessel B had a sparse distribution of cells throughout the vessel.  The number of cells on each 

vessel was determined and the results are displayed in Table 4.3.   The information in Table 4.3

shows a greater average number of cells per cm2 on vessel A compared to vessel B.  Averages of 

the cell counts from at the proximal and distal ends of the vessel were taken to obtain an overall 

average across the entire vessel.  Despite the difference in distribution, the presence of cells on 

each vessel suggesting the cell tracker remains within the cells during the pressure sodding 

process.  The difference in distribution is likely due to external set-up factors, rather than the 

ability of the cell tracker; i.e. transmural pressure sodding did not occur properly.
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Figure 4.9. Trial 2, Experiment B sodded with hUVECs.  Vessel A (A) and vessel B (B). 

Table 4.3. Average Number of hUVECs on Each Vessel per cm2.  

4.3.3 Dual Soodding Proof of Principle – Trial 3

To evaluate the potential to dual sod a scaffold, two cell trackers were utilized to identify 

each cell type.  The cell tracker dye incorporates into the cytoplasm of the cell and will remain 

with it for a short duration as the cell proliferates and migrates.  Thus, multiple cell types may be 

dyed during the separate culturing process and the dye will remaining in the respective cells once 

they have been combined in a given application.  

Cells/cm^2

Avg Vessel A top 1,785.12

Avg Vessel A bottom 21,652.89

Avg Vessel B top 1,421.49

Avg Vessel B bottom 2,876.03

TOTAL

Avg Vessel A 11,719.01

Avg Vessel B 2,148.76
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Trial 3, Experiment 1 - Optimization of Cell Tracker Green Concentration 

Experiment 1 demonstrated the optimal dilution of Cell Tracker Green for a consistent 

and bright stain on the cells.  Over the duration of seven days, the intensity of Cell Tracker Green 

changed substantially at each concentration until the seventh day when each of the dilutions 

reached an intensity lower than that at the start of the experiment (Figure 4.11).  Note these times 

and respective concentrations are based on the moderately proliferating 3T3 fibroblasts, and the 

intensity may vary when the dye is applied to other cell types. The intensity of the cell tracker 

was assessed by averaging the intensity of five different cells from each image using ImageJ 

analysis software.  Table 4.4 summarizes most intense, or brightest, concentration of dye at each 

time point; 15μM retained the greatest intensity both at time zero and day 7; 20μM fluoresced 

most intensely following 24 hours; 10μM remained the most intense concentration following a 

five day period.  These numbers suggest smaller dilutions of the original working solution result 

in longer retention of fluorescence intensity.  15 μM retained the average greatest intensity over a 

seven day duration. 
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Figure 4.11.  Cell Tracker Green intensity at various concentrations over a 7-day 

duration.  
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Table 4.4.  Concentration for the Brightest Fluorescent Intensity.  

Trial 3, Experiment 2 - Cell Tracker Green with Trypsin

Experiment 2 demonstrated the effects of trypsinization on the cells stained with Cell 

Tracker Green, to show the treatments to the cells would not affect the dye properties.  The 

number of cells that remained dyed in culture were post trypsinization counted using Image J.  If 

trypsin affects the capacity for a cell to retain the Cell Tracker Green dye, the number of cells 

visualized will change.  The two treatments were sodded with the same number of cells and 

imaged, then the number of cells present were counted using Image J (see Table 4.5).  Using a 

two-sample t-test, the number of cells for each treatment were compared and the p-value was 

determined to be p = 0.418, which is not statistically different (Figure 4.12).  Thus, Cell Tracker 

Green is not affected by the trypsinization process of cell culture and the dyed cells should not be 

altered as they are prepared for sodding.

Table 4.5. 3T3s Visualized Pre and Post Trypsinization. 

With Trypsin Cells/cm^2 Without Trypsin Cells/cm^2
A 17355.37 A 127777.78
B 33223.14 B 50000.00
C 47438.02
D 38181.82
E 30743.80

Concentration

0 Hours 15μM

24 Hours 20μM

5 Days 10μM

7 Days 15μM
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Figure 4.12. Dyed 3T3 cells with and without trypsinization, p-value = 0.418.

Trial 3, Experiment 3 - Cell Tracker Green and Red in Co-Culture

Experiment 3, looked at the use of two different cell trackers in conjunction with one 

another.  Cell Tracker Green and Red were used to stain two separate cultures, then dyed cells 

were combined to observe their interaction.  Following combination of the dyed 3T3 cells, the 

cultures were examined using the Olympus BX41 wide field fluorescent microscope and the 

results are displayed in Figure 4.13.  Each cell tracker fluoresced at its respective 

excitation/emission energy (Figure 4.13a, 4.13b) and using ImageJ the images were overlayed 

such that the entire picture was shown (Figure 4.13c).  The overlayed image exhibits the 

potential of using two separate cell trackers to track the final location of the stained cells.  The 

Cell Tracker Red dye looks spotty because it was oversaturated and began to particulate within 
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the cytoplasm of the cell, as confirmed by the manufacturer.  The red dye worked to identify the 

cell, but was not as well incorporated into the cytoplasm.

Figure 4.13.  Staining using Cell Tracker Green and Red. Cell Tracker Red (A), Cell Tracker 

Green (B), and merged (C).

4.4 Discussion 

The work summarized in this chapter examined the decellularized scaffold’s ability house 

cells on its lumen.  This was shown through the development of a sodding protocol with various 

cells types, and progressively showed the feasibility of sodding physiological cell types into a 

scaffold.  These experiments created a monolayer of cells on the lumen of the scaffold and 

fulfilled the goal of the BVM.  

4.4.1 Short-Term Cultivation – Trial 1

Work began with the 3T3 fibroblasts in Trial 1, ‘Short-Term Cultivation’, to develop 

sodding techniques and optimize cell density for the recellularization of a decellularized scaffold.  

Utilizing this particular cell type was advantageous because of its availability and low cost.  

Through these experiments imaging techniques, transmural sodding procedures, and BVM setup 

techniques were developed and established for future experiments.  Trial 1 provided further 

characterization of the decellularized scaffold.  A successful culture indicated cell adhesion was 

possible post decellularization.  

A B C
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Prior to developing an appropriate sodding process, as described in Trial 1, several 

preliminary trials (described below) were performed to optimize the final sodding protocol used 

throughout all experimentation.  Skills such as sodding procedures, bioreactor set up, and 

analysis techniques were integral to the development and implementation of a scaffold into the 

BVM.  These trials provided the ideal opportunity to practice and improve the techniques needed 

to successfully sod a scaffold in the BVM.   These early trials were not discussed earlier in the 

methods or results, but were imperative to the development of the sodding procedures and worth 

mentioning.  Attempts 1, 2, and 3 were performed prior to any experiments described previously 

as a way to learn about the BVM set-up, several lessons were learned and are summarized below.  

All of the set up and analysis procedures were performed as previously described in Appendix B: 

B.11, but as the techniques improved so did the results.  

Early Fibroblast Trials – Initial Lessons Learned

Attempt 1 was the first bioreactor set up done with a decellularized scaffold, as well as 

my first experience with the BVM.  Although several mistakes were made, the lessons learned 

were by far the most helpful.  Attempt 1 intended to have transmural flow, but due to 

unsuccessful clamping of the tubing, luminal flow occurred, causing a reduced potential for any 

cellular adhesion from occurring.  The analysis techniques in this experiment were also were 

very poor, in that the scaffold was not properly handled.  The BBI stain is normally diluted and 

mixed vigorously prior to staining.  In Attempt 1, the scaffold was vigorously shaken while 

attempting to mix the BBI dye; this excess force potentially dislodged cells from the scaffold.  

Ultimately, when the scaffold was imaged there were very few cells on the lumen.

Attempt 2 had a better set up after adapting to techniques learned from Attempt 1; 

although in this experiment, more unexpected problems arose.  The shake table, which is an 

essential part of the decellularization process, broke at some point during the 20 hour procedure.  
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This equipment is imperative to successful decellularization and unfortunately there was no 

method to quickly assess if the scaffold had been properly decellularized.  Attempt 2 went 

forward as planned in order to continue to develop techniques and to utilize all prepared 

materials.  It would have been prudent to isolate a portion of the scaffold to embed for 

hematoxylin and eosin staining as confirmation of decellularization prior to recellularization.  

However, no section was isolated, because the scaffold was specifically measured to fit into the 

BVM.  The analysis of the scaffold still proved to be difficult as the set up of the Olympus BX41 

Fluorescence Microscope was not mastered and the inappropriate color filter was used, resulting 

in a green images.  From this, a protocol was developed to ensure the proper set up and usage of 

the scope (Appendix B: B.13).  Attempt 2 resulted in images with cells sodded on the lumen, but 

could not be trusted because of the unclear decellularization.

Finally, Attempt 3, referred to in this chapter as ‘Trial 1’, went according to plan and 

followed the methodology that was described in detail earlier in the methods section. The 

techniques learned previously from Attempts 1 and 2 helped to successfully perform acute 

sodding with about 3.5 million cells per cm2 of 3T3 fibroblasts onto 2 scaffolds, following the 

protocol from Appendix B: B.13.  Table 4.6 summarizes many of the lessons learned through 

these initial experiments.  

Table 4.6 Skills Developed Through Experimentation with 3T3 Fibroblasts.

Attempt Cell Type Duration Lessons Learned

Ensure transmural flow by clamping

1 Fibroblasts 1 hour
Make the BBI solution prior to staining the 
scaffold

Proper Decellularization
2 Fibroblasts 1 hour Understanding the Fluorescent Scope

3 Fibroblasts 1 hour Successful Trial!
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An additional limitation of this work was the cell count methodology.  As described, the 

method involved using 5 side-by-side boxes to count cells.  The five side-by-side 1mm2 boxes 

caused the counts to occur in only one populated area.  To better define the cell density 

throughout the length.  Where as the boxes should have been randomly distributed throughout 

the image and remain in consistent positions for every image.  This may reduce any biased that 

may occur during the counting process.

4.4.2 Long-Term Cultivation – Trial 2

Once the decellularized scaffold was utilized in the BVM and a successful sodding 

procedure was established, the cell type was then changed to a physiologically relevant cell.  

Work started with the hUVSMCs because they were slightly less expensive and would still 

provide a vascularly relevant cell type for recellularization.  All sodding procedures were 

performed as done with Trial 1, ensuring transmural pressure sodding for maximum cell 

adhesion.  Each of these trials will be discussed below.

Trial 2, Experiment A – Human Umbilical Vein Smooth Muscle Cells

The culture of hUVSMCs in Experiment A was extended to a longer duration and as such 

required modifications to the flow rate.  Flow was moved from a transmural direction to a 

luminal direction and the flow rate was slowly ramped up.  The changes in flow rate, although 

novel for a decellularized scaffold, had been successfully done with hUVECs on ePTFE 

scaffolds (4).  The result of trial 2 was not as expected, as the BBI analysis showed little to no 

cells on the lumen of the scaffold.  Before assumptions were made about problems the sodding 

process, the trial was repeated and scaffolds were embedded in paraffin for histological analysis.  

Once stained with H and E, a few of the hUVSMCs were visible in the adventia of the scaffold.  

The cells seen were most likely components of cells that were not fully removed during the 

decellularization process.  The decellularized scaffold is highly water proof and the hUVSMCs 
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would not have migrated through the entire scaffold.  While this result was not ideal, it also 

proposed many questions about the sodding process and if this scaffold could still be utilized in 

the BVM.  

After looking into the literature regarding sodding hUVSMCs into a scaffold, it was 

concluded that these cells are difficult to pressure sod (87, 88).  Some successful sodding 

procedures for SMCs incorporated have been performed by seeding cells on the exterior of the 

scaffold and allowing them to migrate in towards the endothelium (87, 88).  SMCs are attracted 

to the highly collagenaous media of the decellularized scaffold and are not able to adher to the 

lumen (87).  This migration process occurs because of the great force used during pressure 

sodding, resulting in cells residing in the adventia of the scaffold or beyond the wall rather than 

the media.  Successful pressure sodding of hUVSMCs has been done, but on a fibronectin 

scaffold with no porosity and thus cells were did not migrate through the vessel wall (89).  Other 

successful SMC incorporation was done by creating a sheet out of the SMCs, then the sheet is 

formed into a tube and used as a scaffold (28).  Thus, other successful methodologies exist to 

introduce SMCs into a scaffold, but pressure sodding is not ideal.  Future SMC sodding should 

investigate a external sedding methods as done by Williams et al (88).  Externally seeding will 

allow the SMCs to slowly migrate into the media of the scaffold.  

