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Abstract This article derives a theory for estimating

Reynolds normal and shear stresses from PIV images with

single-pixel resolution. The main idea is the analysis of the

correlation function to identify the probability density

function from which the Reynolds stresses can be derived

in a 2-D regime. The work establishes a theoretical

framework including the influence of the particle image

diameter and the velocity gradients on the shape of the

correlation function. Synthetic data sets are used for

the validation of the proposed method. The application of

the evaluation method on two experimental data sets shows

that high resolution and accuracy are also obtained with

experimental data. The approach is very general and can

also be applied to correlation peaks that are obtained from

sum-of-correlation PIV evaluations.

1 Introduction

The analysis of PIV recordings with single-pixel resolution

or two-point ensemble correlation has been developed

during the last years in order to enhance the spatial reso-

lution and to increase the measurement accuracy of small

scale flow phenomena (Westerweel et al. 2004). In micro-

fluids, this approach was first applied under the assumption

of stationary flows. Later, it was extended for the analysis

of periodic (Billy et al. 2004) and fully turbulent flows

(Kähler et al. 2006), and the extension to stereoscopic

recordings was examined (Scholz and Kähler 2006). The

boundary layer measurements in Kähler et al. (2006), as

well as those performed by Bitter et al. (2009) using long-

range micro-PIV for the flow along a generic space

launcher model at supersonic Mach numbers, showed the

potential of the single-pixel approach. As this measurement

technique is increasingly applied in the turbulent flow

regime to resolve near-wall regions or thin shear layers in

separated flows, the following question arises: Can the

Reynolds normal and shear stresses be computed with

single-pixel resolution?

With conventional PIV evaluations, the stresses are

directly computed from an ensemble of velocity fields after

subtracting the mean field from each sample. These vector

fields are obtained from the spatial cross-correlation of

interrogation windows of each (single exposed) PIV image

pair. The location of the cross-correlation function’s

maximum corresponds to the mean displacement of the

particle images in the interrogation window. Thus, the

resolution of the Reynolds stresses is limited by the size of

the windows used for the cross-correlation. This means that

the computed values only represent an average over the

corresponding interrogation area and that strong spatial

changes, as the ones that occur in boundary and shear

layers or separated regions, are smeared out. Hence, the

finite interrogation window size acts as a low-pass filter.

Reducing the window size to enhance the spatial resolu-

tion leads to higher measurement noise and thus to an arti-

ficial amplification of Reynolds stresses. On top of that, the

number of spurious vectors increases (Raffel et al. 2007). A

good compromise between accuracy and resolution would be

a window size between 16 px 9 16 px and 32 px 9 32 px,

depending on the particle image’s size and density.

The two-point ensemble correlation can be used to

improve the spatial resolution without lowering the mea-

surement precision, but does not allow for computing an

ensemble of independent vector fields. Thus, statistical
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information about the flow cannot be extracted in the same

way as in standard PIV methods.

However, statistical variables can be extracted from the

shape of the correlation peak. Kähler and Scholz (2006)

suggested a method for estimating (symmetric) normally

distributed turbulence from the size of the correlation peak.

A fully optical approach was performed by Arnold

et al. (1986) by analyzing the visibility in speckle veloci-

metry. Both examples indicate that the probability density

function of the velocity can be used to extract the statistical

information about the variance of the flow.

This paper will show how to quantitatively estimate the

Reynolds normal and shear stresses with up to single-pixel

resolution. The article is divided into three main sections.

Section 2 discusses the relationship between the probability

density function and the correlation function in an analyti-

cal way. An analytical equation for the correlation function

is derived in order to determine the influence of velocity

gradients, the particle image diameter, and the shape of the

probability density function on the correlation function.

This is followed by a systematic investigation of synthetic

PIV recordings in Sect. 3, where the accuracy and the

applicability of the new method were studied. Finally, the

developed approach is tested on two experimental examples

to show the benefit of the increased spatial resolution.

2 Mathematical description

This work suggests a method for computing in-plane com-

ponents of the Reynolds stress tensor from the correlation

function. Since the correlation function can be computed for

each single-pixel of the PIV images using the two-point

ensemble correlation, the suggested method allows for the

estimation of the Reynolds stresses with single-pixel reso-

lution. For a sufficient ensemble of PIV image pairs, the

shape of a correlation peak is similar to the convolution of the

particle image and the probability density function of the

velocity even though it is broadened due to the correlation

procedure. Without stresses, this peak is narrow and has a

distinct maximum. In the case of Reynolds normal stresses,

the correlation peaks become broader and shear stresses lead

to an asymmetric shape. The connection between the shape

of the correlation peak and the existing Reynolds stresses is

discussed in this section.

The two-dimensional velocity field is described as

follows:

vðx; y; tÞ ¼ �vðx; yÞ þ v0ðx; y; tÞ

¼
�uðx; yÞ þ u0ðx; y; tÞ
�vðx; yÞ þ v0ðx; y; tÞ

� �
;

ð1Þ

where �v and v0 are the mean velocity and the corresponding

velocity fluctuation, respectively. The mean velocity can be

estimated with single-pixel resolution. However, there is

no direct access to the temporal development of the

velocity fluctuations but statistical values of the fluctua-

tions can be computed from their probability density

function.

The joint probability density function PDF(u, v, x, y)

among the two velocity components includes all occurring

velocities for a given point (x, y) over a certain time (or for

an ensemble of measurements) and allocates the related

probability. Hence, it is possible to compute the Reynolds

normal and shear stresses using the probability density

function of the velocity field given by:

u0ðx; yÞ2
D E

¼
Z

PDFðu; v; x; yÞ � u02dudv; ð2aÞ

v0ðx; yÞ2
D E

¼
Z

PDFðu; v; x; yÞ � v02dudv ð2bÞ

and

uðx; yÞ0 � vðx; yÞ0
� �

¼ vðx; yÞ0 � uðx; yÞ0
� �

¼
Z

PDFðu; v; x; yÞ � u0 � v0 dudv:
ð2cÞ

The integration limits are -? or ??, respectively.

Equations 2a–c must now be multiplied by the mass den-

sity in order to provide the actual Reynolds stresses. For

simplicity, the expected values of the fluctuation products

will be identified as Reynolds stresses in this paper.

Equations 2a–c are valid for any normalized PDF, hence

the challenge that remains lies in solving the integrals.

Furthermore, the most important task is to identify the

probability density function from the correlation peak.

Therefore, the shape of the correlation peak, as a function

of the PDF, will be analyzed in the following.

