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ABSTRACT 

Designing the Human-Powered Helicopter: A New Perspective 

Gregory Hamilton Gradwell 

 

The concept of human-powered vertical flight was studied in great depth. Through the 

manipulation of preexisting theory and analytical methods, a collection of design tools 

was created to expediently conceptualize and then analyze virtually any rotor. The tools 

were then arranged as part of a complete helicopter rotor design process. The lessons 

learned as a result of studying this process—and the tools of which it consists—are 

presented in the following discussion. It is the belief of the author that by utilizing these 

tools, as well as the suggestions that accompany them, future engineers may someday 

build a human-powered helicopter capable of winning the Sikorsky Prize. 
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NOMENCLATURE 

Name Definition Units � chord �� � gravitational constant ��/���	 
� blade coefficient  
� ground effect coefficient   mass ����� �  mass flow rate �����/��� � rotor radial station  � height above ground �� 
   � rotor disc area ��/���	 �� rotor blade area ��/���	 �� drag coefficient  ��� blade mean drag coefficient  �� sectional lift coefficient  ���  blade mean lift coefficient  ��� lift coefficient, α=0  �� total lift coefficient  ��� sectional lift curve slope 1 ���⁄  �! coefficient of power  �" coefficient of thrust  # propeller diameter �� $ moment of inertia ��% & bending moment �� ' �(� ) number of rotor blades  ! power required * + rotor radius �� " thrust �(� "�,-- thrust percentage lost due to coning  ." rotor tip speed ��/��� 

W helicopter weight �(� 
   
α angle of attack ��� 
β coning angle ��� /&0�1 total mechanical efficiency  /! tip propeller efficiency  

θ rotor twist ��� 
λ inflow ratio  
ν rotor disc inflow velocity �� ���⁄  
ρ air density ����� ��2⁄  
σ rotor solidity  
Λ taper ratio  
Ω rotor rotation speed ��� ���⁄  
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Introduction 

The ideas presented in the proceeding pages are new. This is not because they are 

brilliant or revolutionary, or even necessarily useful in a practical sense; rather their 

uniqueness springs from the problem that they are trying to solve: human-powered 

vertical flight. The many obstacles standing in between man and this goal require one to 

reexamine the most basic of theories that are presented in every helicopter design 

textbook. This is a war that is fought in the trenches. That is not to say that one mustn’t 

have a firm grasp of the overarching concepts governing rotary wing flight. However, the 

margins for error here are so small that one must examine every aspect of the design in 

great detail so that the maximum performance can be extracted from each decision. 

If there is one thing that should be taken away from this document, it is that mechanical 

power should be treated as a currency. It is earned by the pilot and spent by the designer. 

There are four performance characteristics that can be purchased with this currency: 

thrust, stability, controllability, and strength. Of these, thrust is the only one with a clear 

threshold requirement: the rotor must be able to lift its own weight as well as the weight 

of the pilot. Beyond that, it is up to the designer to set the requirements and then fulfill 

them. 

Over the course of this paper a design process will be presented; one that is believed to 

offer the best chance of creating a human-powered helicopter capable of capturing the 

ever-elusive Sikorsky Prize. The keyword here is “create”. It is one thing to design the 

perfect helicopter. But to design one that can actually be built—and built under 

reasonable time and cost restrictions—is a completely different matter. With each 
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decision there will be aerodynamic and structural consequences, and often they will be 

opposing in nature. That which is stronger is rarely lighter, and that which is optimal is 

rarely simple. While the in-depth topics discussed here will generally deal with 

aerodynamic principles, the structural implications will never be forgotten. However, the 

structural design of the helicopter will be left for another time. 

But before delving into the depths of the following work, let us first be introduced to the 

motivation behind this entire operation. 

The Sikorsky Prize 

Established in 1980 by the American Helicopter Society1, the Sikorsky Prize was created 

to motivate the first successful flight of a human-powered helicopter. The rules of the 

contest state that the aircraft must demonstrate the capability to hover for at least 60 

seconds. At some point during that flight the lowest part of the vehicle must reach a 

height of 3 meters, all while staying within the confines of a 10-meter square. The 

attempt shall be made on level ground, with a mean wind speed of no greater than 1 

meter per second. 