Trial 2, Experiment B – Human Umbilical Vein Endothelial Cells

To further evaluate the potential for the decellularized scaffold to be used in the BVM 

and to continue to use a pressure sodding method, hUVECs were introduced to mimic the native 

cellular monolayer on the lumen of an artery.  Dr. Cardinal had previously established a protocol 

for pressure sodding hUVECs into an ePTFE scaffold to create a consistent monolayer of cells 

on the lumen.  The combination of Dr. Cardinal’s established methods and the skills learned in 

this Chapter resulted in the successful sodding of a decellularized scaffold with hUVECs.  This 



100

cell type remained in the endothelium as a consistent monolayer of cells throughout the length 

and inner circumference of the scaffold.  Utilizing hUVECs to create an endothelium effectively 

mimics a native artery, fulfilling the goal of the BVM.

The longer durations cultures were somewhat unsuccessful because a contamination 

would generally occur approximately 12 hours post sodding.  Contaminations were identified by 

a change in the culture media, from pink to orange.  The media was also slightly cloudy and had 

a distinct smell; indicating a change in pH or a bacterial contamination.  There were several 

instances when the setup could have been contaminated.  Although the setup process uses all 

sterile equipment and instruments, a contamination from poor sterile technique is still always 

possible.  However, the scaffold never underwent a sterilization process and could retain some 

bacteria that could not be controlled by the 1% penstrep in the media.  These results suggest that 

hUVECs can be sodded into the scaffold to create a monolayer of cells on the lumen of the 

scaffold to effectively mimic the endothelium.  Also, assuming that decellularizing with penstrep 

will lower the occurrence of a contamination, meaning longer culture duration and greater 

potential to fulfill the goals of the BVM.   

4.4.3 Dual Sodding Proof of Principle

All of the dual staining experiments led to a proof of concept for the use of cell tracker 

dyes in dual sodding of decellularized porcine vessel to create a physiologically relevant 

scaffold.  Use of this dye will lead to a promising analysis tool for dual sodded scaffolds.  Not 

only was this powerful analysis tool identify multiple cell types, but it could also be utilized in 

real time imaging because the dying process was complete prior to sodding.  Samples can be 

imaged while they grow because the dye has integrated with the cell, for a limited duration.  

Future work will further optimize the Cell Tracker Red concentrations as well as use both cell 

trackers on a dual sodded scaffold.
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Overall, the work in this chapter provided important results relevant to the use of 

decellularized vessels as scaffolds in the BVM.  Table 4.7 summarizes the progression of the 

recellularization experiments and reasons for support of the decellularized scaffold’s use. In 

conclusion, the decellularized scaffold was successfully sodded and cultured with both 3T3 

fibroblasts and hUVECs.  With improved sterile decellularization and analysis techniques, the 

decellularized scaffold has the potential to become a unique scaffold type for the BVM.  

Table 4.7. Summary of the Results from Recellularization the Decellularized Scaffold.

Cell Type Duration Analysis
Sub 
Experiments Results

Trial 1 3T3 1 hour BBI None
Successful 
Monolayer

Trial 2
HUVSMC 
and HUVEC 1-5 days

BBI, H/E, Cell Tracker 
Green

Experiments 
A and B

See experiments A 
and B

Trial 3 3T3 1 Day Cell Tracker Green
Experiments 
1,2, and 3 Successful 

Exp. A HUSMC 1-5 Days BBI and H/E None Unsuccessful

Exp. B HUVEC 1 Day Cell Tracker Green none Successful

Exp. 1 3T3 1 week

Optimization of Cell 
Tracker Green 
Concentration None Successful

Exp. 2 3T3 1 hour
Cell Tracker Green with 
Trypsin None Successful

Exp. 3 3T3 1 day
Cell Tracker Red and 
Green Co-Culture None

Successful and 
Plausible for dual 
sodding
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Chapter 5 - Discussion and Conclusions

5.1 Overview and Summary

Cardiovascular disease affects one in three Americans and in 2006 claimed the lives of an 

estimated 17.1 million individuals around the world (90, 91).  These statistics demonstrate the 

growing need for the use and development of effective therapies to treat cardiovascular disease.

The evaluation of a stent and its function requires both in-vitro as well as in vivo testing. Bench

testing provides a controlled environment to test specific aspects such as device fatigue, proper 

expansion, or mechanical strength of the stent (29). In-vitro testing also provides initial 

screening of biocompatibility and cell interaction.  In-vivo testing examines the effectiveness, 

biodegradation, inflammatory response, or elution profiles in a living organism (29).  The 

combination of these testing modalities affords a more complete analysis of the stent and its

physiological interactions within the body.  This research seeks to bridge the gap between in-

vitro and in-vivo testing through the development of an in-vitro BVM to test intravascular

devices such as stents.  This system provides an in-vitro model that represents a physiologic

system, while permitting high-throughput and cost-effective testing.  This allows for multi-

dimensional analysis of stents and other intravascular devices because the mimic reproduces a

simplistic living vessel in an in-vitro environment.

Currently, the BVM utilizes an ePTFE scaffold, which has been shown to support a 

monolayer of endothelial cells, therefore demonstrating the ability to mimic the intima of a 

native artery (4).  The model provides a quick and repeatable testing modality for new 

intravascular devices.  As a material, ePTFE is biocompatible and dependable, but has several 
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physiologic limitations.  The polymer scaffold has little compliance and is devoid of any 

biological components, which will alter the interactions between the device and scaffold wall 

when compared to responses in vivo.  To address the physiological limitations of the current 

BVM scaffold, the development and implementation of a completely biological scaffold was 

evaluated.

One option for creating a biologic scaffold is to decellularize an existing vessel.  

Decellularization is a promising technique that can be utilized to remove cells from a tissue.  

Several groups have found a multitude of uses for the ECM from a decellularized tissue.  Some 

have focused on using the decellularized scaffold for use in-vivo, due to the lack of donors and/or 

viable tissues.  Ott et al. applied decellularization to remove the cells from an entire rat heart and 

were able to recellularize the heart to regain function by stimulated electronic pulse (48).  

Schaner et al. decellularized whole arteries to investigate their potential for use in bypass surgery 

(49).  Other groups such as Singelyn et al. have utilized decellularized tissues to isolate the 

complex combination of proteins that comprise the native ECM (51).  New decellularization 

techniques will continue to develop to become a unique source of biologic materials for specific 

applications. 

To improve the capabilities of the BVM, this thesis examined the potential use of a  

decellularized artery as a more physiologically relevant scaffold type, when compared to current 

synthetic polymers.  Utilizing a decellularized scaffold provides several potential advantages 

including maintenance of structural integrity (mechanical strength and compliance) and 

incorporation of natural binding sites for cells (40, 44). This type of scaffold would create a 

more physiologic in vitro testing modality and further bridge the gap between bench tests and in

vivo studies.  The following summarizes the work performed in this thesis to develop and 

implement the decellularized scaffold into the BVM.
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The work from Schaner et al. supported the use of a decellularized porcine artery as a 

vascular scaffold and provided the basic methods for the decellularization protocol (49).  The 

first step of this thesis developed a decellularization protocol, utilizing SDS as a detergent to 

remove all cellular bonds from porcine arteries in order to produce an acellular scaffold.  After 

numerous trials, the final decellularization protocol included a 0.075% SDS solution perfused 

through the lumen of the vessel, while concurrently being shaken at 30 rpm for 20 hours.  

Decellularization was evaluated by staining with H and E dyes, to visualize the nuclei and 

cellular material within the vessel.  The complete decellularization of an artery, as determined by 

a lack of hemotoxylin-stained nuclei, produced a biological-acellular scaffold type.  Furthermore, 

the structure of the scaffold remained intact through the harsh SDS washing.  The perfusion of 

the SDS solution during decellularization (as opposed to shaking alone) was vital to ensure the 

lumen of the scaffold was kept open for use in future experiments, such as tensile testing or burst 

pressure testing.  Before implementation into the BVM, the scaffold was examined for the 

maintenance of structural integrity and mechanical properties.

To ensure the scaffold maintained its native characteristics post-processing, the structural 

and mechanical properties were evaluated.  These experiments conducted as a side by side 

comparison between the decellularized scaffold and a native artery.  Visual inspections of the 

wall thickness for decellularized scaffolds were similar to that of native controls, indicating no 

drastic changes to the structure.  Tensile testing and burst pressure tests were also performed on 

the scaffold post-decellularization.  The scaffold was stretched longitudinally until broken to 

evaluate its elastic modulus and yield strength via tensile testing.  The resulting elastic modulus 

was not statistically different from that of a native artery at about 4 MPa; whereas the yield 

strength of the scaffold (1.7MPa) was significantly lower than the native artery (2.6 MPa).  

Radial strength was tested via burst pressure analysis, where the scaffold was filled with water 
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until it burst.  The burst pressure was determined to be similar to a native artery found in 

literature at 1600 mmHg (71).  Mechanical properties indicated that the decellularized scaffold is 

not significantly different than a native artery, thus providing a physiologically relevant scaffold 

for use in the BVM.  This scaffold can be used in several ways; for its ideal compliance when 

evaluating stents, investigating drug eluting stents effects on the vasculature, to explore new 

imagine modalities and their ability to visualize several layers of an artery, and potentially to 

model disease pathways such as restenosis.

Once the physical properties of the scaffold were evaluated, the scaffold’s capacity to 

house cells was evaluated by pressure sodding cells into the lumen of the scaffold.  Sodding 3T3 

fibroblasts was a proof-of-concept to asses if cells could be distributed throughout the length of 

the scaffold and were not harmed by the scaffold.  Based on this success, more relevant cell 

types were sodded to better mimic a native artery.  Pressure sodding was not effective for 

hUVSMC, as they prefer to adhere in a static environment where they slowly migrate into the 

scaffold (87, 88).  Whereas the hUVECs were pressure sodded and able to remain of the 

scaffold.  BBI and Cell Tracker Green staining were used to visualize the nuclei of the hUVECs 

on the lumen of the scaffold post sodding.  These results indicated that hUVECs were able to be 

sodded to produce a monolayer of cells on the lumen of the scaffold, effectively mimicking a 

native artery. In conclusion, the development of a decellularized scaffold created a biomemtic 

material with the capacity to model and artery.

5.2 Challenges and Limitations  

There are some key limitations to using a decellularized scaffold to model an artery. 

Limitations include extensive contaminations, non-ideal mechanical testing methods, and poor

staining optimization.  When the decellularized scaffold was used in the BVM for longer than 12 

hours contaminations occurred.  For example, in the first long term study with hUVSMCs, three 
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time points were to be examined (1, 3, and 5 days).  After 12 hours of culture, two of the three 

setups had to be stopped due to contaminations.  After 36 hours of experimentation, the third set 

up was taken down due to contamination once again.  These losses severely altered the goal of 

the experiment and resulted in a shorter evaluation time.  Assuming this setup was performed 

sterilely, the decellularized scaffolds were the only components that were not sterilized and 

would be the source of contamination.  If the BVM for the duration of the experiment, all long-

term tests will be compromised, skewing the subsequent results.  

The mechanical tests performed in this thesis did not evaluate the most relevant aspects 

of the scaffold.  Traditional tensile tests effectively examine elastic modulus and critical yield of 

the material’s longitudinal strength; however this is not critical data.  Although this test provided 

useful background information, the decellularized scaffold is measured to fit within the BVM, 

thus was not required to stretch longitudinally.  In addition, the traditional methods require a 

relatively flat material, two dimensional with only a small thickness.  The scaffold is a tube and 

needed to be cut longitudinally to fit the desired from.  Altering the geometry, produces data that 

doesn’t effectively mimic what occurs in the BVM.  Ideally, more information about the radial 

strength would provide more appropriate data.  The radial strength is important during the 

pressure sodding process as well as any interactions the scaffold with have with intravascular 

devices.    

Finally, to properly analyze a recellularized scaffold all dyes and analysis tools must be 

optimized for proper identification of the structures within the culture.  Specifically, the Cell 

Tracker dyes utilized for the dual sodding proof of concept had to be optimized for the best use.  

Cell Tracker Green was the main dye used and was properly optimized for the ideal 

concentration.  Once Cell Tracker Red was introduced, it was assumed it would function 

similarly to the Green.  However, the Cell Tracker Red dye resulted in spotty and inconsistent 
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cell dying; although it had penetrated the cellular membrane, it was not evenly dispersed 

throughout the cytoplasm.  The dye was too concentrated, causing it to conglomerate; resulting 

in a technically false representation of the cells.  With further optimization of the Cell Tracker 

Red, this crucial issue can be addressed and the stains will be consistent between the colors.  