2.1 A general analytical expression of the correlation

function

In the following analysis, the variables for the position

vector and other quantities are used on both, the mea-

surement plane in physical space and the image plane

(camera sensor). Lower case letters (x, y, …) refer to

quantities on the measurement plane, and upper case letters

(X, Y, …) denote quantities on the image plane. The

position vectors on the two planes are directly related via

the magnification M of the imaging system and the pixel

size S of the camera sensor:

ðX; YÞ ¼ ðx; yÞ �M=S: ð3Þ

The velocity on the measurement plane is transferred into

the shift vector on the image plane:
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ðDX;DYÞ ¼ ðu; vÞ � Dt �M=S ð4Þ

Table 1 summarizes the most important variables used in

the theoretical discussion.

For an ensemble correlation with single-pixel resolution,

the correlation function C(n, w, X, Y) can be computed

from a pair of PIV images A(X, Y) and B(X, Y) as follows:

Cðn;w;X; YÞ ¼
X

n

An X; Yð Þ � �A X; Yð Þ½ �f

� Bn X þ n; Y þ wð Þ½ � �B X þ n; Y þ wð Þ�g=
rA X; Yð Þ � rB X þ n; Y þ wð Þf g ð5Þ

where the standard deviation is given by:

rA X; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

X
n

An X; Yð Þ � �A X; Yð Þ½ �2
s

ð5aÞ

and N and n are the total number of PIV image pairs and

the corresponding control variable. (X, Y) are discrete

coordinates of the pixel in question in both images, and

(n, w) are the coordinates on the correlation plane.

In order to analyze the shape of the correlation peak for

a fixed point (X, Y) in the image plane, Eq. 5 is converted

into an analytical expression.

A cross-correlation integral of the two images A and B

replaces the sum in Eq. 5. The discrete images An are

replaced by one continuous Gaussian peak representing the

particle image intensity distribution:

AnðX; YÞ ! AðX; YÞ ¼ exp �X2 þ Y2

D2
� 8

� �
: ð6Þ

The parameter D in Eq. 6 is the particle image diameter

at 1/e2 of the maximum intensity. Although the Gaussian

intensity profile is a good approximation (Born and Wolf

2000), the derivation can also be based on any other

shape, if necessary. However, finding an analytical

expression for the correlation function might become

more difficult.

The images Bn are also replaced by a single Gaussian

peak, but two things are different compared to An: first,

they are shifted due to the particle mean motion and sec-

ondly, they are convolved (denoted by *) with the proba-

bility density function PDF(X, Y) of the velocity to include

velocity fluctuations:

BnðX;YÞ!BðX�DX X;Yð Þ;Y�DY X;Yð ÞÞ� PDFðX;YÞ;
ð7Þ

with

BðX � DX X; Yð Þ; Y � DY X; Yð ÞÞ

¼ exp � X � DX X; Yð Þð Þ2þ Y � DY X; Yð Þð Þ2

D2
� 8

 !
:

ð7aÞ

By using Eqs. 6 and 7, the correlation function from

Eq. 5 can be transformed into an analytical expression:

Cðn;w;X; YÞ�A X; Yð ÞH B X; Yð Þ � PDF X; Yð Þ½ �

¼
Z

A X � n; Y � wð Þ

�
Z

B l� DXðl; gÞ; g� DYðl; gÞð Þ
�

�PDF X � l; Y � gð Þdldg

�
dXdY ; ð8Þ

where H denotes the cross-correlation and * the convolu-

tion. In Eq. 8, the sum of Eq. 5 was replaced by an integral.

This ensures that all possible locations of the particle

image, with respect to the point of interest, were considered

and simulates a perfectly uniform particle image distribu-

tion. l and g are the control variables for the convolution

integral. The coordinates (X, Y) are on the image plane, and

(n, w) correspond to the correlation plane. The integration

limits are -? or ??, respectively.

Generally, it is only required to compute the theoretical

equation for the correlation function and apply this as a fit-

Table 1 Frequently used variables and their meaning

Quantity Symbol Unit

Coordinates on measurement plane x m

y m

Coordinates on image plane X px

Y px

Velocity components on measurement plane u m/s

v m/s

Coordinates on correlation plane n px

w px

Shift vector components DX px

DY px

Parameters of PDF on measurement plane px m/s

py m/s

a rad

Parameters of PDF on image plane PX px

PY px

a rad

Parameter of correlation peak CX px

CY px

u rad

Particle image diameter D px

Magnification M m/m

Pixel size S m/px
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function to the experimental data in order to identify the

probability density function.

2.2 Reynolds stresses for a specified PDF

Equation 8 gives a universal expression for a correlation

function. However, in order to solve the integral, it is

necessary to specify the PDF. The following derivation is

made under the assumption that the probability density

function PDF(X, Y) is Gaussian, which is a very good

approximation in general. The Gaussian distribution has an

elliptical cross-section (major axis PX, minor axis PY) and

is rotated by the angle a:

PDFðX;YÞ¼ 8

p �PX �PY

�exp � cosa � X�DXð Þ�sina � Y�DYð Þ
PX

� �2

�8
"

� sina � X�DXð Þþcosa � Y�DYð Þ
PY

� �2

�8
#
:

ð9Þ

The factor in front of the exponential term in Eq. 9 ensures

that the integral of the PDF over all velocities is always

equal one. The shape of the probability density function

can generally change for each point of the image plane,

hence PX, PY, and a are functions of the position vector

(X, Y). The image plane parameters PX and PY are derived

from the equivalent quantities in the measurement plane as

follows:

ðPX ;PYÞ ¼ ðpx; pyÞ � Dt �M=S: ð10Þ

Solving Eq. 8 for the defined particle images (Eq. 6) and

the specified PDF from Eq. 9 gives an analytical expression

for the correlation function:

Cðn;w;X;YÞ�exp � cosu� n�DXð Þ�sinu� w�DYð Þ
CX

� �2

�8
"

� sinu� n�DXð Þþcosu� w�DYð Þ
CY

� �2

�8
#
:

ð11Þ

The parameters CX, CY, and u in Eq. 11 are functions of the

position vector (X, Y). For a Gaussian PDF, the correlation

function is also Gaussian. The elliptical cross-section is

enlarged due to the correlation procedure, but it has the

same orientation as the PDF for the case without velocity

gradients:

u ¼ a: ð12Þ

CX and CY depend on the parameters PX, PY of the PDF as

follows:

CX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

X þ 2 � D2

q
; ð13aÞ

CY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

Y þ 2 � D2

q
ð13bÞ

where D is the particle image diameter. Equations 11–13b

are only exact solutions for the case without velocity

gradients. The velocity is assumed to be constant in the

surroundings of the point of interest.