The purse was initially set at $20,000.  Since its inception there have been two vehicles to 

successfully demonstrate the ability to hover, however neither was able to achieve the 

height or duration targets. After a lull of 15 years, the prize was increased to $250,000 in 

August of 2009 with the hopes of spawning new interest in the endeavor. It was this 

action that spurred a group of students at California Polytechnic State University, San 

Luis Obispo to pick up where their predecessors had left off and begin the journey toward 

human-powered vertical flight. 
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Previous Efforts 

In 1989, after several years of effort and three complete helicopters, Cal Poly, SLO made 

history with the world’s first human-powered helicopter flight1. They stayed aloft for 8 

seconds and reached a height of 8 inches. The many lessons learned over the life of this 

program were captured in several senior projects, now housed at Cal Poly’s Kennedy 

Library. Their record-setting aircraft, christened the Da Vinci III, consisted of two rotor 

blades driven by propellers at the rotor tips. The pilot was situated underneath the rotor 

blades, which placed the blades several feet above the ground. Figure 1 shows a 

schematic of the aircraft2.

 

Figure 1: Da Vinci III 
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The single rotor disc configuration of Da Vinci III allows for a large disc area, which can 

lead to a diminished power requirement. However, with only two blades moving at very 

slow speeds, a small perturbation off of the rotational axis has the potential to 

significantly disrupt the rotor flight path, as the pitch inertia is very low. As will be 

shown later, the Da Vinci III could have possibly eliminated this instability by placing the 

pilot above the rotor disc. The other issue of such large blades is that the deflection due to 

lift will be greater than that experienced by a smaller blade. Not only will this 

deflection—referred to as “coning”—cause a decrease in lift and an increase in the power 

requirement, but if it occurs asymmetrically it can contribute to the controllability issues 

of the aircraft. 

Five years after the flight at Cal Poly, a group of students at Nihon University in Japan 

achieved success with the Yuri I, remaining airborne for 19.46 seconds at a height of 8 

inches3. Their design was much different than Da Vinci III, consisting of 4 rotor discs, 5 

meters in diameter, driven directly by the pedal crank of the pilot, as seen in Figure 2. 

Because the discs were situated away from the pilot, they were able to be placed nearly at 

ground level. 
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Figure 2: Yuri I 

Da Vinci III utilized propellers on the rotor tips to drive the rotor, thereby eliminating the 

problem of a torque that must be counteracted; with four rotor discs, Yuri I could drive 

the rotors directly, as two rotors spun clockwise and the other two spun 

counterclockwise. The problem of unstable oscillation was also resolved. However the 

aircraft was still free to translate across the ground, meaning that some sort of control 

system would most certainly be necessary in order to compete for the Sikorsky Prize. 

Due to their decreased radius, the rotors would also see less benefit from ground effect, 

which will be discussed in greater detail in later sections. This aircraft works very well as 

a sort of hovercraft, but was not proven to be capable of reaching the necessary 3-meter 

height. 

Neither the Da Vinci nor Yuri machines were equipped with control systems2,3, meaning 

they had to rely on their own inherent stability to remain within the confines of the 10-

meter-square specified by the Sikorsky Prize rules. As a result, the flights of both 

vehicles were cut short well before the pilot ran out of power: the Da Vinci due to an 

unstable pitch/roll oscillation; and the Yuri because it simply ran out of room.  
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While both of these helicopters exhibited impressive features, it is arguable that neither 

possessed all the tools necessary to fulfill every objective specified by the Sikorsky Prize. 

Da Vinci III’s main flaw was its instability, and Yuri I’s Achilles heel was its diminutive 

rotor size. Using the lessons learned by these two programs, it is the author’s belief that a 

helicopter can be built that will perform well enough to surpass its predecessors and 

claim the Sikorsky Prize. 

Assuming that one can make the single rotor disc configuration controllable, it seems to 

hold the advantage in terms of power requirement. But the power costs associated with 

controlling the single-disc helicopter might end up making it an inferior configuration. 

Nevertheless, for the sake of consistency, the calculations featured in this paper will 

pertain to a single-rotor disc helicopter, which will be powered by tip propellers like 

those used on Da Vinci III. However, the theories that appear are applicable to all 

configurations. Of course, with increasingly complex configurations, there will be 

physical interactions that are outside the scope of this discussion. But for the design of an 

individual rotor, which may or may not be part of a multiple-rotor vehicle, the following 

concepts will be universally relevant.  

After introducing the theory behind the process, the analysis methods will be discussed, 

followed by the design process itself. A short trade study was performed to highlight the 

effects of several primary rotor parameters. These results are presented and discussed, 

and should illustrate the effectiveness of the design process in terms of quickly analyzing 

the performance of several rotor configurations. This paper does not attempt to offer a 

final helicopter design, but rather it introduces several topics regarding the design of a 
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human-powered helicopter. If nothing else, the following material should serve as 

discussion points for future helicopter design efforts. 

