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Abstract In this note we prove that a Mal’cev algebra is 2-supernilpotent ([1, 1, 1] = 0)
if and only if it is polynomially equivalent to a special expanded group. This generalizes
Gumm’s result that a Mal’cev algebra is abelian if and only if it is polynomially
equivalent to a module over a ring.
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1 Introduction

It is well known that the commutator [a, b] = a−1b−1ab of two elements a and
b of a group G can be seen as a “measure” how far are a and b from commuting
according to the group operation of G. Thus, the normal subgroup [G, G] generated
by all such commutators “measures” how far is the group G from an abelian group.
Namely, [G, G] = 0 if and only if G is abelian. The concept of commutators of
normal subgroups has been generalized to a binary operation of the congruence lattice
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of arbitrary algebras in congruence modular varieties by Smith, Freese, McKenzie,
Hagemann, Herrmann,…One can find more details in [5]. A special case of congruence
modular varieties are congruence permutable varieties. In congruence permutable
varieties each algebra has a Mal’cev term. A Mal’cev term of an algebra A is a ternary
term operation d of A that satisfies d(x, y, y) = d(y, y, x) = x for all x, y ∈ A.
An algebra with a Mal’cev term we call a Mal’cev algebra. What [1, 1] = 0 in
Mal’cev algebras means has been answered by Gumm, Hagemann and Herrmann,
see [4, Theorem 13.4]. They proved that a Mal’cev algebra is abelian ([1, 1] = 0)

if and only if it is polynomially equivalent to a module over a ring. Here, we call
two algebras A and B on the same domain polynomially equivalent if they have the
same set of polynomial operations. In 2001, A. Bulatov has generalized the binary
commutator operations to n-ary commutator operations [•, •, . . . , •] on congruence
lattices of Mal’cev algebras, for each n ∈ N, see [3]. We will restrict ourselves to the
ternary commutators. The aim of this note is to answer what [1, 1, 1] = 0 means in
Mal’cev algebras. We want to characterize all Mal’cev algebras with such a property,
because it could be expected that [1, 1, 1] = 0 implies that the algebra is polynomially
equivalent to a well studied structure. According to the property (HC3) in [2] we know
that [1, 1, 1] ≤ [1, 1]. Therefore, we have that each abelian Mal’cev algebra satisfies
the condition [1, 1, 1] = 0. In Theorem 3.3 we prove that every Mal’cev algebra with
[1, 1, 1] = 0 is an expanded group.

In accordance with [2, Definition 7.1], Mal’cev algebras that satisfy [1, 1, 1] = 0 are
called 2-supernilpotent. As it has been defined in [5] algebras that satisfy [1, [1, 1]] =
0 are called 2-nilpotent. In expanded groups we deal with ideals rather then with
congruences, because the corresponding commutator operations act in the same way
according to [2, Corollary 6.12]. An expanded group V is 2-nilpotent if [V, [V, V ]] = 0
and 2-supernilpotent if [V, V, V ] = 0. Let us just mention that all 2-nilpotent algebras
are nilpotent by definition, see [5].

2 Special expanded groups

A polynomial of an algebra A is an operation obtained by composition of projections,
fundamental and constant operations of A, see [6, Definition 4.4]. The set of all n-ary
polynomials of an algebra A we denote by PolnA for all n ∈ N.

Definition 2.1 Let V = (V,+,−, 0, F) be an expanded group and let n ∈ N. We call
an n-ary polynomial f of V absorbing if f (a1, . . . , an) = 0 whenever there exists
an i ∈ {1, . . . , n} such that ai = 0. The set of unary absorbing polynomials of V
we denote by P0(V) and the set of binary absorbing polynomials of V we denote by
C P(V).

More generally, for an algebra A and an n ∈ N, (a1, . . . , an) ∈ An , a ∈ A we say
that an n-ary polynomial p is absorbing at (a1, . . . , an)with value a if p(x1, . . . , xn) =
a whenever there exists an i ∈ {1, . . . , n} such that xi = ai .

Lemma 2.2 Let V be an expanded group with a group reduct (V,+,−, 0), and let n ∈
N. For i ≤ n let πn

i : V n → V be the i-th projection. Then the group (PolnV,+,−, 0)

is generated by constants and
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n⋃

k=1

{ f (πn
i1
, . . . , πn

ik
) : f is a nonzero absorbing polynomial of V of degree k,

i1, . . . , ik ∈ {1, . . . , n}}.