Now that the PDF is estimated from the correlation

peak, the Reynolds stresses can be calculated from Eqs.

2a–c using Eqs. 9 and 10:

u02
� �

¼ 1

16
� cos2a � p2

x þ sin2a � p2
y

	 

; ð14aÞ

v02
� �

¼ 1

16
� sin2a � p2

x þ cos2a � p2
y

	 

; ð14bÞ

and

u0 � v0h i ¼ v0 � u0h i ¼ 1

16
� cos a � sin a p2

y � p2
x

	 

: ð14cÞ

In the case of isotropic stresses, the minor and major

axes are equal (px = py) and the shear stress vanishes along

with the dependence on the angle a of all stresses.

The Reynolds stresses on the image plane are directly

related to the stresses on the measurement plane via the

time Dt, the magnification M, and the pixel size S:

U02
� �

; V 02
� �

; U0 � V 0h i
� �

¼ u02
� �

; v02
� �

; u0 � v0h i
� �

� Dt �M
S

� �2

: ð15Þ

2.3 Effect of velocity gradients

Keane and Adrian reported an analysis of correlation peaks

and their dependency on velocity gradients in conventional

PIV (Keane and Adrian 1990). They found that for a shear

layer the amplitude decreases with increasing velocity

gradients and that the diameter is broadened (by the same

factor) in the direction of shear. This section investigates

the shape of the correlation peak computed with two-point

ensemble correlation in a similar manner.

In order to analyze the influence of the velocity gradient

on the shape of the correlation function, it is essential to

find an expression for the velocity in the area surrounding

the point of interest.

Since in many cases, the mean flow has a preferred

orientation and strong gradients occur only in the perpen-

dicular direction, it seems to be a good approach to develop

the velocity in a Taylor series and neglect all higher terms

except the first derivative of u with respect to y. For the

shift vector on the image plane, this procedure results in the

following expression:
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DXðX0; Y0Þ �
DXðX0; Y0Þ þ Y � oDXðX;YÞ

oY





ðX0;Y0Þ

DYðX0; Y0Þ

0
@

1
A: ð16Þ

where (X0,Y0) is the point of interest on the image plane for

which the correlation function has to be computed.

Taking this velocity gradient into account leads to a

rather complex solution of Eq. 8:

Cðn;w;X; YÞ� expf½�32 � ðP2
X þ P2

YÞ
� fw2 þ n2 þ ð1þ DX2

YÞ � DY2

þ 2 � DX � ðDXY � DY � nÞ
� 2 � DY � ðwþ DXY � nÞ þ DX2g
þ 2 � D2 � f2 � n2 þ 2 � DX2

þ ð2þ DX2
YÞ � w

2 þ ð2þ DX2
YÞ � DY2

þ 2 � DX � ½DXY � ðwþ DYÞ � 2 � n�
� 2 � DY � ð2 � wþ DXY � nÞ
� 2 � DXY � n � wg
þ ðPX � PYÞ � ðPX þ PYÞ
� f½w� nþ ðDXY � 1Þ � DY þ DX�
� ½nþ w� ðDXY þ 1Þ � DY � DX�
� cosð2 � aÞ þ 2 � ðDXY � DY þ DX � nÞ
� ðDY � wÞ � sinð2 � aÞg�=
f2 � D2 � ½D2 � ð16þ DX2

YÞ þ ðP2
X þ P2

YÞ
� ð4þ DX2

YÞ� þ 6 � D4 � DX2
Y þ 8 � P2

X � P2
Y

þ 2 � D2 � ðP2
X þ P2

YÞ � ð4þ DX2
YÞ

� 4 � D2 � ðPX � PYÞ � ðPX þ PYÞ � DXY

� ðDXY � Cosð2 � aÞ � 2 � sinð2 � aÞÞgg:
ð17Þ

The term DXY in Eq. 17 identifies the velocity gradient

(or more precisely the shift vector gradient)

oDX=oY:PX ;PY , and a are the parameters of the

probability density function on the image plane from Eq. 9.

Again, Eq. 17 is Gaussian with an elliptical cross-sec-

tion. However, the minor and major axis and the angle of

rotation can not be extracted from the equation as easily as

before.

Figure 1 shows the correlation function from Eq. 17 for

different conditions. The PDF was non-isotropic

(PX = 5 px, PY = 1 px) in all cases and the angle of ori-

entation was a = 20�. A particle image diameter D of 1, 3,

and 5 px was used for the left, middle, and right column,

respectively.

No gradient oDX=oY was applied for the middle row.

Here, the resulting correlation peaks look similar to the

applied PDF (cross-section shown as red solid line), and

Eqs. 13a and b are sufficient to determine the parameters of

the PDF.

The upper and lower rows in Fig. 1 show the influ-

ence of an additional velocity gradient oDX=oY . Here,

the correlation peaks are stretched in the direction of PX

according to the analysis of Keane and Adrian (1990)

but, in addition, they are compressed in the direction of

PY and rotated around the center due to the velocity

gradient. The rotation direction depends on the sign of

the velocity gradient.

Consequently, it is important to note that the shape of

the PDF is not directly related to the shape of the corre-

lation function in the case of strong velocity gradients.

Therefore, it is essential to include the information about

the surrounding velocity field in order to compute the

Reynolds stresses for a given point (Kähler and Scholz

2006).

Using Eqs. 13a and b for the reconstruction of the PDF

and the estimation of the Reynolds stresses leads to a

systematic error in the presence of velocity gradients. As a

result of this, the normal stress in the X-direction is over-

estimated and the Reynolds shear stress is under or over-

estimated, depending on the orientation of the PDF and the

sign of the velocity gradient.

Additionally, Fig. 1 shows that the influence of velocity

gradients on the shape of the correlation function is

strongly dependent on the size of the particle images. The

deformation gets stronger with increasing particle image

diameter D. The compensation of the velocity gradient

effects will be discussed in Sect. 3.5.

The broadening of the correlation peaks under the

influence of strong velocity gradients is in qualitative

agreement with the considerations for conventional PIV

made by Keane and Adrian (1990) as well as Kähler and

Scholz (2006).

3 Analysis of synthetic PIV images

In order to determine the accuracy of the method presented

previously, synthetic PIV images with different probability

density functions were generated and the estimated Rey-

nolds stresses were compared to the simulated values. This

allows for a quantitative accuracy assessment.

The calculation procedure is described in Sect. 3.1.