Let us commence with a brief and selective overview of helicopter theory. 
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Basic Theory 

We will use two different analytical approaches—which should provide a good basis for 

understanding why a particular rotor behaves the way it does— referred to as momentum 

theory and blade-element theory. We will begin with momentum theory to introduce the 

concept of a lifting rotor in general, and then move on to blade-element theory to 

examine the details pertaining to the individual blades. On occasion, the two methods 

will be combined in order to produce some useful information. 

Momentum theory in hover 

Momentum theory4 applies the basic conservation laws of fluid mechanics to the rotor 

flow as a whole to estimate the rotor performance. In the momentum theory analysis, the 

rotor is modeled as an actuator disc, which is a circular surface with zero thickness that 

causes a pressure difference to accelerate the air through the disc. The actuator disc 

model is only an approximation to the actual rotor. It is equivalent to considering a rotor 

with an infinite number of blades. The actual flow through an actuator disc can be very 

different for a real rotor with a small number of blades, which is why blade-element 

theory becomes necessary in order to accurately predict the rotor performance. 

Let us consider an actuator disc of area 3 and total thrust 4, which appears in Figure 3. 

Note that we are only examining the case for hover, as with the case of the human-

powered helicopter, the rotor will be in a state of hover for essentially the entire flight.  
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Figure 3: Actuator disc4 

We can define the mass flux through the disc as follows, where 5 is the air density, 3 is 

the area of the actuator disc, and 6 is the velocity flowing through the disc, referred to as 

the inflow velocity. 

 7� 8 536 (1) 

It is assumed that the inflow velocity is constant over the entire disc. We will later find 

that this condition can be achieved with certain twist distribution. By employing the laws 

of conservation of mass and momentum, we eventually end up with a relationship for the 

rotor thrust. 

 4 8 9 256	�3 8 2536	 (2) 

This equation can be rearranged to show the rotor inflow velocity in terms of thrust. 



10 
 

 6 8 ; <	=> (3) 

The power required to turn the rotor is separated into two categories, which resemble the 

two types of drag that a wing experiences in normal flight. Induced power—similar to 

induced drag—is the power draw that results from the rotor creating thrust. It can be 

defined by Equation 4. 

 ?@ 8 46 8 4; <	=> (4) 

Note that for a given thrust, we can decrease the induced power by increasing the rotor 

disc area. Of course, this is assuming that the rotor has no mass or thickness. In reality, 

every rotor will have a specific point at which an increase in radius will become 

detrimental to the performance. 

The other kind of power drawn by the rotor is called profile power. It relates directly to 

the profile drag that is experienced by a wing in that is the power required to move the 

rotor through the air. However, basic momentum theory assumes that the air is inviscid, 

meaning that this phenomenon cannot be captured. We will instead have to look to blade-

element theory to estimate the profile power requirement. But before we move on, let us 

first define a few more parameters. 

The rotor thrust and power can be expressed in terms of non-dimensional coefficients, 

which incorporate the rotation speed of the rotor. 

 A< 8 <=>BCDEF (5) 
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 AG 8 G=>BCDEH (6) 

The inflow velocity ratio λ is another useful parameter, which relates the inflow velocity 

to the rotor tip speed. 

 I 8 JKD (7) 

Combining Equations 3, 5, and 7, we can relate the inflow velocity to the coefficient of 

thrust.  

 I 8 ;LM	  (8) 

Recalling the differential form of the thrust in Equation 2, and replacing the thrust with 

its equivalent coefficient, we can obtain Equation 9. 

 �A< 8 4I	��� (9) 

Because we have specified a constant inflow velocity, and hence a constant inflow 

velocity ratio, we see that the differential thrust coefficient exhibits a triangular 

distribution. This implies that when a constant inflow velocity through the rotor disc is 

present, we will see a triangular lift distribution. Conversely, by twisting the rotor to yield 

a triangular lift distribution, we will force the inflow velocity to be constant over the 

entire disc. 

Using the inflow velocity ratio, we can simplify our induced power equation to one that 

utilizes the coefficient form. 

 AGO 8 IA< (10) 

This relationship becomes important when we evaluate the rotor performance while in 

ground effect, which will be discussed later. For now we will simply show the 
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relationship between the in-ground effect (IGE) and out-of-ground effect (OGE) values 

of the induced power, which is represented by Equation 11. Note that PQ , referred to as 

the ground effect coefficient, ranges from 0 to 1, with its maximum value corresponding 

to the out-of-ground effect condition. 

 AGO RQS 8 PQAGO TQS (11) 

Now let us continue on to blade-element theory, so that we can more precisely define the 

aerodynamics affecting the rotating blades. 