Proof See [1, Lemma 3.1]. In [1, p. 260] each n-ary commutator polynomial is exactly
a polynomial f (πn

i1
, . . . , πn

ik
) where k ≤ n and f is a nonzero k-ary absorbing poly-

nomial defined in Definition 2.1 or constant. ��
Lemma 2.3 Let V = (V,+,−, 0, F) be an expanded group such that

(1) F is the set of at most binary absorbing operations on V ,
(2) Every absorbing operation in Pol2(V) is distributive with respect to +, and
(3) V is 2-nilpotent.

Then V is 2-supernilpotent.

Proof First, we show that for all k ∈ N and f ∈ Polk(V) there exist c ∈ V , pi ∈ P0(V)

and qi j ∈ C P(V) for 1 ≤ i < j ≤ k such that

f (x1, . . . , xk) = c + p1(x1) + · · · + pk(xk) +
∑

1≤i< j≤k

qi j (xi , x j ). (2.1)

Let Pk be the set of operations as in (2.1). Obviously Pk ⊆ Polk(V). To prove
Polk(V) ⊆ Pk , we need to show that the set Pk contains projections and constants
and that is closed under the basic operations of V. Projections are in P0(V) and there-
fore in Pk . Constants are in Pk because P0(V) and C P(V) contain zero polynomials.
Clearly, Pk is closed under + and − since [c, p(xi )] = r(xi ), for some r ∈ P0(V),
[c, qi j (xi , x j )] = s(xi , x j ) for some s ∈ C P(V) and [p(xi ), p(x j )] = t (xi , x j ) for
some t ∈ C P(V). Furthermore, [qi j (xi , x j ), pl(xl)] and [qi j (xi , x j ), qlt (xl , xt )] are
zero polynomials because V is 2-nilpotent. Therefore, in the sum of two operations in
the form of (2.1) one can permute all summands to obtain again the form as in (2.1),
because P0(V) and C P(V) are closed under + and −. To show that Pk is closed under
all q ∈ C P(V) we note that for all q ∈ C P(V) and f, f ′ ∈ Pk we have q( f, f ′) ∈ Pk

by the distributivity of q and the 2-nilpotence of V.
It remains to show that Pk is closed under any unary operation g ∈ F . Note that

g′(x, y) := g(x + y) − g(x) − g(y) is in C P(V), hence distributive. By induction it
follows that for every n there exist ci j ∈ C P(V) such that

g(x1 + · · · + xn) = g(x1) + · · · + g(xn) +
∑

1≤i< j≤n

ci j (xi , x j ). (2.2)

For f as in (2.1) this yields

g f (x1, . . . , xk) = g(c) + gp1(x1) + · · · + gpk(xk) +
∑

1≤i< j≤k

gqi j (xi , x j )

+
∑

1≤i≤k

ci (c, pi (xi )) +
∑

1≤i< j≤k

ci j (p(xi ), p(x j )) (2.3)
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for some ci , ci j ∈ C P(V). Note that the other terms vanish by [V, [V, V ]] = 0. Thus
g f ∈ Pk . We have proved Pk = Polk(V).

Now we know that for every ternary polynomial operation p on V there exist a
c ∈ V , f, g, h ∈ P0(V) and r, s, t ∈ C P(V) such that

p(x, y, z) = c + f (x) + g(y) + h(z) + r(x, y) + s(x, z) + t (y, z) (2.4)

for all x, y, z ∈ V . Using the absorbing property of p, f, g, h, r, s and t we obtain
the following. First, c = 0 because p(0, 0, 0) = 0 from (2.4). Then, we substitute
y = z = 0 in (2.4) and obtain f (x) = 0. Analogously, we have g(y) = h(z) = 0.
It remains p(x, y, z) = r(x, y) + s(x, z) + t (y, z). We have t (y, z) = 0, because
0 = p(0, y, z). Analogously, we obtain r(x, y) = s(x, z) = 0. Hence, every ternary
absorbing polynomial operation is constant 0. Whence, V is 2-supernilpotent, by [2,
Corollary 6.12]. ��

3 Mal’cev algebras

Proposition 3.1 (cf. [5, Corollary 7.4]) Let A be a nilpotent Mal’cev algebra with a
Mal’cev term d and let o ∈ A. Then for all a1, a2, b1, b2 ∈ A there exist x, y ∈ A
such that d(x, o, a1) = b1 and d(a2, o, y) = b2.