Section 3.2 deals with isotropic stresses and investigates

the effect of several parameters on the accuracy of the

estimated turbulence. Section 3.3 focuses on the more

general case of homogeneous non-isotropic Reynolds

stresses. The ability to estimate shear stresses as well as the

demonstration of the presented method’s spatial resolution

are analyzed in Sect. 3.4. The last section of this chapter

studies velocity gradient effects and their compensation

(Sect. 3.5).
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3.1 Calculation procedure

All synthetic PIV images were generated and analyzed

using MatLab functions. Unless otherwise stated, each

single test case consists of 20,000 PIV image pairs. The

size of the images is such that the correlation function was

computed for 20 px 9 20 px (a wide margin of several

pixel is required for the calculation process).

A maximum of 20,000 counts was applied for the

intensity of the particle images (Gaussian intensity distri-

bution). Each pixel’s gray value is computed from the

integral of the intensity over the corresponding area, with

respect to the finite pixel size of the camera sensor, instead

of simply transferring the analytical point-wise values to

the pixel. This procedure causes a difference between the

applied particle image diameter Dsimulated and the resulting

diameter computed with a Gaussian fit-function Destimated.

Additionally, a normally distributed noise with a half-width

of 200 counts was added to each individual image, which

results in a signal-to-noise ratio of 100.

The fraction of illuminated pixels was kept constant at

10% for all generated images, meaning that 10% of all

pixels had an intensity of more than 20,000 counts/

e2 & 2,700 counts. Hence, the number of particle images

changes with the particle image diameter. The average

number of particle images in a 20 px 9 20 px image is,

for example, 5.6 for a particle image diameter of

D = 3 px.

Fig. 1 Contour plot of the

analytical correlation function

for different velocity gradients

oDX=oY ([1, 0, -1] px/px from

top to bottom) and different

particle image diameters D
( 1; 3; 5½ � px, from left to right).
The size and orientation of the

probability density function is

indicated by the solid red line,

the corresponding parameters

PX, PY, and a are 5, 1 px, and

20�, respectively
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For each particle in each first PIV image, the position is

randomly chosen. The position in the second image chan-

ged with respect to the first one due to the velocity and its

fluctuations. The vertical component of the velocity was

zero, while a constant gradient was used for the horizontal

component ðoDX=oY ¼ 0:05Þ. The velocity fluctuations

were random numbers with a Gaussian distribution. How-

ever, the amplitude of the fluctuations was controlled by

the parameters PX, PY, and a of the PDF. The theoretical

Reynolds stresses were computed from the applied

fluctuations.

Upon the generation of the synthetic PIV images, the

correlation function for each pixel is computed using Eq. 5.

In order to determine the particle image diameter D, the

autocorrelation function is also required (Kähler and

Scholz 2006). The latter can be computed by using Eq. 5

and simply exchanging image B with image A. For better

accuracy, D is also estimated from the autocorrelation of

the B images. In theory, the autocorrelation peak of a

Gaussian function is also a Gaussian function, but the

width is increased by a factor of
ffiffiffi
2
p

(Raffel et al. 2007).

Hence, fitting the autocorrelation peak gives an estimation

of the particle image diameter. For experimental PIV

recordings, it was found that the particle images can be

stretched in case of supersonic or hypersonic flow. Hence,

the autocorrelation peaks should be compared to a Gauss-

ian with elliptical cross-section.

Figure 2 shows the comparison between the input value

and the estimated diameter. The proportionality only holds

for particle images bigger than &3 px, whereas for smaller

values the particle image size is estimated to be too large. The

deviation can be corrected using the fit-function in Fig. 2.

A Gaussian fit-function with the same structure as

Eq. 11 was applied to the correlation peaks in the next step.

With this, the parameters CX, CY, and u of each correlation

function were determined. The estimation of the correla-

tion peak’s diameter is also subject to a systematic error, as

shown in Fig. 3 for the major axis CX.

Both particle image diameter and correlation peak

diameter were corrected by using the fit-function shown in

Figs. 2 and 3, respectively.

The parameters PX and PY of the PDF were computed by

using Eqs. 13a and b, and finally the Reynolds stresses

were determined from Eqs. 14a–c. The compensation of

velocity gradient effects is discussed in detail in Sect. 3.5.

3.2 Isotropic stresses

In this section, PIV images with isotropic stress distribution

are evaluated. Isotropic stress means that the parameters PX

and PY are equal and Eq. 9 becomes:

PDFðX; Y ;PX ¼ PYÞ

¼ 8

p � P2
X

exp � X � DXð Þ2þ Y � DYð Þ2

P2
X

� 8
" #

: ð18Þ

In this case, the parameters CX and CY of the fit-function

(Eq. 11) should also be equal. Thus, a symmetric fit-

function can be applied.

A turbulent flow with isotropic stresses has a rotation-

ally symmetric PDF and is thus free of shear stresses. In a

laminar flow, the Brownian motion of the tracer particles

causes a broadening of the correlation peak. This can be

treated as isotropic stresses to determine the temperature
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within the flow in a non-intrusive way. This was demon-

strated by Hohreiter et al. (2002) and Chamarthy

et al. (2009) for correlation peaks computed from interro-

gation windows with standard PIV evaluation.

First, the influence of the particle image size on the

accuracy of the determination of the correlation peak’s size

and position was investigated. Figure 4 shows the RMS-

uncertainty of the estimated correlation peak diameter CX

with respect to the particle image diameter D for four

different values of PX. Each point in Figs. 4, 5 and 6 rep-

resents the standard deviation of 20 9 20 correlation peaks

computed from 20,000 synthetic PIV image pairs using

Eq. 5. For the generation of the synthetic PIV images, the

applied probability density function was constant for all

pixel in the image plane.

All four curves in Fig. 4 show a local minimum for a

certain particle image diameter, depending on the ampli-

tude of the velocity fluctuations. The parameter PX, in real

measurements, not only depends on the turbulence in the

flow but also on the time Dt between the acquisition of the

two PIV images, the magnification M, and the pixel size

S and can thus be partially controlled by these parameters.

As an example, the investigation of the wake flow of a

blunt axis-symmetric space launcher model in Bitter

et al. (2010) resulted in velocity fluctuations with a maxi-

mum of PX = 4.5 px in the shear layer of the wake at

Ma = 0.7, while the maximum value in the turbulent

boundary layer was around PX = 1.5 px.

Figure 4 shows a minimum error for a particle image

diameter of D & 1.8 px without velocity fluctuations. This

minimum shifts to larger values of D for increasing fluc-

tuations. Additionally, the minimum RMS-uncertainty

increases. The fact that the random error increases con-

sistently for larger particle images can mainly be explained

by the decreasing number of particle images (the fraction

of illuminated pixels was kept constant at 10%).