Blade-element theory in hover 

After examining blade-element theory as it pertains to the human-powered helicopter, we 

should be able to identify the major factors that contribute to the rotor performance, 

allowing us to focus on the aspects of the design that are most critical. To evaluate the 

following definite integrals we must make some assumptions about the rotor, so for the 

sake of this current discussion it will be assumed that the rotor blades are untapered, 

feature a symmetrical airfoil, and are twisted in a way that creates a uniform velocity 

inflow through the rotor disc. These equations will be discussed in proceeding sections 

with greater detail, but at this point we are looking for a general sense of the factors 

governing the performance of the rotor. 

As seen before in another form, the rotor thrust can be defined by Equation 12. We now 

will define the coefficient of thrust according to Equation 13. 

 4 8 A<53BUVE	 (12) 

 A< 8 9 W	 XAYZ[\�	��]̂
 (13) 
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Because the chord is constant, the integral becomes purely a function of � and AYZ[, 

which upon integration results in the following definitions for the rotor thrust coefficient 

and dimensional thrust, where A_Y is defined as the blade mean lift coefficient. 

 A< 8 WL_`a  (14) 

 4 8 WL_`a 53BUVE	 (15) 

The rotor solidity is defined as the ratio between the rotor blade area and the rotor disc 

area.  

 b 8 >c>  (16) 

Using this relationship, we can modify the thrust equation to that seen below. 

 4 8 >cL_`ddda 5BUVE	 (17) 

The power required to generate this thrust is defined by Equation 18, using a coefficient 

of power calculated from Equation 19. The first term corresponds to the induced power 

AGO, while the second term is the profile power AGe. 

 ? 8  AG53BUVE2 (18) 

 AG 8 9 PQI�A< g 9 WLh	]̂ �2�� (19) 

Using the expression for the velocity inflow ratio that we defined earlier, this power 

coefficient can be written as Equation 20, and then placed back into the equation for 

power required. Note that we are assuming a constant mean value for the drag coefficient, 
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A_i. This is purely for the sake simplifying the equation. When performing a detailed 

analysis, the drag coefficient would be calculated at each radial station. 

 AG 8 jkLMH Fl√	 g WL_hn  (20) 

 ? 8 ojkLMH Fl
√	 g WL_hn p  53BUVE2 (21) 

Notice that the first term of the power equation contains the thrust coefficient. We will 

use Equation 5 to replace the thrust coefficient with its dimensional counterpart. 

 ? 8 q jk<H Fl
√	B=>EH Fl BCDEH g WL_hn r  53BUVE2 (22) 

Distributing and again utilizing the definition of rotor solidity, we obtain a simplified 

equation for rotor power required. 

 ? 8 jk<H FlDs	=t g >cL_hn 5BUVE2 (23) 

The second term of this equation is rather convoluted. By rearranging Equation 17, and 

substituting, we can obtain Equation 24, which presents the power required in a much 

more intuitive format. 

 ? 8 jk<H FlDs	=t g Hu<BCDEv�`v�h
 (24) 

The human-powered helicopter will essentially spend the entire flight hovering, meaning 

that the thrust it must create will be equal to the weight of the aircraft. Therefore we can 

replace the thrust term with a weight term. The second term in this equation corresponds 
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to the profile power of the rotor. The coefficient of 
2% comes from the assumption that the 

blade consists of a constant chord. This value will change depending on the chord 

distribution, so it will be replaced with a constant, Pw, referred to hereupon as the blade 

coefficient. The term 
L_`L_h represents the average lift and drag performance of the sectional 

airfoil. While it is not a precise representation of the actual performance, as the drag 

coefficient will surely change depending on the lift conditions, it nevertheless helps us 

visualize the influence the airfoil selection has on the design. From Equation 24 we can 

identify six different factors that affect the performance of the rotor, which will now be 

discussed in detail. 

Ground effect coefficient, 
� 

As the rotor disc approaches the ground, the rotor experiences effects similar to that of an 

airplane wing in forward flight. The thrust generated by a constant power input increases 

as the rotor approaches the ground, or conversely, the power required to generate a 

constant thrust decreases with the diminishing rotor height. This is due to the decrease in 

induced velocity, which is the source of the induced power required to turn the rotor. The 

downstream flow also creates a sort of cushion of air beneath the rotor, which in a sense, 

likens the rotor in ground effect to a hovercraft.  Experimentally it is very difficult to 

measure the induced velocity, and therefore researchers have simply measured the 

decrease in power required for equivalent thrust as the rotor disc approaches the ground. 