5.3 Future Work

Addition of Antibiotics: The primary isolation of the porcine arteries is not a sterile 

process and the vessel was exposed to bacterial contaminants.  Chapter 3 investigated the use of 

antibiotics, penstrep, as a way to limit contamination.  It was determined that one percent of 

penstrep was sufficient to stop bacterial colonies from forming.  This thesis utilized the antibiotic 

only in culture media, during the final stages of the experiment.  Theoretically if the scaffold is 

exposed to antibiotics during multiple phases of experimentation, the exponential growth of 

bacteria could be reduced.  As seen in other work, the incorporation of 1% penstrep with 1% 

SDS in the decellularization process may prevent contamination from occurring.(51).  

Additionally, arteries are available for commercial purchase, and thus have a much smaller 

amount of contamination with an increase in consistency (due to the high throughput more sterile 

harvesting process).  

Balloon Catheter for Burst Pressure: The burst pressure testing done in this thesis was 

sufficient to provide a comparison between decellularized and native scaffolds.  The burst 

pressure was recorded at the moment before bursting at one point on the scaffold.  This method 

does not represent the overall radial compliance, but rather the critical strength of the scaffold.  

To better investigate the radial compliance of the scaffold a balloon catheter can be inserted 

inside the scaffold and filled to determine the pressure on the surface area of the lumen.  The 

resulting data will better represent the radial compliance throughout the scaffold.  Evaluating the 
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scaffold in this manner will not only improve the quality of the data, but also further demonstrate 

the capacity of the BVM to test intravascular devices.

Radial Tensile Testing: The current tensile testing methods utilized in this thesis were 

accurate to test the longitudinal strength of the scaffold, but were not relevant to the uses of the 

scaffold in the BVM.  The longitudinal strength is not imperative knowledge for use in the BVM 

system, as the length of the scaffold was measured to fit rather than stretch.  Modifying the 

tensile testing apparatus could provide the elastic modulus and the critical yield in a radial 

direction.  Changing the ‘clamping’ mechanisms from a vice style to two rods, would allow the 

scaffold to remain intact while still evaluating the elastic modulus and yield strength.  The two 

rods would be inserted into the lumen of the scaffold and pulled while remaining parallel to each 

other.  A modified tensile testing apparatus was suggested by Colby James, who also found 

longitudinal elastic modulus relatively unhelpful.  His thesis suggests the described 

modifications to the tensile testing apparatus (92) – page 140, Figure 56.  With a simple 

modification of the current testing apparatus, more relevant data might be produced.

Optimize Cell Tracker Red:  The optimal concentration of dye was determined for Cell 

Tracker Green but not for Cell Tracker Red.  Cell Tracker Red was too concentrated in the cell, 

causing the dye to conglomerate and form spots within the cytoplasm rather than disperse evenly 

throughout the cell.  By investigating lower concentrations of Cell Tracker Red within the cells, 

a concentration can be determined that will last during cell proliferation, while consistently dying 

the cytoplasm of the cell.  Investigating various concentrations of Cell Tracker Red can easily be

optimized to produce an accurate and consistent stain.

Dual Sodding the Scaffold:  To develop the most physiologically relevant scaffold, 

recellularizing the scaffold with two native cell types would better mimic the native artery.  This 

thesis sodded two cell types independently, but sodding two cell types together is plausible.  The 
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hUVSMCs should be externally sodded and given a chance to migrate into the media of the 

scaffold, while hUVECs are luminaly pressure sodded.  External sodding was used for 

recellularization hUVSMCs and a potential method could be performed following the protocol 

from Williams et al (88).  Once the media of the scaffold has been recellularized with 

hUVSMCs, the intima of the scaffold can be pressure sodded with hUVECs.  

Translational Investigations:  Although decellularizing an intact artery can produce a 

scaffold to model an in vivo artery, the basic materials, or extracellular matrix, of the tissue can 

be used to improve other scaffold models.  Singelyn et al. decellularized tissues, then digested it 

with pepsin and solubilized it to resulting in a temperature-responsive hydrogel (51).  From this 

research, it was found that collagens, laminin, and proteoglycans naturally found within a tissue 

were retained throughout processing.  Therefore, the solubilized decellularized material can be 

used to coat a different scaffold type to improve the cellular adhesion properties and overall 

culture.  This theory was tested in Appendix D: Decellularized Coatings, where ePTFE scaffolds 

were coated with solubilized decellularized porcine aorta ECM.  The ability to use a 

decellularized artery as a scaffold or as a coating to improve upon other scaffold types would 

provide several potential uses for the decellularized material.  

5.4 Conclusion

The in vitro BVM was developed to test intravascular devices and as such has a great 

potential to be utilized for pre-clinical evaluations.  Before this model is created, further 

optimization of the current BVM system must be addressed.  The current gold standard for the 

BVM supports a polymer scaffold that is not physiologically representative of a native artery.  

The development of a physiologically relevant tissue engineered blood vessel scaffold is critical 

to the improvement of the BVM.  A decellularized artery has the biomemtic properties necessary 

to improve the physiological relevance of the BVM.  In conclusion, this research provided the 
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documentation to support the potential for a decellularized porcine scaffold to be utilized as a 

unique scaffold in the BVM.
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Appendix A – Abbreviations:

BAECs – Bovine Aortic Endothelial Cells

BVM – Blood Vessel Mimic

CABG – Coronary Artery Bypass Grafting

CAD – Coronary Artery Disease

CVD – Cardiovascular Disease

ECs – Endothelial Cells

ECM – Extracellular Matrix

ePTFE – Expanded Ploy(tetrafluroethylene)

HUMVECs – Human Umbilical Microvessel Endothelial Cells

HUVSMC – Human Umbilical Vein Smoot Muscle Cell

PGA – Polyglycolic Acid

PTFE – Polytetrafluorethylene

PAD – Peripheral Artery Disease

TEVG – Tissue Engineered Vascular Grafts

SEM – Scanning Election Microscope

SDS – Sodium doecyl Sulfate

SMCs – Smooth Muscle Cells
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Appendix B – Protocols and Experimental Details:

B.1  Determining the Optimal Concentration for Decellularizing Porcine Arteries:

Purpose: 

To decellularize porcine arteries and optimize the decellularization process.  Concentrations of 

0%, 0.075%, 0.1%, and 0.125% SDS were evaluated for their ability to fully differentiate the 

tissue.

Materials

 Daigger orbital shake table (model SH 06050597)

 10%  liquid SDS

 Several Clean 50 mL conicals

 Razor blade

 Milli-Q water

 Sterile forceps 

 Histochoice

Decellularization Procedure:

1. Samples were removed from the -80°C freezer and placed in the 37°C water bath (make sure 

the cap is screwed on tightly).

2. Once defrosted (in a malleable state), the vessel was cut with a razor blade.  The vessel 

sample was cut into 5 pieces about 5cm in length.   

3. Samples were placed in individual 50mL tubes labeled with the proper corresponding sample 

numbers.
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4. **Note: To mix the solution, all work should be done in the hood to keep all materials sterile.  

Concentrations of 0%, 0.075%, 0.1%, and 0.125% sodium dodecyle sulfate (SDS) 

deceullarization solution were measured.  

a. A total volume of 20 mL of solution will be needed for the decellularization in a 50mL 

tube.  The SDS stock solution used is purchased as concentrated amount of 10% SDS in 

Mill-Q.  The various concentrations of SDS were calculated using the following 

formulas: 

Equation 1:

Final % SDS in solution (decimal form) * 20mL of total solution = The volume of a pure SDS solution

Equation 2:

The volume of pure SDS (from eqn 1)* 10 (dilution of SDS) = The volume of SDS to be used in the mix

Example calculation for .075% SDS in a 75mL of solution:

Equation1: mLmL 015.02000075.0 

Equation 2: mLmL 15.010.0/015.0  of 10% SDS

For a 20mL SDS solution; 0.15mL of the SDS solution is added to 19.85mL of PBS water.

5. The tissues will remain on the bench top and not be placed in the hood.

6. 20mL of SDS solution at 0%, 0.075%, 0.1%, and 0.125% concentrations was poured into 

their respective 50mL conical, along with the previously cut vessel sample.  

7. The conicals were anchored to an orbital shake table.  

8. The shake table was turned on to 100rpm to shake the tissues in solutions for 15 hours. 

9. After 15 hours samples were removed from the shake table and the SDS solution was poured 

down the drain.  

10. The decellularized tissue was rinsed 5 times for 10 minutes with sterile PBS.
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a. Using sterile forceps, the decellularized tissue was transferred to a conical with 20 mL of 

sterile PBS.

b. Samples were placed on the shake table for 10 minutes.  

c. This process was repeated 5 times, for a total of 50 min and 5 rinse steps.

11. Decellularized tissues were transferred to a 15mL conical with 10-12mL of Histochoice. for 

each sample.  .  

*Note: This is a dangerous material, be sure to use gloves and eye protection when pouring.  

12. Samples were left in Histochoice overnight at room temperature allowing for fixation to 

occur.

13. Fixed samples were embedded in paraffin wax blocks evaluated using hematoxylin and eosin 

staining.
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B.2 Perfusion Decellularization:

Purpose:

To decellularize porcine vessels using a perfusion system to keep the lumen open.

Materials:

 Daigger orbital shake table (model SH 06050597)

 10%  liquid SDS

 Several Clean 50 mL conicals

 Razor blade

 Milli-Q water

 Sterile forceps 

 Histochoice

 Thermo Fisher Scientific Masterflex L/S 3 roller peristaltic pump (model 7519-05)

 Male and Female luer lock barbs

Procedure:

Samples were kept in a -80°C freezer until you need to use them (no known time limit).  

1. Samples were defrosted in a 37°C water bath.  Samples were defrosted when the entire 

sample was malleable and warm.  If the sample is fresh, ignore this step.  

2. Mix the .075% SDS deceullarization solution.  The perfusion system uses a total of 75 mL of 

solution.  The SDS stock solution being used (Invitrogen Corporation’s catalog number 

15553-027) is a concentrated amount of 10% SDS in PBS.  The following formula will 

obtain the volume of SDS in the solution: 

Equation 1: 

Desired % of SDS in the final solution (decimal form) * 75mL the total volume = the volume of a pure SDS solution

Equation 2:
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The volume of pure SDS (eqn1) / 0.10 (the percent dilution of SDS) = The volume of SDS needed to be used 

Example calculation for 0.075% SDS in a 75mL of solution:

Equation1: 0 mLmL 05625.07500075. 

Equation2: 0 mLmL 56.010.0/05625.  of 10% SDS

For a 75mL solution, 0.56mL of the SDS solution is added to 74.4mL of PBS 

water.

3. An end male lure lock barb that screws on to the 50mL tubes prepared with tubing was 

located.  The male lure lock barb was required to be the right size for the vessel lumen 

diameter to fit over.  

4. Samples were cut using a razor blade into sections approximately 5cm in length.

5. The proper lure lock barbs were then inserted into the lumen of the vessel and sutured tightly.

6. The barb and vessel were then screwed into place in the 50mL conical with tubing.  

7. The tubing concial was placed on the peristaltic pump.  The pump is set for fluid to be 

pushed though the sample side of the tube.

8. The 50mL conical was filled with the 0.075% SDS solution.  

9. The tubing was perfused to remove most of the bubbles.  The sample needed to be 

completely submerged in the SDS solution.  

10. The pump was run at 140mL/min for 15 hours.

11. After 15 hours samples were removed from the shake table and the SDS solution was poured 

down the drain.  

12. The decellularized tissue was rinsed 5 times for 10 minutes with sterile PBS.

 Using sterile forceps, the decellularized tissue was transferred to a conical with 20 mL of 

sterile PBS.

 Samples were placed on the shake table for 10 minutes.  
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 This process was repeated 5 times, for a total of 50 min and 5 rinse steps.

13. Decellularized tissues were transferred to a 15mL conical with 10-12mL of Histochoice. for 

each sample.  .  

*Note: This is a dangerous material, be sure to use gloves and eye protection when pouring.  

14. Samples were left in Histochoice overnight at room temperature allowing for fixation to 

occur.

15. Fixed samples were embedded in paraffin wax blocks evaluated using hematoxylin and eosin 

staining.
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B.3 Final Perfusion Decellularization:

Purpose:

To decellularize porcine vessels using a perfusion system to keep the lumen open.

Materials:

 Daigger orbital shake table (model SH 06050597)

 10%  liquid SDS

 Several Clean 50 mL conicals

 Razor blade

 Milli-Q water

 Sterile forceps 

 Histochoice

 Thermo Fisher Scientific Masterflex L/S 3 roller peristaltic pump (model 7519-05)

 Male and Female luer lock barbs

Procedure:

Samples were kept in a -80°C freezer until you need to use them (no time limit).  

1. Samples were defrosted in a 37°C water bath.  Samples were defrosted when the entire sample 

was malleable and warm.  If the sample is fresh, ignore this step.  