The maximum position of the correlation peak repre-

sents the mean velocity and is estimated by using a three-

point Gauss-fit. The accuracy of the estimated velocity is

shown in Fig. 5. Particle images smaller than D & 1 px

are not suitable for accurate velocity measurements, they

cause so-called peak locking. This is mostly visible by

using a histogram plot as displayed first in Kähler (1997).

For particle images larger than D & 2 px, the RMS-

uncertainty remains nearly constant and even drops

slightly. This differs from the results presented by Raffel

et al. (2007) for single-pass window correlation, where a

global minimum error for D & 1.8 px was found. Overall,
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the minimum error of about 0.01 px is comparable to that

obtained by using standard PIV methods.

The optimum particle image diameter seems to be

around D = 3 px. At this size, the uncertainty for the

estimation of correlation peak diameter and its maximum

position (or mean velocity) are fairly low and the particle

image size can be well estimated.

The parameter PX of the PDF can be determined from

the correlation peak size and the particle image diameter by

using Eq. 13a, and the normal stresses are computed from

Eqs. 14a and b. Based on the two measured velocity

components, the turbulence level Tu is used to evaluate the

computed stresses. It is defined as follows:

Tu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U02h i þ V 02h i

2

r
: ð19Þ

Furthermore, with Eqs. 14a and b, this can be reduced to:

Tu ¼ Px

4
ð20Þ

in the case of isotropic stresses.

Figure 6 shows the estimated turbulence level with

respect to the simulated turbulence level for three different

particle image diameters. For small fluctuations, the corre-

lation and autocorrelation peaks have almost the same

diameter. Since the PDF’s diameter is computed from their

difference (Eqs. 13a, b), its error grows considerably in this

case. However, for the precise determination of small Rey-

nolds stresses, the time Dt between the two PIV images, and

thus the correlation peak size, can be increased. For a tur-

bulence level larger than Tu [ 0.2 px, the systematic error

becomes negligible. For the real example of the round jet in

Sect. 4.1, the turbulence level was between Tu = 0.1 px

(undisturbed flow) and Tu = 1.5 px (in the shear layer). For

the wake flow in Sect. 4.2, it was between Tu = 0.25 px (in

the boundary layer) and Tu = 1.3 px (in the shear layer).

The accuracy of the estimated turbulence level is not

only dependent on the particle image diameter and the

turbulence level itself but also on the number of image

pairs. Figures 7 and 8 illustrate how the number of PIV

images N affects the estimated turbulence and mean

velocity, respectively. The fraction of illuminated pixels

was still 10%. As expected, the error decreases with an

increasing number of images. For the tested cases, 10,000

image pairs appear to be a sufficient number.

3.3 Homogeneous flow with non-isotropic stresses

So far, only synthetic PIV images with symmetric proba-

bility density functions were analyzed. In the following, the

more general approach from Eq. 9 will be applied. Thus,

the normal stresses hU02i and hV02i are not necessarily

equal and the shear stress hU0�V0i can differ from zero.

However, the simulated stresses are still constant over the

whole image plane.

Figure 9 shows the RMS-uncertainty for the estimated

Reynolds shear stress with respect to the number of image

pairs N. The parameters PX, PY of the PDF were fixed at 2 and

0.5 px, respectively; while four different angles a were tested.

The RMS-uncertainty decreases exponentially over N.

Figures 10 and 11 show the comparison between the

applied and the estimated Reynolds stresses for different

shapes of the PDF. In Fig. 10, the PDF0 s cross-section has

a constant size but is rotated by the angle a. The stresses for

a constant angle of rotation and increasing ratio of PY/PX
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are shown in Fig. 11. Each point was computed from

20,000 PIV image pairs with constant stress; 20 9 20

correlation peaks were analyzed. The particle image

diameter was D = 3 px. The error-bars correspond to the

standard deviation of the stresses for each 400 correlation

peaks.

Overall, the estimated mean values for the stresses are in

good agreement with the simulated ones. The maximum

RMS-error is 0.03 px2. Further tests with different proba-

bility density functions showed similar results.

According to the previous analysis, the developed

method is suitable for estimating Reynolds stresses, in

particular shear stresses. Although the stresses are com-

puted for each single-pixel, only mean values over 400 px

are plotted above. Hence, it cannot be called real single-

pixel resolution in this case. However, results with true

single-pixel resolution are presented in the next two

sections.

3.4 Shear flow with non-isotropic stresses

This section demonstrates the enhanced spatial resolution

for an example of non-homogeneous Reynolds stresses.

Therefore, 100,000 synthetic PIV image pairs, 256 px 9

256 px in size, were generated with a Siemens-star shaped

stress distribution.

The mean velocity was kept constant about the whole

image area. A particle image diameter of D = 3 px was

applied, and the fraction of illuminated area was set to

2.5%. Hence, on average 0.9 particle images are within a

16 px 9 16 px window. This corresponds to a relatively

low seeding density.

The velocity fluctuations were totally uncorrelated,

meaning that even two closely spaced particle images can

move in different directions. This simulates small scale

turbulent structures.

0 π/4 π/2 3/4 π π
−0.2

0

0.2

0.4

α in rad

es
tim

at
ed

 s
tr

es
s 

in
 p

x2

〈U′2〉
〈V′2〉
〈U′⋅V′〉

Fig. 10 Estimated Reynolds stresses for 20,000 PIV images

(20 px 9 20 px). The probability density function had a fixed axis

ratio (PX = 2.0 px, Py = 0.5 px) and a varying angle of rotation

(a ¼ 0. . .p). A cross-section through the correlation function is

sketched in the top part

0 1 2 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

P
Y

 in px

es
tim

at
ed

 s
tr

es
s 

in
 p

x2

〈U′2〉
〈V′2〉
〈U′⋅V′〉

Fig. 11 Estimated Reynolds stresses for 20,000 PIV images

(20 px 9 20 px). The probability density function had a fixed angle

of rotation (a = p/8) and a fixed major axis (PX = 0.5 px), the minor

axis PY varied from 0 to 2 px. A cross-section through the correlation

function is sketched in the top part

10 100 1,000 10,000 100,000
0.001

0.01

0.1

1

10

N

R
M

S−
un

ce
rt

ai
nt

y 
of

 〈U
′⋅V

′〉 
in

 p
x2

α = 0
α = π/8
α = π/4
α = π/2

Fig. 9 Influence of the number of synthetic PIV images on the

accuracy of the computed velocity. The particle image diameter was

D = 3 px

994 Exp Fluids (2012) 52:985–1002

123



The following parameters PX, PY, and a of the PDF were

applied:

PX ¼ 0:5 pxþ 3 px � exp �8 � X � 128 px

Y � 128 pxj j � 1:25

� �2
" #

þ 1 px � exp �8 � Y � 128 px

X � 128 pxj j � 0:75

� �2
" #

; ð21Þ

PY ¼ 0:5 px ð22Þ

and

a ¼ sign Y � 128 pxð Þ � arctan
X � 128 pxð Þ � 2p

Y � 128 pxj j � 1:25
þ p

2

� �
:

ð23Þ

Figure 12 shows the computed results for the turbulence

level Tu as defined in Eq. 19 and the Reynolds shear stress

hU0�V0i in the lower and upper row, respectively. The

simulated values are plotted in the left column, while the

estimations using ensemble correlation with single-pixel

resolution and window correlation are shown in the middle

and right columns, respectively.