Several analytical, numerical, and experimental solutions to this ground effect have been 

offered5,6,7, with a wide range of results, as portrayed in Figure 4. 
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Figure 4: Power reduction due to ground effect 

The abscissa represents the ratio of the rotor disc height to the rotor radius. The Da Vinci 

III possessed a x/V value of approximately 0.1 when on the ground and 0.3 when at a 

height of 3 meters (we can contrast this with Yuri I, whose x/V ratio was less than 0.05 

when on the ground, but over 0.6 at 3 meters). Flying so low to the ground presents two 

analytical challenges: there are very few available estimates of the grounds effects, and of 

these few, there is considerable disagreement in terms of the power reduction caused by 

the ground. This makes it difficult to confidently estimate the impact of ground effect on 

the rotor. Furthermore, the value of the ordinate in Figure 4, PIGE/POGE, is not ideal in 

terms of the rotor design, as it incorporates the total power reduction, while ground effect 

is only applicable to the induced power. 
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The fact that the ground effect is related to the ratio x/V places considerable emphasis on 

not only the rotor disc placement, but also the rotor radius. This is the reason why Yuri I 

would have had tremendous difficultly reaching an altitude of 3 meters. Even though the 

rotor discs began nearly on the ground, by the time the helicopter reached its maximum 

altitude, it would practically be out of ground effect and could realistically require at least 

three times as much power to operate. As was previously stated, there is considerable 

disagreement between scholars as to the exact reduction in power it causes, especially as 

x/V approaches zero. Because the ground effect coefficient is the first step in the design 

process, the designer must accept the fact that the entire design is based on a parameter 

that may or may not be accurate.  

In 1941 Montgomery Knight and Ralph Hefner published a paper titled “Analysis of 

Ground Effect on the Lifting Airscrew”5. This paper offered an analytical look at ground 

effect, notably how the induced velocity, thrust, and power were altered as the rotor 

approached the ground. One of their findings suggested that a velocity inflow that was 

constant across the span while out of ground effect, would change according to the 

proximity to the ground. Figure 5 shows the results of this analysis. 
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Figure 5: Inflow velocity distribution 

We see that the in theory, for small values of x/V, the inflow at the rotor tip is 

significantly different than that at the root. Since the rotor twist is designed under the 

assumption that the inflow in constant over the entire span, it will undoubtedly produce a 

non-optimal solution once the rotor is placed in ground effect. Fortunately the inflow 

ratio B6 UV⁄ E is relatively small, so the discrepancy between the assumed inflow velocity 

and the actual value might not result in a large error in terms of predicted twist required 

and subsequently predicted performance. However, as has been stated before, the 

challenges of the Sikorsky Prize force the helicopter designer to extract every possible 

ounce of performance from the design, hence this finding may be significant. Again, this 

was only shown analytically. The rotor might behave differently in flight. In order to 
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reduce this uncertainty as much as possible, students at Cal Poly have undertaken the task 

of creating their own ground effect data through the use of scale rotors. Once their 

experiments are complete, they should have a better grasp on the ground effect 

coefficient as it relates to the human-powered helicopter. 

We now move on to the second dominant factor, total system weight. 

Total system weight, z 

Recalling Equation 24 (reproduced here), we see that the system weight appears in both 

terms of the power required. 

? 8 jk{H FlDs	=t g * jcBCDEv�`v�h
                        .             

The fact that each weight term is taken to a power greater than or equal to unity means 

that every percentage of weight gain will result in at least one percent gain of the power 

requirement. Keeping the weight to a minimum is no revolutionary concept. However 

trying to balance the costs and benefits of changes that result in an increase in weight will 

prove crucial. For example, strengthening the spar will make it heavier, but it will also 

reduce the rotor coning, which will in turn improve the rotor’s thrust and power 

performance. The question is, of course, will the better thrust and power results offset the 

weight increase? This can only be answered after the rotor design has progressed far 

enough to know the several parameters that are involved in the relevant calculations. 

Hence as far as preliminary design is concerned, the helicopter must be made as light as 

possible. It is desirable for every component to be equally strong as every other 

component, so that if there is any sort of failure, the entire structure will fail at once. This 

can be accomplished—or at least attempted—by appropriate spar design and construction 

as well as suitable rib spacing. 
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We continue with another primary factor, the rotor radius. 