2. Mix the .075% SDS deceullarization solution.  The perfusion system uses a total of 75 mL of 

solution.  The SDS stock solution being used (Invitrogen Corporation’s catalog number 

15553-027) is a concentrated amount of 10% SDS in PBS.  The following formula will obtain 

the volume of SDS in the solution: 

Equation 1: 

Desired % of SDS in the final solution (decimal form) * 75mL the total volume = the volume of a pure SDS solution

Equation 2:
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The volume of pure SDS (eqn1) / 0.10 (the percent dilution of SDS) = The volume of SDS needed to be used 

Example calculation for 0.075% SDS in a 75mL of solution:

Equation1: 0 mLmL 05625.07500075. 

Equation2: 0 mLmL 56.010.0/05625.  of 10% SDS

For a 75mL solution, 0.56mL of the SDS solution is added to 74.4mL of PBS 

water.

3. An end male lure lock barb that screws on to the 50mL tubes prepared with tubing was 

located.  The male lure lock barb was required to be the right size for the vessel lumen 

diameter to fit over.  

4. Samples were cut using a razor blade into sections approximately 5cm in length.

5. The proper lure lock barbs were then inserted into the lumen of the vessel and sutured tightly.

6. The barb and vessel were then screwed into place in the 50mL conical with tubing.  

7. The tubing concial was placed on the peristaltic pump.  The pump is set for fluid to be pushed 

though the sample side of the tube.

8. The 50mL conical was filled with the 0.075% SDS solution.  

9. The tubing was perfused to remove most of the bubbles.  The sample needed to be completely 

submerged in the SDS solution.  

10. The pump was run at 20mL/min for 20 hours with the shake table at 30 rpm.

11. After 20 hours samples were removed from the shake table and the SDS solution was poured 

down the drain.  

12. The decellularized tissue was rinsed 5 times for 10 minutes with sterile PBS.

a. Using sterile forceps, the decellularized tissue was transferred to a conical with 20 mL of 

sterile PBS.

b. Samples were placed on the shake table for 10 minutes.  
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c. This process was repeated 5 times, for a total of 50 min and 5 rinse steps.

13. Decellularized tissues were transferred to a 15mL conical with 10-12mL of Histochoice. for 

each sample.  .  

     *Note: This is a dangerous material, be sure to use gloves and eye protection when pouring.  

14. Samples were left in Histochoice overnight at room temperature allowing for fixation to 

occur.

15. Fixed samples were embedded in paraffin wax blocks evaluated using hematoxylin and eosin 

staining.
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B.4 Histological Staining:

Purpose:

To stain paraffin embedded section with hematoxylin and eosin for collagen and nuclei.

Methods:

Blocks were sectioned at 6μm and mounted on slides.  Slides were placed in a slide rack and then 

placed into glass dishes.  Slides were dipped in the following order for the stated duration of 

time.  

 3 min – xylene *Performed in fume hood*

 3 min – xylene *Performed in fume hood*

 3 min – xylene *Performed in fume hood*

 2 min – 100% EtOH

 2 min – 100% EtOH

 2 min – 95% EtOH

 1 min – air dry

 4 min – Hematoxlin

 1 min – Water Distilled

 30 – 45 sec – Clearifier

 1 min – Water Distilled

 1 min – Bluing

 1 min- Water Distilled

 1 min – 95% ETOH

 1 min 30 sec – Eosin

 1 min - 100% EtOH

 1 min - 100% EtOH
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 1 min - 100% EtOH

 3 min – xylene *Performed in fume hood*

 3 min – xylene *Performed in fume hood*

 3 min – xylene *Performed in fume hood*

While the slide rack remained in the last xylene dish, while each slide was individually pulled 

out and cover slipped using mounting glue.  Slides were left to dry for 48 hours.
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B.5 SEM Preparation:

Purpose: 

To prepare the vessel scaffold for imaging with a scanning electron microscope.

Materials:

 Gluteraldehyde

 Distilled Water

 Ethanol (at 25%, 50%, 70%, 95%, and 100%)

Methods:

1. Excise the sample from its given treatment

2. Place sample in the glutaraldehyde for at least 30 minutes

3. Rinse sample in distilled water 4 times

4. Place sample in 25% ethanol for 5 minutes

5. Place sample in 50% ethanol for 5 minutes

6. Place sample in 70% ethanol for 5 minutes

7. Place sample in 95% ethanol for 5 minutes

8. Place sample in 100% ethanol for 5 minutes

9. Let air dry 

10.  Mount the sample to a coverslip so that it as flat as possible.  Double stick tape can be used 

to adhere the sample to the coverslip.

11. Image with the SEM
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B.6 Tensile Testing Protocol:

Purpose:  

To ensure all tensile tests are repeated in the same manner, in order to ensure reproducible results

Procedure:

1. Samples warm to room temp and not soaking wet.

2. Using the palm pilot tap on the “Inspect” icon 

3. Prepare to load the sample:

a. Cut open the sample longitudinally 

b. Measure the width of the sample (w)

c. Measure the thickness of the sample (t)

4. Load sample:

d. Place proximal end into the clamp that remains stationary.

e. Tighten the clamp on a small edge of the sample, clamp enough of the sample to hold it 

in place

f. Repeat clamping process with the distal end into the movie clamp 

i. Move the clamps into position, switch the machine into jog and in the direction 

desired, until location is reached

5. Measure the gauge length. When the sample is taught (has some load), measure the gauge 

length (the length between the two clamps) (lo).

6. Begin testing

g. Switch to toggle and the right direction

h. Push start on the palm pilot

i. Push the green button on the machine

7. Watch the palm pilot to reach a max load and look for the sample to break.
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8. Stop the palm pilot and push the green button on the machine.

9. A window to save will open on the palm pilot (save whatever name you wish.

10. Remove the sample by releasing the clamps and pulling the remains of the sample away.

11. Repeat for all samples.

12. To get the data off the palm pilot, first turn on the computer (password 4bmge).

13. On the palm pilot find the “Hot sync” icon, press on it.  A new page will load, press the logo 

in the center.

14. The computer will automatically begin to work (it will beep when done).

15. On the computer open the file “hand held” (this will covert the palm pilot data files into the 

file type desired).

16. Make sure the Series XI is clicked on.

17. Open the file from the palm pilot.

18. Click on save as and determine a location that you want to save as. Save as a .txt file.

19. Then shut off the machine and put the palm pilot away.

20. Then use the tensile testing macro to determine the elastic modulus and the critical yield
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B.7 Burst Pressure Protocol:

Purpose:

To test the scaffold for its mechanical integrity post decellularization, with specific regard to the 

radial compliance.

Materials:

 Pressure Transducer

 Data Acquisition software

 Male and Female Barbs

 Blood pressure arm cuff

 Capped Male Luer

Procedure:

Calibration:

1. The blood pressure arm cuff was located

2. The pressure transducer was attached on either side of the tubing of the blood pressure cuff

3. The data acquisition software started recording (1)

4. The arrow just above the input for the data was clicked on and the bridge pod was selected.

5. The arm cuff was quickly pumped to the max pressure (remember this number)

6. Units was selected on the min and max screen

7. The lowest pressure seen was equal to zero

8. The highest pressure seen was equal to the max pressure from the arm cuff 

9. ‘Ok’ was pressed several times for the calibration of the transducer

Set-up:
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Ordering: end piece => female piece that will to the sample => another fitting to the 

sample and the male barb => transducer => fitting to transducer and tubing => tubing => stop 

cock for syringe (seen in Figure B.1).

Testing:

1. Place the sample in between the fittings

2. Unlock the end cap

3. Connect the syringe and perfuse the lumen with fluid

4. Replace the end cap to the end

5. Begin recording

6. Slowly increase the pressure until the vessel bursts
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Figure B.1.  Burst Pressure Images set up. Barbs and pressure transducer set up on a scaffold 

(A).  The syringe ready to apply force in the lumen of the scaffold (B).  The connection with the 

bridge pod and data acquisition connection (C).  The completed set-up with all components (D).
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B.8 Bacterial Evaluation:

Purpose: 

To test scaffold for bacterial content post harvesting and post decellularization.  This will also 

look at the potential for the Penicillin: Streptomycin, contained in cell culture media, to prevent 

contamination

Materials:

 Lysogeny Broth (LB)

 Tryptic (Trypticase) Soy Agar plates

 Glass beads

 Penicillin:Streptomycin (Penstrep)

 Sterile DCF-PBS

Methods:

1. Decellularize a vessel using the perfusion protocol in Appendix A.3

a. Cut the vessel sample in half: one part for decellularization and one part to be used as a 

control

2. Place 1 mL of LB into test tube

3. Place sample into the test tube with LB

4. Vortex for 1 minute

5. Add penstrep to the desired plates to see if bacteria are resistant to the concentration of the 

antibiotic used in the media.

a. Media contains 1% antibiotic

b. Agar is 15 mL volume

c. Add .15 mL of penstrep to the plate

6. Add glass beads
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7. Shake glass beads back and fourth in a crossing motion to move the penstrep solution around 

the whole plate

8. Transfer the 0.1mL of the LB solution to the agar plate

9. Shake the beads again

10. Add 4 mL of brother to the LB tubes to increase the total volume to 5 mL (although 0.1 mL 

was taken out for the agar plate, we assume the sample displaces about that much volume)

11. Add 0.05 mL (50 μL) of penstrep to the desired LB tubes to make a 1% solution of 

antibiotics

Place samples (both agar plates and LB tubes) on an orbital shaker at 37°C for at least 12 hours.  

Then evaluate the plates for the presence of bacterial colonies on the plate.  For the broths, 

evaluate the clarity of the liquids; where the more clear, the less bacteria.
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B.9 Tensile Test Evaluation:

Purpose:

To evaluate the raw date given by tensile testing

Methods – this is the Macro That is Run to Summarize the Tensile Testing Analysis:

‘Sub TensileTestMacro()’

'February 23, 2009'

k = 0

d = InputBox ("How many tests would you like to analyze?")

If d > 3 Then

    For k = 4 To d        'you didn't type in a number'

        Worksheets.Add

    Next

End If

For j = 1 To d

    m = 0

    Max = 0

    sumofx = 0

    sumofy = 0

    sumofxy = 0

    sumofxx = 0

    sumofxsquared = 0

    Delta = 0

    a = 0

    b = 0

    c = 0

    l = 0

    Filename = InputBox("Where is the location of the data file")

    Name = InputBox("What test is this?")

    a = InputBox("What is the gauge of the sample?")

    b = InputBox("What is the width of the sample?")

    c = InputBox("What is the thickness of the sample?")
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    Worksheets(j).Name = Name                             'you kept hitting cancel didn't you?'

    Worksheets(Name).Cells(1, 1).Value = "Time"

    Worksheets(Name).Cells(1, 2).Value = "Extension"

    Worksheets(Name).Cells(1, 3).Value = "Load"

    Worksheets(Name).Cells(1, 4).Value = "Strain"

    Worksheets(Name).Cells(1, 5).Value = "Stress"

    Worksheets(Name).Cells(1, 7).Value = "Linear Strain"

    Worksheets(Name).Cells(1, 8).Value = "Linear Stress"

    Worksheets(Name).Cells(1, 10).Value = "Critical/Yield Stress"

    Worksheets(Name).Cells(1, 11).Value = "20% Yield Stress"

    Worksheets(Name).Cells(1, 12).Value = "50% Yield Stress"

    Worksheets(Name).Cells(1, 13).Value = "Slope"

    Worksheets(Name).Cells(1, 14).Value = "y-intercept"

        Open Filename For Input As #j   'Typed the filename wrong/file doesn't exist/you've already opened 

it this session'

        i = 0

            Do Until EOF(j)

            Input #j, x, y

                If i = 0 Or i = 1 Then

                    Worksheets(Name).Cells(i + 1, 1).Value = x

                    Worksheets(Name).Cells(i + 1, 1).Value = y

                    i = 1 + i

                Else

                    

                If (x >= 0) And (y > 0) Then

                    i = i + 1

                    Worksheets(Name).Cells(i - 1, 1).Value = (i - 2)               'need to delete the

                    Worksheets(Name).Cells(i - 1, 2).Value = y                 'first two lines of

                    Worksheets(Name).Cells(i - 1, 3).Value = x                 'the notepad file

                    Worksheets(Name).Cells(i - 1, 4).Value = y / a             '(only data points
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                    Worksheets(Name).Cells(i - 1, 5).Value = x / (b * c)       'no words) or you messed up typing a 

value into the size of the sample

                    t = y / a

                    u = x / (b * c)

                    If u > Max Then

                        Max = u

                        timestop = (i - 2)