Although the single-pixel results for the turbulence level

and shear stress in the middle column of Fig. 12 are

somewhat noisy, it is clearly shown that small scale flow

phenomena can be resolved. The estimated values are

consistent with the simulated ones in the single-pixel

approach case.

On the other hand, the values computed with window

correlation approach (right column in Fig. 12) do not show

such good spatial resolution and are not able to resolve

small scale structures. Additionally, the stresses computed

with the window correlation method are significantly

smaller than the simulated values. This is due to the fact

that the information is averaged over the window size.

Figures 13 and 14 illustrate how the correlation window

size influences the magnitude of the estimated stresses.

Furthermore, for the window size of 32 px 9 32 px and

16 px 9 16 px, the absolute values are always too small,

and for 8 px 9 8 px windows, the number of spurious

vectors increases significantly, which introduces artificial

stresses. The maximum deviation between simulated tur-

bulence level and estimation using ensemble correlation is

only 0.10 px for the cross-section at y = 50 px, as shown

in Fig. 13, whereas it is 0.32 px in the case of

16 px 9 16 px window correlation. For the Reynolds shear

stress, the maximum deviations in Fig. 14 are px and

Fig. 12 Turbulence level (top)

and Reynolds shear stress

(bottom) for a synthetic test case

of 100,000 PIV recordings. The

simulated values are shown in

the left column and the

computed results using the

single-pixel approach and

standard window correlation

techniques are illustrated in the

middle and right column,

respectively
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Fig. 13 Turbulence level for a cross-section at y = 50 px of the data

set from Fig. 12. The black solid line indicates the simulated

turbulence level
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0.25 px for the ensemble correlation and the 16 px 9

16 px window correlation, respectively.

The evaluated synthetic test case shows that window

correlation-based PIV evaluation cannot resolve small

turbulent structures; only turbulent structures larger than

the interrogation window size contribute to the estimated

stresses.

However, the ensemble correlation-based method is, in

principle, capable to detect any small turbulent structures.

It does not average velocity fluctuations over a certain area,

not even over the single-pixel, and all fluctuations are

stored within the correlation peak. Also, turbulent struc-

tures smaller than one pixel contribute to the broadening of

the correlation peak even though the computed stresses

correspond to the mean values over the area of one pixel.

3.5 Compensation of velocity gradient effects

In Sect. 2.3 (Fig. 1), the deformation of the correlation

peak due to a gradient in the velocity field was demon-

strated. This effect is quantitatively analyzed in this sec-

tion, for which PIV images with homogeneous stresses

were generated. The parameters PX, PY, and a of the PDF

were chosen to be 2, 0.5 px, and 0�, respectively. The

velocity gradient oDX=oY varied from -1 to ?1 px/px.

Figures 15, 16, and 17 show the computed normal

stresses and shear stresses. Three different particle image

diameters were tested. The figures show a strong bias error

that depends on the particle image size and the velocity

gradient. Only the normal stress in the Y-direction is not

effected by the velocity gradient.

The strong bias error is caused by the deformation of

the correlation peaks in the case of velocity gradients.

Figure 18 shows the correlation peaks for the first, last, and

middle points of the data set from Figs. 15, 16, and 17 for

D = 5 px. These peaks are computed by using Eq. 5 and

are in qualitative agreement with the analytical functions in

Fig. 1. The correlation peaks are stretched in the direction

of the flow and compressed perpendicular to it. Addition-

ally, a positive velocity gradient oDX=oY rotates the cor-

relation peak in the counter clockwise direction and vice

versa.

Figures 15, 17, and 18 clearly show that the simple

relations from 13a and b are not sufficient if strong velocity

gradients are present

A detailed inspection of Eq. 17 allows for a correction of

the Reynolds stresses with respect to the velocity gradient

oDX=oY:
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U02
� �

corrected
¼ U02
� �

gradient
�D2

16
� oDX

oY

� �2

; ð24Þ

V 02
� �

corrected
¼ V 02
� �

gradient
�D2

16
� oDY

oX

� �2

ð25Þ

and

U0 �V 0h icorrected¼ U0 �V 0h igradient�
D2

16
� oDX

oY
þoDY

oX

� �
: ð26Þ

For the derivation of Eqs. 24, 25, and 26, the analytical

correlation peak from Eq. 17 was compared to a Gaussian

peak with elliptical cross-section like the one used in

Eq. 11. In this way, it was possible to identify the change

of the parameters CX, CY, and a with respect to the velocity

gradient oDX=oY and hence to correct the Reynolds

stresses. Additionally, the influence of the velocity gradient

oDY=oX was investigated: both gradient effects can be

corrected independently.

In order to verify Eqs. 24–26, 20,000 synthetic PIV

images with a size of 256 px 9 256 px and varying

velocity gradients were generated and evaluated. The

particle image diameter was D = 3 px, and the parameters

PX, PY, and a were 2, 2 px, and 0�, respectively. Isotropic

Reynolds stresses were applied; thus, the shear stress

should be zero.

Figure 19 shows the distribution of the horizontal

velocity, the Reynolds shear stress influenced by the

velocity gradient hU0�V0igradient and the corrected shear

stress hU0�V0icorrected computed with Eq. 26. In the right

column of Fig. 19, the projection of the data points on the

Y-axis is shown together with the simulated values (red

solid line). A sinusoidal velocity profile with increasing

amplitude from top to bottom was generated (Fig. 19a).

Thus, the velocity gradient also increased and the Reynolds

shear stress seemed to rise with it (Fig. 19b).