Rotor radius, + 

From Equation 24 we see that the radius appears in both terms; however, it lies in the 

numerator in one term and the denominator of the other. Looking purely at the induced 

power losses, we would like to have the radius be as large as possible, as the induced 

power exhibits an inverse relationship with the radius.  While this means that each 

additional unit of radius added will decrease the power requirement, it also means that the 

rate the power diminishes gets smaller as well. If we assume that the rotor rotation speed 

remains constant while the radius is stretched, we are essentially given three options in 

terms of how we allow the rotor planform to change. Holding the solidity constant will 

mean that the rotor scale will be retained. The local chord must increase or decrease 

proportionally with the radius. We can also hold the blade area constant, which means 

that the local chord at each radial station will decrease as the radius increases. The third 

option is to keep the chord constant while the radius is stretched. 

Table 1: Increasing rotor radius 

Parameter held constant 
Local chord response to 

increase in radius 
Local chord response to 

decrease in radius 

Solidity Increase Decrease 

Blade area Decrease Increase 

Chord No change No change 

 

Table 1 summarizes the planform effects of altering the rotor radius. The radius will also 

impact the structural performance of the rotor. A larger rotor means that the bending 
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moment experienced along the entire span will increase. Therefore the resulting thrust 

will either decrease due to a more dramatic deflection, or the spar must be strengthened in 

order to maintain the current thrust output. Either scenario will result in a power 

requirement increase to achieve the necessary thrust. 

Because of the many complexities involving the rotor radius, it is desirable to keep it 

fixed for the duration of each complete aerodynamic design process. In other words, one 

would specify the radius, and then examine the effects of the other variables until arriving 

at an optimal solution. This process would then be repeated for a range of radii, which 

would eventually allow the designer to observe the realistic radius effects, having 

accounted for the structural contributions to the rotor’s performance. 

Since we have identified the variables that appear in the induced power term, we move to 

those parameters that affect the profile power, starting with the blade coefficient. 

Blade coefficient, 
� 

While the induced power of the rotor can be minimized for any geometry though the use 

of twist, the profile power is dependent on the planform shape of the rotor. A constant-

chord blade is the easiest to manufacture, but yields slightly inferior performance in terms 

of the blade coefficient. As will be shown later, the aerodynamically optimal planform 

features a chord that decreases nonlinearly from the root to the tip. It is called “optimal” 

because it allows for the rotor to be twisted in a way such that nearly the entire blade sees 

the same angle of attack, and therefore the same lift and drag coefficient. Thus, the airfoil 

could potentially be operating at its optimal point for a majority of the span. While a truly 

nonlinear taper is nearly impossible to construct, it is reasonable to assume that a 
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“piecewise-nonlinear” planform could be created by combining several linearly tapered 

sections. 

We can determine the bounds of the blade coefficient by examining the equations for the 

thrust and profile power coefficients, reproduced from Equations 13 and 19 below. 

A< 8 | b2 XAYZ[\�	��]
^  

AGe 8 | bAi2
]

^ �2�� 

Of the rotor planforms that we will analyze, the constant chord rotor will yield the largest 

blade coefficient. This case was shown in the blade-element theory discussion, but it will 

be repeated here. For a constant chord, b is constant, and therefore the thrust and power 

coefficients reduce to: 

A< 8 bA_Y6  

AGe 8 bA_i8  

We showed that the blade coefficient was related to the profile power according to the 

following relationship. 

 ?� 8 jc<BCDEv�`v�h
 (25) 

Substituting for the thrust and power, using the above coefficients, we obtain the 

following equation. 
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WLh�n 53BUVE2 8 jc�v`� =>BCDEH

v�`v�h
 (26) 

After several cancellations, we again find that the blade coefficient Pw is equal to 
2%. Now 

let us perform the same operations with the optimally-tapered blade, which is defined by 

the chord distribution b 8 W�� . 

When we evaluate the thrust and profile drag coefficients, we obtain Equations 27 and 

28. 

 A< 8 9 ���	 XAYZ[\�	��]̂ 8 9 W�	 XAYZ[\���]̂ 8 W�L_`%  (27) 

 AGe 8 9 ��� Lh	]̂ �2�� 8 AGe 8 9 W�Lh	]̂ �	�� 8 W�L_ha  (28) 

We solve again for Equation 25. 

?� 8 Pw4BUVEL_`L_h  

 
W�L_ha 53BUVE2 8 jc��v�`u =>BCDEH

v�`v�h
 (29) 

This time we find that Pw becomes 
	2, which is an 11% decrease from the constant chord 

blade for an equivalent thrust condition. The rotor designer will have to determine 

whether the manufacturing costs of building a tapered rotor will increase the total power 

requirement by less than 11% of the profile power. As our trade study will show later, 

sometimes the tapered blade might actually perform worse than the non-tapered blade. 
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Another issue that must be considered with the tapered planforms is the size of the chord 

towards the rotor tip. If the blade area is held constant while the radius is increased, then 

the chord will correspondingly decrease. If the chord is allowed to become too small, it 

will be impossible to manufacture the ribs, or they won’t be able to support the structure 

associated with the tip propellers. The outboard sections of the rotor are particularly 

susceptible to this because they will likely be utilizing thin airfoils that may also be 

cambered, which will make them already difficult to build. For all these reasons, the 

planform design is particularly sensitive to the manufacturing capabilities of the design 

team. 