                    End If

                    Worksheets(Name).Cells(2, 10).Value = Max

                    e = (0.2) * Max

                    f = (0.5) * Max

                    Worksheets(Name).Cells(2, 11).Value = e

                    Worksheets(Name).Cells(2, 12).Value = f

                End If

                End If

            Loop

        g = 0

        r = 0

        p = 1

        For m = 1 To (i - 2)

            g = g + 1

            o = Worksheets(Name).Cells(g, 1).Value

            h = Worksheets(Name).Cells(g, 5).Value

            n = Worksheets(Name).Cells(g, 4).Value

            

            If h >= e And h <= f And o <= timestop Then

                

                p = p + 1
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                Worksheets(Name).Select

                Cells(g, 4).Select

                Selection.Font.Bold = True

                Cells(g, 5).Select

                Selection.Font.Bold = True

                

                Worksheets(Name).Cells(p, 7).Value = n

                Worksheets(Name).Cells(p, 8).Value = h

                               

                End If

        Next

        

    Worksheets(Name).Cells(8, 1).Select

                    

    Charts.Add

    With ActiveChart

        .ChartType = xlXYScatterSmoothNoMarkers

        .SetSourceData Source:=Sheets(Name).Range("D:E"), PlotBy:=xlColumns

        .Location Where:=xlLocationAsObject, Name:=Name

    End With

    With ActiveChart

        .HasTitle = True

        .ChartTitle.Text = "Stress-Strain Curve"

        .Axes(xlCategory, xlPrimary).HasTitle = True

        .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Strain"

        .Axes(xlValue, xlPrimary).HasTitle = True

        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Stress"

        .HasLegend = False

    End With

    

    Worksheets(Name).Cells(16, 6).Select

   q = p - 1

    

    Charts.Add

    With ActiveChart

        .ChartType = xlXYScatter

        .SetSourceData Source:=Sheets(Name).Range("G:H"), PlotBy:=xlColumns

        .Location Where:=xlLocationAsObject, Name:=Name
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    End With

    With ActiveChart

        .HasTitle = True

        .ChartTitle.Text = "Linear Stress"

        .Axes(xlCategory, xlPrimary).HasTitle = True

        .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Strain"

        .Axes(xlValue, xlPrimary).HasTitle = True

        .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Stress"

        .HasLegend = False

    End With

    ActiveChart.SeriesCollection(1).Select

    ActiveChart.SeriesCollection(1).Points(q).Select

    ActiveChart.SeriesCollection(1).Trendlines.Add(Type:=xlLinear, Forward:=0, _

        Backward:=0, DisplayEquation:=True, DisplayRSquared:=True).Select

    

Next

End Sub
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B.10  Original Sodding Protocol:

Purpose:

The purpose of this protocol was to sod an ePTFE scaffold with cells to create a 

monolayer of cells throughout the length of the lumen.  

Materials:

 Blood Vessel Model setup

 Cells to sod with

 Conditioning, cell, and bioreactor Medias

 Syringes

 ePTFE scaffold

*** Please note, this work is based off of Dr. Cardinal’s original protocol for sodding a scaffold.  

Some blanks are purposely left blank to be filled out and tailored to a specific experiment.

Procedure:

Prep 1 week prior

1. Gas sterilize biochambers and 2-port reservoirs

2. Determine target number of cells and passage schedule, then thaw cells

3. Cut grafts, mount on fittings, and suture

4. Autoclave grafts, flasks, and forceps

Prep the day before

5. Make media: 

a. Bioreactor Media (Human Complete w/o ECGS w/ antibiotics)

b. Conditioning Media (1:6 solution of FBS:M199 + antibiotics)

6. Denucleate grafts (using filtered EtOH)

a. 15 min 70% EtOH
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b. 15 min 100% EtOH

c. Leave in degassed Conditioning Media in incubator overnight

Set-up day: BVM conditioning

7. Warm up media (Bioreactor Media and Conditioning Media)

8. Fill chamber with media

9. Insert sterile grafts into biochambers

10. Using a syringe, flush lumen with Conditioning Media to prime graft

a. Clamp lumen and continue to prime graft 

b. Repeat for all vessels

11. Place small WM pump in hood

12. Prime 2-port reservoirs with Conditioning Media

13. Attach primed biochamber to 2-port reservoir and condition graft for 10 min

a. Flow through lumen first to remove air, then clamp lumen and condition transmurally on 

150rpm setting

14. Leave primed biochambers in large incubator until ready for sodding step

15. Prime 2-port reservoirs with Bioreactor Media

a. Prepare one for each vessel

b. Be sure that drip is visible and outlet is submerged

c. Clamp tubing and leave in big incubator

Set-up day: BVM sodding

16. Take corresponding number of primed biochambers and reservoirs to hood

17. Attach outlet of reservoir to inlet stopcock of biochamber

a. Leave reservoir inlet unattached and biochamber outlet facing trough

18. Record BVM numbers (or chamber ID):
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19. Harvest cells

a. Apply Trypsin, deactivate with media

b. Take 100uL from total _____mL cells

    Counts:

20.          X =                      x 2000 x (cell mL x .10) 

    total number of cells = 

21. Pellet cell suspension (on 4 for 4 min)

22. Resuspend in _____mL Bioreactor Media

23. Sod each graft with ______mL cell solution

a. Cells per graft = 

b. Sodding density =                cells/cm2

24. Chase with 1-3mL Bioreactor Media

25. Attach biochamber outlet to reservoir inlet

26. Bring BVMs to large incubator

27. Place on small WM pump - leave lumen clamped!!

28. Immediately begin transmural flow at 7rpm, and maintain for 1 hour

a. Started on pump at: ______ (time)

29. Unclamp lumen and maintain 7rpm luminal flow for 1 hour

30. Increase flow to 11rpm

31. Increase flow to 15rpm; leave overnight

The next day and beyond 

32. Increase flow by 10-15rpm at a time to reach 90rpm by the end of the day

33. BVM maintenance: replace media reservoirs every 3rd day Check CO2!
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B.11 Acute 3T3 Sodding:

Procedure:

The purpose of this protocol was to develop a protocol for the sodding of a decellularized 

scaffold with 3T3 fibroblasts.

Materials:

 Blood Vessel Model setup

 3T3 Fibroblasts

 3T3 Fibroblast media

 Syringes

 Porcine scaffold

Procedure:

Prep 4 Days Prior

1. Set up cell passage schedule

a. Day 0: thaw the vial of fibroblasts (this case is with p8 cells) and put them into a T75 

with 20 mL of fibroblast media

b. Day 1: Pass the fibroblasts 1:3 into a T225.  The T225 is prepared with 36 ml of media.  

To pass 3 mL of trypsin used to detach the cells and then 3 mL of fibroblast media.

c. Day 3: Will be time to isolate the cells.  The cells will be centrifuged to make a pellet and 

be used in sodding

2. Start the cells passage (day 0)

3. Pass the cells (day 1) into a T225

Prep the day before

4. Start decellularization (day 2), use the normal perfusion decellularization system
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a. Prior to the start of decellularization, suture the fittings to each end of the vessel 

corresponding to how they need to fit into the BVM

Prep the day of

5. Stop decellularization and continue with the rinse process (day 3)

a. On the 4th rise start to warm up the fibroblast media

Harvest Cells

6. During the 5th rise (day 3) 

a. Tryspinize cells with 9 mL of trypsin

b. Deactivate the trypsin with 9mL of fibroblast media

c. With the 18 mL, put it in a 50 mL conical 

d. Put the conical into the centrifuge, and spin down for 4 min (on setting 4)

e. Fill the biochamber with Fibroblast media

f. Stop the rinse cycle

g. Put the vessel in the bioreactor, trying to keep it straight and fairly tight

h. Perfuse the system with fibroblast media (lumenally and transmurally)

i. Prime the media reservoir and the tubing with fibroblast media

j. Remove conical from centrifuge and pipette off all the media except the cell pellet

i. About 6 million cells were cultured

ii. Cells/cm2 = Total Number of Cells/Surface Area

k. Then add 4 mL of fibroblast media per scaffold to the conical 

l. Mix the conical to break up the pellet and create a mixed, homogenous cell solution

m. Get two 10 mL syringes (one with 4 mL of fibroblast media and one with the 4 mL of the 

cell solution)

n. Put a trough at the distal portion of the bioreactor
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o. Close off the distal luminal stop cock

p. Put the syringe of the cell solution on the proximal side- inserting into stopcock

q. Then inject cell solution through syringe

r. Then attach the syringe with the 4mL of media and flush transmurally as a chaser to force 

the cells into the lumen of the vessel

7. Then attach the media reservoir tubing in line with the bioreactor

8. Put the bioreactor on the 8-roller pump

9. Set the flow at 10 rpm for 1 hour transmurally

10. To take down – cut the vessel out of the chamber, keeping track of proximal and distal ends

11. Put the vessel in the histochoice

12. Wait one day before cutting and getting ready for BBI 

The next day and beyond

13. Cut a middle of the vessel into a thin cross-section

14. Cut the proximal and distal portions longitudinally into top and bottom

15. Put the samples into the BBI previously wrapped in foil because of its the light sensitivity 

16. Image 3 sections on each part of the vessel along the lengths and around the cross-section

17. Count the number of cells per image 

18. Process and embed the sample for histology
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B.12 Making the BBI Stain:

Purpose: 

To image the cells after they have been sodded to quickly and easily identify the cell 

density and consistency throughout the scaffold.

Materials:

 Histochoice

 Milli-Q

 Bisbenzimide (BBI, a Hoechst Stain Kit 33258)

Procedure:

1) Put portions of scaffold in histochoice for 24 hours

a. ** Be careful to leave this as steady as possible as to not disrupt the cell adhesion

2) Make a solution of BBI (1:1000):

a. 30μL of BBI with 15 mL of Milli-Q

b. Mix well 

c. Cover in Foil

3) Carefully move scaffold from histochoice to BBI solution

4) Incubate at room temperature for 30 min

5) Image
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B.13 Procedure for  (BBI) Evaluation of Cell-Sodded Scaffolds:

Purpose:

To visualize cells on a scaffold

Methods:

1. Put on safety glasses. Cut samples with blade or scissors, being careful to not disrupt cell 

lining inside lumen (squeezing, touching, and scraping can all disrupt lining and ruin 

experiment).

2. Use washed forceps to place samples in corresponding 15-mL conicals that contain BBI 

solution. Carefully keep track of samples. Leave foil on conicals.

a. Let samples soak for at least 15 minutes (longer is better).

3. Put away extra stock solution. Clean up preparation area.

4. With permission or help from Dr. Cardinal, use fluorescent microscope to obtain en face

images. Take forceps to use at microscope. See Figure A.2 for pictures of steps below.

a. Log into notebook (fluorescence; initials; date; time and lamp hours).

b. Turn turret to setting 4.

c. Turn on Olympus lamp (green switch).

d. Turn on Optiscan wheels (black switch).

e. Turn on camera (black switch).

f. Set filter wheel 1 to 1, and set filter wheel 2 to 1.

g. Open shutter:

h. Set Prior keypad to shutter S1.

i. Dial objectives to desired magnification (typically 4x and 10x for BBI images).

j. Set thin bar to icon of eye and camera.
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k. Sign into computer by clicking Kristen’s account (password can be obtained from 

Kristen).

l. Click QCapture Pro (on desktop).

m. Click camera icon at top of QCapture Pro window: 

n. Place slide on microscope. Place sample on slide.

o. See Figure A.3.

p. Manually adjust microscope to clarify image.

q. If scaffold is too wet, carefully blot end of scaffold on Kim wipe.

r. Take pictures. Save pictures if desired (labeled with sample info, initials, and 

magnification).

s. Shut down system by switching off Olympus lamp, Optiscan wheels, and camera (on top 

of microscope).

t. Log out of notebook.

Figure B.2. Microscope anatomy. Letters correspond to step 6 in protocol.

  b

   a, t

   c

   d

  e

   f, h

    g

  i

  j

  p
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Figure B.3. QCapture Pro control panel.

Type larger 
number in mmm 
blank for lighter 
image and smaller 
number for darker 
image.

Click + to increase 
size of image 
window and – to 
decrease size of 
image window.

First click Auto Set.
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B.14 Long-Term Testing of Decellularized Vessels with hUVSMCs:

Purpose:

To test to see if the decellularized scaffold can house SMCs for a longer time frame.  The 

decellularized vessel will be sodded with SMCs for 1, 3, and 7 day time points.  Hopefully the 

vessel house the SMCs as the start to integrate with the scaffold wall and form as unique layer.  