Note, however, that the estimation of the mean velocity

is not affected. Thus, it is possible to determine the velocity

gradient from the mean velocity field and to correct the
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Fig. 17 Reynolds shear stress under the influence of the velocity

gradient oDX=oY

Fig. 18 Computed correlation peak for each 20,000 synthetic PIV

image pairs with different velocity gradients oDX=oY: A particle

image diameter of D = 5 px was applied. The parameters PX, PY, and

a of the PDF were 2, 0.5 px, and 0�, respectively. The solid lines
indicate the size and orientation of the fitted Gaussian peak

Fig. 19 Influence of the velocity gradient oDX=oY on the Reynolds

shear stress for a synthetic shear flow with varying gradient. 20,000

synthetic PIV images with isotropic stresses were analyzed. a
horizontal velocity, b uncorrected Reynolds shear stress, c corrected

Reynolds shear stress
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Reynolds stresses. A correction, using Eq. 26, of the shear

stress is shown in Fig. 19c. The remaining standard devi-

ation of the corrected shear stress hU0�V0icorrected is only

0.045 px2 (for the uncorrected stress it was 0.7 px2). An

other test case with both gradients oDX=oY and oDY=oX

(not presented in this work) confirmed that these can be

compensated independently.

In conclusion, it can be stated that the estimation of the

Reynolds stresses is strongly influenced by the velocity

gradients oDX=oY and oDY=oX: It was found that the

computed values can be categorized between real and

artificial stresses. The latter depend on the particle image

diameter squared, for all in-plane Reynolds stress compo-

nents. The analytical results are in good agreement with the

computed values from the synthetic PIV recordings.

It should be emphasized again that only the first deriv-

ative of u with respect to y was considered for the deri-

vation of the correlation function (see Eq. 16). However, a

higher order expansion might lead to even better results.

4 Analysis of real PIV images

So far, only synthetic PIV images were analyzed. This

section presents computed Reynolds stresses for real PIV

recordings using the method discussed previously. Section

4.1 focuses on a round jet flow in water, and Sect. 4.2

presents results of a space launcher model’s wake in air at a

transonic Mach number. Only the shear stresses are pre-

sented in this report, since these are usually of major

interest as long as no flow separation is studied in detail.

Nevertheless, the normal stresses require almost no addi-

tional computing time and can easily be extracted for the

complete description.

4.1 Water jet flow

The first experimental example analyzes a round jet flow in

water at a Reynolds number of Red & 26,000 based on the

nozzle diameter which was Ød = 2.4 mm. The pipe had an

inner diameter of approximately 10 mm and was connected

to a diaphragm pump. The setup is illustrated in Fig. 20.

The near field of the jet was selected, as the resolution of

the strong gradient at the outlet of the nozzle is very

difficult.

A high repetition rate CMOS camera (Phantom V12 by

Vision Research Inc.) with a Zeiss Makro-PlanarT* f2/

100 objective lens plus a 2 9 teleconverter (Kenko

2 9 Pro 300) was used to observe the jet. The working

distance was approximately 0.5 m, which led to an optical

magnification of M = 0.73 and a scaling factor of 27.5 lm/

px. Twenty-five thousand single-exposed PIV image pairs

with a size of 384 px 9 256 px were captured at a fre-

quency of 250 Hz, while the interframing time was set to

Dt ¼ 20 ls. The exposure time of the camera was set to

1.8 ls. A continuous-wave laser (Millennia by Spectra-

Physics) with 10W optical power and a wave length of

532 nm was used to form a light sheet of approximately

300 lm in thickness. Hollow class spheres with a diameter

of 10 lm were used as tracer particle (by Dantec

Dynamics).

The analysis of the PIV recordings revealed that the

particle image diameter on the image plane was around

D & 1.9 px, and the particle density was such that

approximately 1% of the images was illuminated, this

corresponds to about 1.3 particle images in an area of

Fig. 20 Sketch of the axis-symmetric pipe exit for the jet flow

analysis. The laser light sheet and the field of view (FOV) for PIV are

illustrated. Numerical values are given in mm

Fig. 21 Reynolds shear stress distribution and velocity vectors for a

round water jet at Re = 22,000 computed with single-pixel resolution

(bottom) and for 16 px 9 16 px interrogation windows (top) from

25,000 PIV recordings. a 16 px 9 16 px window correlation: every

4th vector in X-direction and each vector in Y-direction is shown.

b Ensemble correlation: every 32nd vector in X-direction and every

2nd vector in Y-direction is shown
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16 px 9 16 px. The maximum velocity of the jet was

determined to be 9.77 m/s corresponding to a shift vector

of 7.1 px.

Figure 21 shows a comparison of the Reynolds shear

stress distribution directly behind the nozzle, between a

window correlation method using a standard software

(Davis by LaVision GmbH) and the developed single-pixel

ensemble correlation approach.

A multi-pass algorithm with decreasing window size

(from 32 px 9 32 px to 16 px 9 16 px with 50% overlap)

and a Gaussian window weighting was applied for the

window correlation method. Thus, a total of 252 indepen-

dent vectors could be computed for 25,000 vector fields

leading to 252 independent data points for the Reynolds

shear stress distribution, computed from this ensemble of

vector fields (Fig. 21a).

On the other hand, for the single-pixel approach, 59,400

correlation peaks were computed leading to 59,400 inde-

pendent Reynolds shear stress data points (Fig. 21b). A

locally active filter was used to replace single outliers by

the median value of the surroundings.

The comparison between window correlation and

ensemble correlation shows a similar distribution: a shear

layer with positive shear stress in the upper part and one

with negative shear stress in the lower part. Both shear

layers grow in thickness with propagation, while the

broadening is proportional to the distance from the nozzle.

Although, this measurements were not performed in the

self-preserving region, this results are in agreement with

the analysis on the self-preserving region of a round jet

made by of Wygnanski and Fiedler (1969).

Regarding the comparison in Fig. 21, a significantly

better spatial resolution was achieved with the developed

single-pixel method. Furthermore, it is evident that the

absolute values of the shear stresses are considerably

higher in the case of single-pixel evaluation. Referring to

the example of synthetic PIV images from Fig. 12, these

values are more reliable than those obtained from window

correlation. The single-pixel results are neither spatially

low-pass filtered by the correlation window size, nor do

they suffer from error propagation during the calculation of

Reynolds stresses from individual vector fields.

Additionally, the velocity vectors in Fig. 21 clearly

show that only the single-pixel approach is capable of

resolving the very high velocity gradients right behind the

nozzle exit. The window correlation method only computes

mean values averaged over the window size.

A cross-section through the shear stress distribution at

X = 150 px is shown in Fig. 22 for the single-pixel

approach and for window correlation-based evaluation

using three different window sizes. With window correla-

tion, only the stresses generated by turbulent structures

larger than the window size are detected, because each

vector represents only the mean velocity of the interroga-

tion window. That is why the absolute values of the stresses

are underestimated.