We will now look at the next parameter. While it affects the profile power, the rotor 

rotation speed also plays a part in the performance of the tip propellers (assuming the 

helicopter is equipped with them). Both of these aspects will be discussed in the 

following section. 

Rotor rotation speed, Ω 

For a given radius, the rotor rotation speed and tip speed form a proportional relationship. 

 �< 8  UV (30) 

The rotor thrust varies with the square of the tip speed, while the power required varies 

with its cube. Thus, all other factors remaining constant, an increase in tip speed will 

result in a decrease of the thrust-per-unit-power ratio. If the tip-driven propellers were not 

a factor, we would want to turn the rotor as slowly as possibly according to the limits of 

the airfoil. These airfoil limits would be defined by the maximum lift coefficient 

combined with the drag performance degradation as the Reynolds number decreased. 

Because the rotor is driven by propellers turning at the tips, we must also factor in the 
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efficiency of the propellers when considering the total power requirement. For the 

conditions in which this rotor will be operating, the propellers will experience increasing 

efficiency as the rotor speed increases. Of course, the magnitude of this increase will be 

subject to the design of the propeller. Similar to the case of the rotor, we will prefer a 

propeller with a large diameter turning very slowly. An advantage of a large diameter 

B�E is that the influence of the rotor tip speed is less than if the diameter were small. We 

can demonstrate this by examining the relationship between propeller efficiency B�GE and 

rotor tip speed8. Note that a propeller can be viewed as a rotor in climb. Thus, while in 

this case we are using the rotor tip speed, in normal circumstances one would simply be 

referring to this quantity as the incoming flow velocity. 

 �< 8 �G � GO�t=�FB]���E�] 2l
 (31) 

While Equation 31 cannot be solved for �G explicitly, we can numerically find a solution. 

If we examine the behavior of the propeller efficiency for a constant power input B?@�E 

and a range of rotor tip speeds, we can produce Figure 6. This efficiency is assuming that 

the propeller is perfectly optimal and experiences no induced or frictional losses. While 

the actual efficiencies will be reduced by a small percentage, the relative performance is 

sufficiently representative. 
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Figure 6: Maximum theoretical propeller efficiency 

We see that not only does a larger diameter result in high efficiencies, but the drop-off as 

the rotor tip speed decreases is much less drastic. A professional cyclist9 can deliver 

power outputs upward of 450 W (which would direct 225 W per propeller, assuming no 

efficiency losses). Let us consider an example: with a diameter of 2 feet, a propeller 

given a 225-Watt power input could be approximately 98% efficient with an inflow 

velocity of 60 ft/s, while only achieving 87% efficiency at 30 ft/s. A propeller with a 4-

foot diameter will achieve 99% efficiency at 60 ft/s and only be reduced to 95% efficient 

at 30 ft/s, while the 6-foot diameter propeller goes from nearly 100% to 98% efficient. 

Thus by simply increasing the tip propeller from 2 feet to 6 feet, we can capture a 9% 

savings of total efficiency. Considering that only a fraction of this will be lost due to 

induced and frictional losses, we will see almost of all this savings transfer to the total 

power requirement. 

0.80

0.85

0.90

0.95

1.00

30 35 40 45 50 55 60

M
a

x
im

u
m

 p
ro

p
e

ll
e

r 
e

ff
ic

ie
n

cy
, 

%

Rotor tip speed, ft/s

D = 2 ft

D = 4 ft

D = 6 ft



27 
 

The diameter is limited in magnitude on the upper end by ground clearance issues. 

However, it is theoretically possible to place the propellers on booms and raise them up 

as high off the ground as necessary, although this would certainly impact the structural 

requirements of the rotor. The propeller design essentially is a modified version of the 

rotor design process, except that it must work within a much smaller design space.  

This effect of tip speed is not only relevant at the hover stage; it will impact the propeller 

performance for the entire wind-up portion of the flight. The greater the propeller 

efficiency while the pilot is bringing the rotors up to hover rotation speed, the less time 

the wind-up segment will take, which will leave the pilot more energy for the hover and 

climb segments. In the same respect, if the hover rotation speed is kept to the minimum 

possible value, the wind-up time will stay low as well. The seconds that might be 

eliminated from the total mission time could significantly affect the pilot’s ability to 

achieve a 60-second duration or a 3-meter altitude. 