Materials:

 Blood Vessel Model setup

 Human Umbilical Vein Smooth Muscle Cells (hUVSMCs)

 HUVSMC media

 Syringes

 Porcine scaffold

 Vessel A: Length = 3.4 cm, Inner Diameter = 0.322 cm

 Vessel  B: Length = 3.4 cm, Inner Diameter = 0.429 cm

 Vessel C = Length = 3.4 cm, Inner Diameter = 0.49 cm

Protocol:

Prep 1 week prior

1. Gas sterilize biochambers and 2-port reservoirs

2. Determine target number of cells and passage schedule, then thaw cells

3. Autoclave grafts, flasks, and forceps

Prep the day before

4. Make media: 

a. Bioreactor Media (Human Complete w/o ECGS w/ antibiotics)

b. SMC  Media 
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5. Decellularize grafts 

a. 0.1% SDS with PBS

b. Place in reservoir chamber

c. Perfuse at 20mL/min for 20 hours with the shake table at 33 rpm

d. Have both ends sutured to respective barb

Set-up day: BVM conditioning

6. Rinse the grafts with sterile Milli-Q 5X 10 min

7. Warm up media (Bioreactor Media and SMC Media)

8. Fill chamber with BR media

9. Insert rinsed grafts into biochambers

10. Using a syringe, flush lumen with SMC Media to prime graft

a. Clamp lumen and continue to prime graft 

b. Repeat for all vessels

11. Prime 2-port reservoirs with SMC Media

12. Attach primed biochamber to 2-port reservoir and condition graft for 10 min

a. Flow through lumen first to remove air, then clamp lumen and condition transmurally on 

150rpm setting

13. Leave primed biochambers in large incubator until ready for sodding step

Set-up day: BVM sodding

14. Take corresponding number of primed biochambers and reservoirs to hood

15. Leave reservoir inlet unattached and biochamber outlet facing trough

16. Record BVM numbers (or chamber ID):

17. Harvest cells

a. Apply Trypsin, deactivate with media
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b. Record confluency of flasks and number/size of flasks used for each vessel:

18. Pellet cell suspension (on 4 for 4 min)

19. Resuspend in 12 mL Bioreactor Media

20. Sod each graft with 4 mL cell solution

a. Cells per graft = 6 million

b. Sodding density = 1.5million cells/cm2 (average)

21. Chase with 1-3mL SMC Media

22. Attach biochamber outlet to reservoir inlet

23. Bring BVMs to large incubator

24. Place on pump - leave lumen clamped!!

25. Immediately begin transmural flow at 7rpm, and maintain for 1 hour

a. Started on pump at: ______ (time)

26. Unclamp lumen and maintain 7rpm luminal flow for 1 hour

27. Increase flow to 11rpm for 1 hour

28. Increase flow to 15rpm; leave overnight

The next day and beyond 

29. Increase flow by 10-15rpm every 30 min until reaching 90rpm 

30. BVM maintenance: replace media reservoirs every 3rd day

a. Check CO2!



158

B.15 Long-Term Testing of Decellularized Vessels with hUVECs:

Purpose:

To look at the potential hUVECs have for creating an endothelial lining on decellularized 

porcine arteries.  Pressure Sodding hUVECs should suffice for a monolayer of endothelial cells 

to create a physiologic model of a native blood vessel.  Also cell tracker will be used to identify 

the hUVECs with in the vessel.  Using the cell tracker in the case provides a proof of concept 

that the cell tracker is a simple dye that can be used for dual Sodding on vessels, to monitor any 

cell types placed in the scaffold.

Materials:

 Blood Vessel Model setup

 Human Umbilical Vein Smooth Muscle Cells (hUVECs)

 HUVEC media

 Syringes

 Porcine scaffold

 Vessel A: Length = 3.89 cm, Inner Diameter = 0.59 cm

 Vessel B: Length = 4.3 cm, Inner Diameter = 0.48 cm

Protocol:

Prep 1 week prior

1. Gas sterilize biochambers and 2-port reservoirs

2. Determine target number of cells and passage schedule, then thaw cells

3. Autoclave grafts, flasks, and forceps

Prep the day before

4. Make media: 

a. Bioreactor Media (Human Complete w/o ECGS w/ antibiotics)
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b. HUVEC  Media 

5. Decellularize grafts 

a. 0.1% SDS with PBS

b. Place in reservoir chamber

c. Perfuse at 20mL/min for 20 hours with the shake table at 33 rpmHave both ends sutured 

to respective barb

Set up Day: Applying Cell Tracker

6. Make Stock Solution: Add 1.8μm of DMSO to the 50μg of cell tracker, 

7. Add 9.5μl of Stock solution and 19mL of serum free media

8. Vortex the working solution

9. Remove media on the cells

10. Rinse with DCF-PBS

11. Add working cell tracker solution to the flask of 3T3’s

12. Incubate for 30 min

13. Remove working solution

14. Rinse with DCF-PBS

15. Fill with normal cell media

16. Incubate for 30 min

Set up Day: Static Culture

17. Rinse the grafts with sterile Milli-Q 5X 10 min

18. Warm up media (HUVEC Media)

19. Place stop-cocks on both ends of the vessel

20. Put 10 mL of HUVEC media in a trough

21. Using a syringe, flush lumen with HUVEC Media to prime graft
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a. Clamp lumen and continue to prime graft 

b. Repeat for all vessels

22. Leave vessels in the trough for sodding

Set-up day: BVM Culture

23. Rinse the grafts with sterile Milli-Q 5X 10 min

24. Warm up media (Bioreactor Media and HUVEC Media)

25. Fill chamber with BR media

26. Insert rinsed grafts into biochambers

27. Using a syringe, flush lumen with HUVEC Media to prime graft

a. Clamp lumen and continue to prime graft 

b. Repeat for all vessels

28. Prime 2-port reservoirs with HUVEC Media

29. Attach primed biochamber to 2-port reservoir and condition graft for 10 min

a. Flow through lumen first to remove air, then clamp lumen and condition transmurally on 

150rpm setting

30. Leave primed biochambers in large incubator until ready for sodding step

Set-up day: BVM sodding

31. Pellet cell suspension (on 4 for 4 min)

32. Resuspend in 8 mL HUVEC Media

33. Sod each graft with 4 mL cell solution

c. Cells per graft = 6 million cells

d. Sodding density = 0.91 million cells/cm2 (average)

Static set up:

34. Rotate the vessel 45° ever 15 min for 1 hour
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35. Take down vessel after 1 hour and evaluate

BVM set up:

36. Chase with 1-3mL HUVEC Media Attach biochamber outlet to reservoir inlet

37. Bring BVMs to large incubator

38. Place on pump - leave lumen clamped!!

39. Immediately begin transmural flow at 7rpm, and maintain for 1 hour

a. Started on pump 

b. Rotating 45° every 15 min for an hour

40. Unclamp lumen and maintain 7rpm luminal flow for 1 hour

41. Increase flow to 11rpm; leave overnight

The next day and beyond 

31. Take down the vessel after 3 days 

BVM Analysis

34. To view the cells, the cell tracker can be highlighted via setting on the fluorescence 

microscope

a. Green: Turret-4, S1, FW1–3, FW2-2

b. Red: Turret-4, S1, FW1–4, FW2-3



162

B.16 Cell Tracker Staining:

Purpose:

To stain cells Multiple colors for dual sodding

Materials:

 5-20 μL pipette and sterile head (usually in the hood in 209)

 3 ml Syringe with Needle tip

 DMSO 100mL bottle from the corner cupboard (Sigma-Aldrich ) catalog  number 276855 

(anhydrous)

 Cell tracker Red CMPX (Invitrogen; Carlsbad, CA) catalog number C34522

 Cell Tracker Green CMFDA (5- Chloromethyl Fluorescin Diacetate; Invitrogen; Carlsbad, 

CA) catalog number C 7025

 Sterile Serum-free Media (for whatever cell type you are using) 

 1 – 25 ml pipettes (the regular ones we use)

Procedure:

7) Warm media in the water bath

8) Use a needle tip and syringe to pull out 1 mL of DMSO and placed in a 15mL conical 

9) Use micropipette to pull out 10.8μL of DMSO from the 15mL conical

10) Add the DMSO to the vial of Cell Tracker – attempt to get most of the powder cell tracker 

dye in with the DMSO.  This is a 10mM concentration of stock solution, via the following 

equations:

mLLxL
L

molesx
M

molesx
g

w

g
mole

L

moles
M

8.101008.1   
1008.1

01.0

1008.1
86.464

05.
  

2
4

4
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11) Dilute to the desired concentration for the cell tracker dye to create the working solution

Use the equation 2211 vcvc   (where c1 = 10mM – from the stock solution, v1 = is unknown, 

c2 = the desired concentration – in this case 5μM, and v2 = the final volume needed)

a.

solutionStock of5.90095.

)19(5)(10000

)19(5)(10

LmLx

mLMxM

mLMxmM











12) Votex the working solution for use

a. Solution can be stored in the fridge for up to one week

13) Remove the media from the cell culture

14) Add your working solution of the Cell Tracker Dye to the cell culture

a. Cell Tracker Green should be incubated on the cells for 30 min

b. Cell Tracker Red should be incubated on the cells for 15 min

15) Remove the Cell Tracker Dye working solution from the cell culture 

16) Add cell media back onto the cell culture 

17) Incubate for at least 30 minutes

18) Cells are now dyed (‘dyed cells’) and able to be used as you wish – i.e. pressure sodding 

described below

a. The dyed cells can be used for about 1 week (different concentrations will produce 

different intensities, as characterized by the graph below) as the dyed cells proliferate 

either through passages or sodding.
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B.17 Analyzing Cell Tracker Images:

Purpose:

To easily, consistently, and quickly count cells that had been successfully stained with 

fluorescent dyes.

Materials:

 Images of the cells

 ImageJ analysis program

Procedure:

Counting the cells

Images were opened and analyzed in the ‘Image J’ program.  The image was made binary 

by going to Image, Color, split channels.  This created three images in grey scale of red, green, 

and blue. 

The grey scale of the green image was selected.  Next Image, Adjust, and Threshold were 

selected to change the image to black and white where black represents the most intense parts of 

the image (be sure to press dark background to make the cells highlighted in black).  
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To tabulate the average area of each cell and the number of cells in the image Analyze, Analyze 

Particles was selected.  
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A screen emerges asking for specificity of the Size, Circularity.  For green images the size 

should be “20-Infinity” and circularity should be “0.00-1.00”.  The results will pop up in a new 

window.   

The previously mentioned parameters are sufficient for analyzing images that were taken with 

Cell Tracker Red as well.  For red images the size should be “300-Infinity” and circularity 

should be “0.50-1.00”.  This will produce similar results as the green images.

To determine the amount of cells per mm2 a Ronchi ruling was used to calibrate the view 

(by pixels) of the microscope.  An image of the calibration slide was taken at the desired 

magnification where vertical lines were the focal point of the image.  
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By counting how many lines (through the use of cell counter processing tool in Image J) span the 

width of the image, a ratio can be found to determine the total surface area of the image.  To use 

cell counter: initialize and press type one, then click each line seen across the width of the image 

(it will be marked and counted).  

To calculate the size of one edge of an image is as follows:

side that oflength  the
direction x in thePixelsofNumber 

Image theSpanningLinesofNumber 
      Equation. 1

Example 1: 135 lines on the width of the image.
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mm9.
1392

135


The ratio calculation can be seen as follows, where x is the length the other side:

2sideon Pixels

x 

1sideon Pixels

1sideofLength 
 Equation. 2

Example 2: Known side is .9mm on 1392, the other side has 1040 pixels.

mmx
pixels

x

pixels

mm
67.

10401392

9.


Once each side of the image has a calculated length, the sides can be multiplied together to find 

the surface area of the image (.9mm x .67mm = .603mm).

Combination of the Green and Red Images

Using Image J the individual combination images can be overlaid to produce an image 

which best represents the cells present on the vessel.  Open both green and red images in Image 

J.  Then combine by selecting Image, Color, Merge channels.  A screen with pop up to select the 

image that represents the color channels (i.e. the title of the red image should be displayed on the 

red option and the green title should be under green).  Finally, ensure create a composite image is 

checked at the bottom and push ok.  This will produce a new composite image titled RGB 50%.  

Intensities may be adjusted to produce the most vivid picture via selecting Image, Adjust, Color 

Balance.  Then save this image as a new composite for later use and evaluation. 

Calculating the Intensity of the Image



169

Images were opened and analyzed in the ‘Image J’ program.  The images were made 

binary, by selecting Image, Color, split channels.  This created three images in grey scale of red, 

green, and blue select and the color of the image can be selected.  Then click on the circular 

button: 

This tool was used to circle a single cell on the image and then Analyze, Histogram was selected.  