4.2 Space launcher model wake flow

The second experimental example analyzes the wake flow

of a blunt axis-symmetric space launcher model as shown

in Fig. 23. The configuration consists of a 36� cone with a

spherical nose of R = 5 mm, a cylindrical part of

164.3 mm in length and a diameter of ØD = 54 mm. A

rear sting (Ød = 21.5 mm) in the base of the cylinder was

used for mounting the model in the test section of the wind

tunnel. Detailed information about the measurement setup

and the image preprocessing, as well as further results, can

be found in Bitter et al. (2010).

The analyzed data set was acquired at a Mach number of

Ma = 0.7 and a Reynolds number of ReD = 106 (related to

the diameter ØD = 54 mm). The evaluation is based on a

total number of 5,000 PIV recordings. The particle image

density was such that approximately 3.0% of the image was

illuminated and the particle image diameter was 1.7-

2.2 px. Hence, about 2-5 particle images were within an

area of 16 px 9 16 px.
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Fig. 22 Reynolds shear stress for a cross-section of the jet flow from

Fig. 21 at x = 150 px

Fig. 23 Axis-symmetric space launcher model with rear sting. The

laser light sheet and the field of view (FOV) for PIV are illustrated.

Numerical values are given in mm
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Figure 24a and b show the comparison between evalu-

ation with the standard software (Davis by LaVision

GmbH) and the developed single-pixel approach for the

velocity field and the Reynolds shear stress distribution. In

Figure 24, only every 4th velocity vectors is displayed. The

interrogation windows had a size of 16 px 9 16 px and

were overlapped by 50% in each direction. Hence, a total

of 160 independent data points was achieved. Due to the

low seeding density, the interrogation window size can not

be reduced any further.

For the vector field in Fig. 24b, every 32nd vector in the

X-direction and every 2nd in the Y-direction are displayed.

There is a strong out-of-plane component due to the three-

dimensional behavior of the flow. Thus, a stereoscopic

analysis with single-pixel resolution would be needed, as

outlined in Scholz and Kähler (2006). To compensate for

the out-of-plane losses, the correlation peaks were aver-

aged over 6 px2 9 3 px2 with a Gaussian weighting,

meaning that the neighboring correlation peaks were mul-

tiplied with a number smaller 1 (depending on the distance)

and added to the primary one prior applying the fit-func-

tion. Altogether 2,000 independent data points were

computed.

The comparison in Fig. 24 shows increased spatial res-

olution for the velocity field and the shear stress distribu-

tion. The boundary layer along the cylindrical part of the

launcher model was resolved down to 800 lm with the

standard PIV software and down to 200 lm with the sin-

gle-pixel approach. However, the viscous sublayer and the

decay of the stream-wise velocity component to zero at the

wall could not be resolved with the PIV setup used.

Therefore, a long-range micro-PIV approach is required

(Kähler et al. 2006).

Regarding the shear layer, the Reynolds stress distri-

bution indicates a strong turbulent intensity. A broadening

of the shear layer toward the reattachment point indicates

unsteady fluctuations of the reattachment point and a strong

momentum transfer between the outer free stream flow and

the wake flow caused by vortex shedding at the base. The

results reveal a generally good agreement with the standard

PIV evaluation. Like before, the estimated stresses by

using the single-pixel approach are significantly larger at

the beginning of the shear layer. This is due to the spatial

low-pass filtering of the window correlation method.

Although, the experimental single-pixel results may suffer

from unknown bias errors that were not included in the

theory, they are more realistic than the window correlation

results.

A cross-section through the shear stress distribution at

X = 50 px is shown in Fig. 25 (on the left side) for the

single-pixel approach and for window correlation. Again,

the single pixel approach results in much higher and more

realistic values for the shear stress than the window cor-

relation method. This is due to the fact that window

Fig. 24 Velocity field and

Reynolds shear stress

distribution of the wake flow of

a space launcher model.

a 16 px 9 16 px window

correlation: every 4th vector in

X-direction and each vector in

Y-direction is shown.

b Ensemble correlation: every

32nd vector in X-direction and

every 2nd vector in Y-direction

is shown. The correlation peaks

were averaged over

6 px 9 3 px
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correlation-based PIV evaluation methods underestimate

the absolute values of the stresses, as demonstrated in Sect.

3.4 for synthetic PIV data.

Additionally, the right hand plot of Fig. 25 shows the

profile of the horizontal velocity component at X = 50 px.

The window correlation method is not capable of precisely

determining the velocity in the case of strong curvature in

the profile. There is a maximum difference of 0.8 px for the

shift vector at Y = -8 px. As a consequence, the velocity

gradient at Y = 0 px is overestimated.

5 Conclusion

The presented work illustrates that Reynolds normal and

shear stresses can be estimated in general from the shape of

the correlation function. This allows for computing statis-

tical values with single-pixel resolution.

The developed method is suitable for PIV recordings

with particle image diameters D C 1 px (see Figs. 4, 5),

whereas the optimum value is between 1.5 and 5 px.

The number of images has a strong impact on the

accuracy of the computed stresses and the mean velocity

(see Figs. 7, 8, and 9). An insufficient number of PIV

images (or low seeding density) can be compensated by

averaging the correlation peaks over several pixels.

Velocity gradients in the observed flow stretch the cor-

relation peaks and rotate them. This causes strong bias

errors for the computed Reynolds stresses, which must be

corrected by using Eqs. 24–26.

The application of the evaluation method on two

experimental data sets in Sect. 4 demonstrated the suit-

ability of this approach for the analysis of real PIV

recordings. The comparison between the developed single-

pixel approach and a standard evaluation using interroga-

tion windows illustrates the increased spatial resolution and

enhanced measurement precision (see Figs. 21, 24). It was

found that the estimated Reynolds stresses are significantly

larger compared to results from standard PIV evaluations

that only compute mean values averaged over the interro-

gation window size.

In summary, for a PIV data set of several thousand

image pairs, all Reynolds stresses in a 2-D regime can be

computed with single-pixel resolution, with an error of

only a few percent points. This is of great importance for

the analysis of small scale flow phenomena appearing, for

instance, at large Reynolds and Mach numbers. In princi-

ple, the developed method can also be used to analyze

correlation peaks from sum-of-correlation procedures,

computed with conventional available software. However,

in this case, the received information is averaged over the

interrogation window size.

The present calculations are based on a Gaussian prob-

ability density function. For instationary flows with com-

plex behavior, the probability density function might have

to be generalized. A sum of two or more Gaussian func-

tions like the one defined in Eq. 9 should solve a variety of

problems.
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