Proof The function x 	→ d(x, o, a1) is bijective for all a1 ∈ A, by [5, Corollary 7.4].
Hence, the equation d(x, o, a1) = b1 has a unique solution for all a1, b1 ∈ A. We
know that D(x, y, z) := d(z, y, x) for all x, y, z ∈ A is also a Mal’cev term of A.
Therefore, y 	→ D(y, o, a2) is bijective for all a2 ∈ A by [5, Corollary 7.4]. Hence,
y 	→ d(a2, o, y) is bijective for all a2 ∈ A. Whence, the equation d(a2, o, y) = b2
has a unique solution for all a2, b2 ∈ A. ��
Lemma 3.2 (cf. [7, Theorem 1.2]) Every semigroup (G,+) such that the equations
a1 + x = b1 and y + a2 = b2 are solvable for all a1, a2, b1, b2 ∈ A, is a group.

Proof See [7, Definition 1.1, Theorem 1.2]. ��
Theorem 3.3 For a Mal’cev algebra A the following are equivalent:

(1) A is 2-supernilpotent ([1, 1, 1] = 0)

(2) A is polynomially equivalent to an expanded group V = (A,+,−, 0, F) such
that

(a) F is a set of at most binary absorbing operations on V,
(b) Every absorbing operation in Pol2(V) is distributive with respect to + on both

arguments, and
(c) V is 2-nilpotent.

Proof (1) ⇒ (2) Using [2, (HC8)] we obtain [1, [1, 1]] = 0. Therefore, A is a
2-nilpotent Mal’cev algebra. Let o ∈ A and let d be a Mal’cev term. We define
+ : A2 → A by

x + y := d(x, o, y)
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for all x, y ∈ A. From Proposition 3.1 we know that the equations a1 + x = b1 and
y + a2 = b2 are solvable for all a1, a2, b1, b2 ∈ A. Let us show that + is associative.
We observe that the polynomial

p(x, y, z) := d(d(d(x, o, y), o, z), d(x, o, d(y, o, z)), o)

for all x, y, z ∈ A is an absorbing polynomial at (o, o, o) with value o. Therefore,
(p(a, b, c), o) ∈ [1, 1, 1] for all a, b, c ∈ A by [2, Lemma 6.9]. Using the assumption
[1, 1, 1] = 0, we obtain p(a, b, c) = o. Equivalently,

d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o) = o.

By [5, Corollary 7.4] we have that x 	→ d(x, d(a, o, d(b, o, c)), o) is a bijec-
tive mapping of A. Hence, d(d(a, o, b), o, c) = d(a, o, d(b, o, c)), because
d(d(d(a, o, b), o, c), d(a, o, d(b, o, c)), o) = d(d(a, o, d(b, o, c)), d(a, o, d(b, o,

c)), o). Using the recently introduced notation we have proved (a+b)+c = a+(b+c).
Now using Lemma 3.2 we obtain that + is a group operation with the neutral element
o. We denote the inverse of an element a ∈ A by −a. This is a polynomial operation
given by

−x := d(o, d(d(o, x, o), o, x), d(o, x, o))

for all x ∈ A, by [5, Lemma 7.3]. We have proved that A is polynomially equivalent
to an expanded group V with the group reduct (A,+,−, o). Now, we shall prove that
A is polynomially equivalent to the expanded group V := (A,+,−, o, F), where
F := Po(A) ∪ C P(A). We have already that all fundamental operations of V are
polynomials of A.

By [2, (HC3)], we know that [ 1, . . . , 1︸ ︷︷ ︸
n

] = 0 for all n ≥ 3. Hence, f = 0 for all n-

ary absorbing polynomial operations f of A if n ≥ 3, by [2, Corollary 6.12]. Hence, the
set of all non-constant absorbing polynomial operations of A is F := Po(A)∪C P(A).
Using Lemma 2.2 we obtain that each polynomial of A is also a polynomial of V.

Let f ∈ C P(V). One can easily see that the polynomial q defined by

q(x, y, z) := f (x, y + z) − f (x, z) − f (x, y)

for all x, y, z ∈ A is absorbing at (o, o, o) with value o. Therefore, (q(a, b, c), o) ∈
[1, 1, 1] by [2, Corollary 6.9] for all a, b, c ∈ A. Hence, q(a, b, c) = o or equivalently,

f (a, b + c) = f (a, b) + f (a, c)

for all a, b, c ∈ A, by the assumption [1, 1, 1] = 0. The proof for the distributivity on
the first argument is analogous.

(2) ⇒ (1) Polynomially equivalent algebras have the same congruence lattice and
the same commutator operations acting on the congruence lattice, by [2, Corollary
6.11]. Therefore, A is 2-supernilpotent by Lemma 2.3. ��
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