The histogram will have a mean number, which is the mean intensity of the area circled.  This 

process was repeated for five cells in the image and the numbers were averaged to get the 

relative intensity of all the cells.
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Appendix C - Extra Data

C.1 Higher Magnification Decellularization Pictures

Figure C.1. Higher magnification of decellularization.  Native (A), 0% SDS (B), 0.075% SDS 

(C), 0.01% SDS (D), and 0.0125% SDS (E).  Most degradation in (E) with the most amount of 

SDS.
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C.2 Sample Tensile Testing Data:

The original parameters are recorded then the stress and strain curve and linear elastic modulus 

graphs are shown directly below. 

1. Por5-a (decellularized)

a. Lo= 13.42mm

b. W= 11.43mm

c. T =0.79mm

d. Do=4.11mm
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Youngs: 4.957 Mpa
Critical: 3.147311 Mpa

2. Por5-b (control)

e. Lo= 8.94mm

f. W= 8.14mm

g. T =0.81mm

h. Do=4.14mm

Stress-Strain Curve
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Crictical: 2.05595

3. Por5-c (decellularized)
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i. Lo=11.564mm

j. W= 11.43mm

k. T =0.88mm

l. Do=5.2mm

Stress-Strain Curve
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4. Por5-d.1(control)  ** Not sure if it worked on this one, was tested twice

m. Lo=10.17mm

n. W= 9.1mm
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o. T =0.71mm

p. Do=4.0mm

Stress-Strain Curve
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5. Por5-d.2 (control)  **This was tested as well

q. Lo=11.67mm

r. W= 9.1mm

s. T =0.71mm

t. Do=4.0mm
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Stress-Strain Curve
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C.3 Summary Table of Raw Tensile Testing Data:

Table C.1. Summary of Young’s Modulus and Critical Yield for Tensile Tests

Size Treatment Critical Yeild (Mpa) Youngs (Mpa)

Small Native 2.22 3.4

Small Native 2.22 3.41

Small Native 3.855 8.5395

Small Native 4.5199 8.9296

Medium Native 2.05595 4.5817

Medium Native 1.27 8.0713

Small decell 3.02 7.868

Small decell 1.27 2.352

Small decell 2.36 5.4421

Small decell 1.23 5.1969

Small decell 0.9814 3.262

Medium decell 1.937376 4.957
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C.4 Images and Average Cell Counts for 3T3 Sodding:

Pictures of BBI were all taken at 4x, the later the letter in the alphabet, the further distal the 

picture was take. Also note, that top and bottom were not specifically noted at the time of 

removal of the vessel.

Figure C.2. Bottom A: These two pictures had the most cells, but you can clearly see that there 

are ridges displaying more cells

Bottom A

1 2 3 4 5
Avg Per 
square

Avg Per 
mm^2

A 5 13 17 13 17 13 1300
B 5 9 10 9 10 8.6 860
C 3 4 1 3 3 2.8 280
D 9 14 32 15 20 18 1800
E 6 5 9 9 8 7.4 740
F 14 14 10 17 13 13.6 1360
G 10 9 5 11 8 8.6 860
H 9 18 12 12 12 12.6 1260
I 13 13 8 12 16 12.4 1240
J 3 4 3 3 4 3.4 340
K 15 19 11 13 11 13.8 1380

Average 1038.18182
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Figure C.3. Top A: These pictures were the ones with the most visable cells, the ridges are 

again visible with the highlighted cells.

Top A

1 2 3 4 5
Avg Per 
square

Avg Per 
mm^2

A 4 7 10 6 8 7 700
B 15 18 15 19 7 14.8 1480
C 10 13 12 12 10 11.4 1140
D 15 17 12 10 10 12.8 1280
E 10 10 10 10 6 9.2 920
F 14 15 9 20 12 14 1400
G 9 4 10 13 5 8.2 820

Average 1105.71429

Figure C.4. Bottom B: Much more of a visible cell lining, random cell orientation
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Bottom 
B

1 2 3 4 5
Avg Per 
square

Avg Per 
mm^2

A 25 16 26 8 19 18.8 1880
B 19 9 23 16 24 18.2 1820
C 18 16 12 20 14 16 1600
D 7 11 10 11 12 10.2 1020
E 14 14 12 20 12 14.4 1440
F 14 16 17 17 18 16.4 1640
G 14 15 21 16 13 15.8 1580
H 18 17 15 10 6 13.2 1320
I 12 18 16 13 11 14 1400
J 24 17 27 20 13 20.2 2020
K 12 12 13 12 12 12.2 1220
J 12 9 10 7 9 9.4 940

Average 1490

Figure C.5. Top B: Again lots of cells more randomly dispersed

Top B

1 2 3 4 5
Avg Per 
square

Avg Per 
mm^2

A 25 21 20 24 21 22.2 2220
B 14 16 18 25 12 17 1700
C 14 12 16 15 11 13.6 1360
D 18 25 23 19 18 20.6 2060
E 13 16 9 13 10 12.2 1220
F 20 20 17 24 29 22 2200
G 18 16 11 17 15 15.4 1540
H 16 13 18 17 17 16.2 1620
I 3 9 8 6 5 6.2 620
J 19 25 22 20 17 20.6 2060
K 17 13 22 18 21 18.2 1820

Average 1674.54545
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Appendix D – CIRM Translational Project

Development of a Decellularized Aorta Coating to Improve ePTFE Polymer-Cell Interface

Aubrey Smith, Chris Miracle, and Dr. Kristen Cardinal

D1.1 Introduction

The current BVM system can utilize both polymer (ePTFE or PLGA) and biologic 

scaffolds, however none of which present the ideal model.  The polymer scaffolds do not mimic 

the natural compliances and lack native biological components to encourage cell adhesion.  

Biologic scaffolds, such as the decellularized construct described here, cannot be consistently 

reproduced and limits the capacity for a high throughput system.  The ideal scaffold would 

contain the best of each scaffold; one that is consistent in size and strength, has the capacity to 

mimic native compliances, and has biologic components.  Several of these improvements are 

possible by using the decellularized material as a complex tissue specific biological coating on a 

polymer scaffold.  This combination utilizes the polymer scaffold as a high throughput model 

and when coated with the extracellular matrix (ECM) from a decellularized artery, the unique 

biological components to aid in cell adhesion.

As a California Institute of Regenerative Medicine (CIRM) intern, the opportunity arose 

to be immersed in cutting edge stem cell research.  Dr. Christman’s lab at the University of 

California, San Diego is focused on designing scaffolds for cardiac tissue engineering.  The lab 

has a particular interest in decellularized tissues as a naturally derived matrix for cell cultivation.  

These decellularized tissues contain the appropriate chemical and biological components to 

mimic the native environment and incorporate a diverse range of proteins.  Dr. Christman’s lab 

has shown preliminary results for the matrix’s ability to naturally differentiate stem cells using a

decellularized tissue matrix as an extracellular matrix coating for cell culture substrates.  The 

ultimate goal of the research during the internship was to enhance stem cell differentiation into 
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cardiac lineages using decellularized tissue matrices. Dr. Chrisman et al. have done several 

experiments and published on numerous uses for the decellularize materials.  It is from the work 

done in this internship that the coating method can be used as a translation project with the BVM 

system.  

Most recently, DeQuach et al. were able to see cell maturation of committed skeletal 

myoblast progenitors when cultured on muscle-specific ECM (1).  The decellularized composed 

of a complex mixture of peptides from a variety of collagens and proteoglycans such as decorin, 

dermatopontin, heparan sulfate, and lumican. In addition, a Blyscan assay for glycosaminoglycan 

(GAG) content measured 16.8 ± 0.1 μg of GAG/mg of ECM. Proteoglycans and GAGs are 

known to play an important role in binding growth factors in-vivo.  Preliminary data 

demonstrates that the decellularized skeletal muscle can be processed into an soulable, and 

retains a complex mixture of ECM components (1). In-vitro, skeletal muscle matrix has shown 

to enhance differentiation of C2C12 skeletal myoblasts compared to the standard collagen 

coating (Figure D.1).  Skeletal myoblasts were also shown to preferentially migrate towards the 

skeletal matrix compared to controls of collagen alone, fetal bovine serum (FBS, a known 

chemo-attractant), and pepsin using a trans-well migration assay.  Migration towards the matrix 

was also tissue specific, with myoblasts migrating towards skeletal versus the similarly 

processed cardiac and brain matrix.  This in-vitro data demonstrates that this soluable form of 

skeletal matrix can both attract and enhance differentiation of skeletal muscle progenitors (2).  

This complex composition varies between tissue types thus, providing a unique advantage over 

other more simple coatings.   
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Figure D.1. The improvement of Skeletal Myoblasts on Decellularized Skeletal Matrix.  A 

shows myoblasts on collagen and B are myoblasts on Skeletal Muscle Matrix, labeled by myosin 

heavy chain (red) and Hoechst (blue).  C. is the percent differentiation, D is the change in width 

of the myotube, and E is the number of nuclei per myotube (2). 

The work done by DeQuach et al., provided the motivation of this proof-of-principle 

experiment, to evaluate coating the decellularized ECM from pig aortas on polymer scaffold to 

improve the polymer-cell interface. To assess the effectiveness and potential benefits of applying 

a porcine ECM coating onto the scaffold, sodding efficiency and cell viability assays were 

performed.  The efficiency assay determined the number of cells incorporated into the scaffold as 

a percentage of the total initial cell-sodding count.  The viability assay used a live and dead stain 

analysis to calculate the percentage of live cells remaining on the scaffold after three days.
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D.2 Methods

D.2.1 Decellularization Coating

Aorta ECM was isolated by decellularizing porcine aorta.  The vascular tissue was 

decellularized (see Figure D.2) using a techniques modified from the originally published 

methods from Singeliyn et al. for myocardial matrix (3).  Briefly, the freshly excised tissue was 

chopped into 2 mm pieces; then the tissue was washed in millipore water.  The tissue was then 

agitated in 1% sodium dodecyl sulfate (SDS) and 1% penstrep in phosphate buffered saline 

(PBS) solution at 100 mg per 1000 mL for 20 hours (Figure D.2).  Finally, decellularized 

vascular tissue was rinsed in millipore water to remove the SDS for 10 minutes 5 times.  The 

decellularized ECM was desiccated (Figure D.2) and then milled to create a powder, followed by 

enzymatic digestion using pepsin, creating a solubilized vascular matrix (Figure D.2).  Pepsin 

(SIGMA, St. Louis, MO) was dissolved in 0.01 M hydrochloric acid (HCl) to make a 

concentration of 1 mg/mL.  Approximately 10 mg of the ECM was digested in 1 mL of pepsin 

solution under constant stirring. After approximately 56 hours, the matrix was diluted using     

0.1 M acetic acid to make a 1–2.5 mg/ml concentration of decellularized aorta coating. This

solution was used to the coat ePTFE scaffold for 1 h at 37°C, followed by rinsing with PBS (2).  

Each scaffold was denucleated and sterilized with EtOH prior to ECM coating.  Each scaffold was placed 

in 70% EtOH for 15 min and then in 100% EtOH for 15.  
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Figure D.2. The procedure for creating the decellularized coating  matrix.  1) Harvest the muscle 

and removed the excess connective tissue.  2) Rinse with deionized water to remove blood and 

debris.  3) Decellularize with SDS solution for 20 hours.  4) Remove detergent by rinishing with 

deionized water.  5) Lyophilize the decellularized tissue.  6) Mill the decellularized tissue to 

create a white powder.  7) Aliqout the ECM powder was stored at -80 °C for later use.  8) The 

ECM power digested in pepsin for 48 hours (with agiation at 60 rpm).  9) Dilute the ECM/pepsin 

solution in 1.0 M acetic acid to 1 mg/ml.  10) Coat the culture surface for culture for 1 hour at 

37°C.  11) The surface is now ready for culture.

D.2.2 Sodding Scaffolds

A total of two BVM systems were set up with the following conditions: (1) an ePTFE 

scaffold that was conditioned with media, and (2) an ePTFE scaffold with the decellularized 

aorta coating.  The denucleated scaffold (BVM setup 1) was placed in a 15ml conical with 

Conditioning Media (M199 and 10% Fetal Bovine Serum) in the incubator at 37 °C overnight.  

BVM setup 2 was coated with the decellularized coating for 1 hour at 37 °C and was then rinsed 
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several times with PBS. After each scaffold was prepared, they were inserted into the BVM 

system.  The bioreactor was filled with Bioreactor Media, approximately 200-300 mL.  A 

syringe was used to flush the lumen with Conditioning Media to prime the scaffold.  The 2-port 

media reservoir was also primed with Conditioning Media.  The assembled BVM system was 

attached to a peristalitic pump and primed with transmural flow at 150 rpm.  

One week prior to set up, 10 million hUVECs were cultured for each scaffold, about one 

T225 flask at 80% confluency.  Cells were trypsinized to detach from the culture plate and the 

cell suspension was spun down.  The supernatant was aspirated from the cell pellet.  The cells 

were resupsended in 4 mL of Bioreactor Media and were pressure sodding into the lumen of the 

scaffold.  This was done by clamping the distal end of the scaffold and using a syringe, the cells 

were slow injected with transmural flow into the lumen.  After the cells were sodded, 4 mL of 

Bioreactor Media was injected in a similar fashion to ensure the scaffold was pressure sodded.  

The BVM system was then connected with the peristaltic pump at 7 rpm with the distal 

end of the scaffold clamped for transmural flow.  After one hour of transmural flow, flow was 

redirected for luminal flow at a low flow rate.  One hour post luminal flow, the media reservoir 

was replaced with a new conical containing HUVEC media.  The bioreactor media in the original 

reservoir was saved for analysis in the sodding efficiency assay.  The rpm of the pump was then 

slowly ramped up to 90 rpm in increments of 10-15 rpm every hour and was left running at 90 

rpm until day 3.

D.2.3 Analysis

A sodding efficiency assay was developed to investigate the capacity for a coated 

scaffold increase cell adhesion during the pressure-sodding process. The sodding efficiency 

analysis was done using a Trypan Blue stain and a hemocytometer.  Trypan Blue is a common 

staining agent used to calculate the number of live and dead cells in suspension.  The cell counts 
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were taken from various solutions at three points during the experimentation: (a) the cell solution 

prior to sodding {Ci}, (b) the reservoir media after being switched one hour post luminal flow

{Cr}, and (c) all of the media within the system at the point of take down {Ct}.  The efficiency 

assay takes a 150 μl sample of the cell suspension and transfers it to a microcentrifuge tube 

containing 50 μl of Trypan Blue.  10 μl  of this Trypan Blue-cell solution was pipetted onto a 

hemoytometer.  Cell counts were taken from at least 5 squares, the following equation is used to 

calculate the approximate number of cells in the solution:

     VolumeSuspensionCell10FactorDilution 
CountedSquaresofNumber 

CountedCellsTotal
Count CellTotal 4 










 To determine the sodding efficiency, the following equation is used: 
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Once the culture was complete, the scaffolds were carefully removed from the BVM 

system.  Using a blade, each end of the scaffold was cut from the barbs.  Extra care was taken to 

ensure the scaffold was not compressed and the cell monolayer was altered.  Once excised from 

the BVM, the scaffolds were cut into 4 sections (Figure D.3).  Sections A and C were analyzed 

with bisbenzimide nuclear stain to identify cell consistency and distribution on the lumen of the scaffold.  

Then the sections were embedded for H&E analysis of the cellular monolayer as a cross section.  Sections 

B and D were assessed using a live and dead staining on the scaffold wall as a viability assay.  The assay 

was performed on Sections B and D to evaluate the viability of the cell population remaining on the 

scaffold post culturing.  
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Figure D.3.  Scaffold sections.  A and C were imbedded for H&E analysis.  B and D were assessed using 

a live/dead stain.

Staining Methods

The BBI stain, is a nuclear die that attaches within the chromosomes of the cell.  This is a 

very quick stain that is used here to simply identify the presence of cells.  Sections A and C of 

the scaffold were fixed in 10% formalin for at least 24 hours.  The scaffolds were dipped in a 

1:1000 concentration of the BBI dye, diluted in Millipore water.  The scaffolds were left in the 

solution for 15 minutes, in the dark.  After staining, the scaffold was place in covered Millipore 

water until imaged.  After sections A and C were imaged with the BBI stain, they were processed 

and embedded in paraffin wax.  The blocks were then cut into 6 μm sections and stained with H 

and E to identify the cellular lining on the scaffold.

The viability assay was developed by using a live and dead stain as a means of identifying 

the cell population remaining on the scaffold post culturing.  The scaffold portions were fixed in 

histochoice for at least 30 minutes.  Then the scaffolds were gently dunked into a PBS solution to 

rinse prior to staining.  A 2μM solution of Calcein AM and a 1μM solution of EthD-1 was 
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Live/Dead

Cut
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prepared for the live and dead stain.  The sections were incubated in the solution for 30 minutes 

in dark conditions.  Once again the scaffolds were placed into PBS for imaging.  The BBI and 

live and dead stains were preformed as whole mount stains on the lumen of sections from the 

scaffold.  Scaffolds were imaged using an Olympus BX41 microscope at 100 times 

magnification.  

Statistical Analysis

Statistical analysis was performed using 2-sample T-tests.  The difference between the 

original cell counts were determined by comparing the number of cells/ cm2 from the coated and 

uncoated scaffold.  Difference in sodding efficiency was determined for the coated and control 

groups by comparing the final sodding density (cells/cm2) based off of the results from the 

efficiency assay.  Any difference in cell viability between the coated and control group was 

determined by comparing the percentage of live cells on the BVM calculated in the cell viability 

assay.

D.3 Results 

The efficiency of the pressure sodding HUVEC into the lumen of a ePTFE scaffold was 

determined using the Trypan Blue stain and a hemocytometer.  The cells were counted: (a) prior to being 

pressure sodded, (b) post luminal flow, (c) at the time of take down.  The efficiency was calculated as 

previously mentioned.  The percentage of cells remaining adhered to the scaffold post sodding and 

culturing was significantly increased on the coated scaffold (p-value = 0.002).  The non-coated scaffold 

had a 35% efficiency, where as the coated scaffold had a 78% percent efficiency (Figure D.4)
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Figure D.4 Pressure sodding effiencey of HUVECs on ePTFE.  The coated scaffold had a 

significantly greater ability to retain cells on the lumen of the scaffold (p-value = 0.002).

Sections A and C from each treatment was embedded in paraffin wax for further analysis.  The 

sacffolds were sectioned and stained with H&E (Figure D.5).  A pink lining was visualized on both 

scaffold, indicated cell matrix or the decellularied ECM coating remained on the lumen of the scaffod.  

However, there are very few identifiable purple nucli on the lumen of the scaffold.  Although, as seen by 

the efficency assay and confirmed with BBI staining, cells must be maintained within the scaffold.  From 

qualitative analysis, the lining of the scaffold does not appear altered between the two treatments.  To 

further verify the ability of the coated scaffold to increase cell adhesion, BBI stains were analyzed.  The 

BBI stain identifies the cells and their relative location on the surface of the lumen (Figure D.6 and D.7).  

The primary function was to evaluate the cell consistancy and disribution throughout the length of the 

scaffold.  Figure D.6 and D.7 displays a consistent monolayer throughtout the length of both coated and 

non-coated ePTFE scaffolds.  Additionally, these images were used to count cell density on the scaffold, 

as a means to quantiatively compare the treatments.  There was a significant increase in the number of 

cells remaining on the lumen of a coated scaffold compared to the non-coated (control) scaffold (p-value 

= 9.54 E-5).  Figure D.8 illustrates the difference in cells/cm2 between each treatment.  

*

*
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Figure D.5. H and E images of the cellularized ePTFE scaffold. Left is the control (A) and 

Right is the coated scaffold (B).

    

Figure D.6. BBI images of the non-coated scaffold; proximal (A) and distal (B) 

    

Figure D.7. BBI images of the coated scaffold; proximal (A) and distal (B)
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Figure D.8.  BBI cell counting.  Significant increase in cell numbers on the coated ePTFE 

scaffold (p-value = 9.54 E-5).

The live and dead stain was the last analysis preformed on the scaffolds.  Calcein AM 

and EthD-1 were used to identify the live and dead cells.  Live cells were identified with Calcein 

AM and a green fluorophores, while EthD-1 identified dead cells with a red fluorphores.  Figure 

D.9 are sample images from the whole mount live dead stains.  With qualitative analysis, the 

uncoated scaffold has an increased number of red cells on the lumen of the scaffold, indicating a 

higher instance of cell death, compared to the coated scaffold.  Additionally, these live and dead 

cells in these images were used to quantitatively identify the differences in cell numbers visually 

seen.  Figure D.10 quantitatively compares the amount of live and dead cells between each the 

coated and non-coated ePTFE scaffolds.  On both sections B and D of the scaffold, there was a 

significant increase in the number of live cells on the lumen of the scaffold (p-value section B = 

0.041 and section D = 0.045).  

*
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Figure D.9. Live and dead stains on the ePTFE scaffolds.  Calcein AM indicatd a live cell with a 

green fluorophor, EthD-1 identified dead cells with a red fluorphor; uncoated scaffold (A) and 

coated scaffold (B) 

Figure D.10. Viability comparison of live HUVECs on ePTFE.  P-value for section B = 0.041 

and section D = 0.045.

D.4 Discussion

The BVM has been developed to bridge the gap between in-vitro and in-vivo preclinical 

testing of intravascular devices.  To mimic a native artery, a polymer scaffold has been utilized 

and to recreate an endothelium, a monolayer of cells coats the lumen of the scaffold.  The 

**
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polymers used in the BVM are ePTFE and PGLA; both are biocompatible and have a consistent 

structure.  However, the scaffolds are composed of polymers and lack any biological 

components; which impedes with cellular adhesion properties. To improve the polymer-cell 

interface, protein coatings have been introduced to the polymer-cell interface.  As seen from this 

work, a decellularized coating can be used to provide a complex combination of tissue specific 

proteins to the polymer.  The addition of the decellularized coating was found to improve the 

sodding efficiency of the pressure sodding process, increase the number of cells on the lumen of 

the scaffold, and improve the viability of the cells which remained on the ePTFE.  Indicating, the 

addition of the decellularized aorta coating stands to improve the polymer-cell interface of the 

BVM model

The sodding efficiency was assessed using Typan Blue and counting the number of cells 

at specific time point throughout the culture.  The decellularized coating allowed more cells to be 

retained during the pressure sodding procedure as well as throughout the culture.  There was a 

two fold increase in the percentage of cell remaining on the scaffold after 3 days of culture.  The 

non-coated scaffold had approximately 38% of its original cells on the lumen; while the 

decellularized aorta coated scaffold retained approximately 75% of the cells.  This trend was 

confirmed using the standard counting method of BBI staining.  Rather than evaluating the 

percentage of cells lost during culture, the number of cells which remained on the lumen of the 

scaffolds was counted.  Again a significant increase in the number of cells was seen on the 

coated scaffold with approximately 37,000 cells/cm2 verses 26,000 cells/cm2 observed on the 

non-coated scaffold.  These results indicated the use of a decellularized coating on ePTFE 

scaffolds improves cellular adhesion.  

Additionally, a viability assay was developed to asses if the decellularized coating altered 

the amount of live and dead cells seen on the scaffold.  To create the decellularized coating, 
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pepsin, HCL, and acetic acid were used.  The use of these harsh chemicals may have negatively 

affected the polymer-cell interface, by leaving residual chemicals on the scaffold.  Any 

chemically residue would have a poor interaction with the cells, causing a decrease in cell 

viability.  In order to prevent this from occur, after the scaffold was coating, it was rinsed several 

times in sterile PBS to ensure only the proteins of the decellularized matrix remained adhered to 

the scaffold.  Live and dead staining was preformed of the cells which remained on the lumen of 

the scaffold after three days of culture.  The staining revealed there was a significant increase in 

the percentage of live cells on the decellularized coating.  The non-coated scaffold had 

approximately 43% viability, while the decellularized coating improved the viability to about 

65%.  

The previously discussed results are very promising however there are some limitations 

to the work.  This was a very short proof-of-principle work that should be expanded to 

investigate the repeatability of the procedure and results.  Additionally, this procedure should be 

modified to incorporate the use of PLGA scaffolds.  This experimentation intended to use PLGA 

scaffolds in addition to the ePTFE scaffolds; however the PLGA did not interact with the 

decellularized coating well.  As mentioned, the decellularized coating was created with the use of 

several harsh chemicals and the interaction with the PLGA cause the immediate dissolving of the 

scaffold.  Thus, the PLGA scaffold was not included in this experimentation.  However, the 

solution can be neutralized to attempt this coating experiment once more and to further 

investigate the utility of the decellularized coating.

These experiments have demonstrated the use of a decellularized aorta coating has the 

ability to improve cellular adhesion and viability on an ePTFE scaffold.  The tissue specific, 

complex combination of proteins, proteoglycans, and glycosaminoglycans found in the 

decellularized aorta coating has improved the polymer surface to encourage cellular adhesion.  
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The increased number of cells found on the lumen improves the development of a consistent 

monolayer of cells on the lumen of the scaffold, thus mimicking the native endothelium.  

Additionally, by enhancing the polymers ability to maintain more viable cells the ability to have 

a functional endothelium will be improved.  In conclusion, the use of a decellularized coating has 

the potential to vastly improve the polymer-cell interface of the scaffolds used in the BVM 

system. 
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