The final parameter from the generalized power equation incorporates lift and drag 

characteristics of the sectional airfoil. Again, because the lift and drag quantities are only 

the mean values, we intend only to discuss the consequences of the airfoil selection in 

general. 

Airfoil lift and drag performance ratio, 
������ 

The airfoil selection process will affect several aspects of the design besides just the 

sectional aerodynamic performance. The primary constraint of the airfoil is that it must 

be manufacturable, and it cannot be so delicate that it will be damaged during assembly 

or operation. It also must be thick enough to contain the necessary rotor structure. This 
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eliminates several thin, highly-cambered airfoils that would likely produce the highest 

lift-to-drag performance. Because of the tradeoff between aerodynamic and structural 

performance, it would be prudent for the designer to hand-select the airfoil for each rib. 

For each configuration and rotation setting, the lift coefficient distribution will be known, 

as will the local bending moment and Reynolds number. The designer must find an airfoil 

that is sufficiently thick, while still yielding suitable drag characteristics for the given lift 

coefficient and Reynolds number. For the sake of expedient iteration, it would be suitable 

to assign an airfoil to each of several ranges of lift coefficients or Reynolds numbers, but 

the final selection process should be completed by hand during the spar design process. 

Having looked at these six parameters more closely, we would now like to see an 

example of how their variation might influence the rotor performance. A brief analysis 

was executed to demonstrate the effects of each parameter on the rotor power. The only 

value held constant was the total system weight, which meant that each rotor examined 

would be producing the same amount of thrust. First, let us discuss the tool that was 

utilized to perform the following analysis, QPROP, as well as the design loop 

implemented to minimize the power requirement for each configuration. 

QPROP as a design tool 

At this point it should be clear that to accurately calculate the rotor performance by hand 

for any given configuration would be extremely tedious. Fortunately, a computational 

tool that was created to analyze propellers can also be applied to this particular situation. 

QPROP, developed by Mark Drela at Massachusetts Institute Technology, uses an 

advanced blade-element/vortex theory to predict the thrust and drag characteristics of a 

propeller. Of course, by setting the incoming flow velocity to zero, the situation 
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resembles that of a helicopter rotor in hover. The entire theory that goes into the 

calculations will not be discussed here, as it is similar to the analytical methods 

previously identified, but more advanced so as to include three-dimensional effects. Mark 

Drela’s paper entitled “QPROP Formulation”10 contains the theoretical aerodynamic 

formulation that is behind the QPROP analysis. 

The QPROP code is critical to the design process that will be discussed shortly. A series 

of MATLAB® scripts were created that are capable of taking a few simple specified rotor 

parameters and creating an input text file that can be sent to QPROP for analysis. The 

resulting data is then extracted from an output text file and rearranged for the purpose of 

fast and simple comparison. 

Since we have identified the primary contributors to the rotor performance, we can begin 

to look at the design process that has been developed for the purpose of finding the 

optimum rotor solution. A simplified version of the process is shown in Figure 7. This is 

an iterative process which analyzes the rotor across a range of rotor rotation speeds—

hence the loop is referred to as the OMEGA loop. The GEOMETRY block takes the 

inputs and creates a corresponding chord distribution. This, along with the specified 

ground effect coefficient is fed into the QPROP block, which will determine the twist 

distribution necessary to achieve the desired thrust. The TIP PROP block factors in the 

estimated tip propeller efficiency to obtain the total power required. This process is 

repeated over the given range of rotation speeds and the minimum power case for each 

configuration is recorded. 
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Figure 7: Simplified design loop 

Trade Study 

As stated before, a trade study was completed to demonstrate how the effects of several 

factors on the performance of the rotor. From the results of this study, we can gain useful 

insight in terms of what rotor parameters are the most critical to the design. First, let us 

look at the configurations that the GEOMETRY block is capable of creating. In essence, 

there are eight different practical types of taper and twist combinations that collectively 

form a very broad design space. They are presented in Table 2 below. Note that the terms 

used to denote these configurations do not necessary describe the actual performance of 

the rotor, but rather its intended performance, e.g. an ideally twisted blade will not 

necessarily be the “ideal” solution. 
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Table 2: Rotor configurations 

Mode 
Chord 

Distribution 
Twist 

Ease of 
Manufacture 

1 Constant None Simple 

2 Constant Linear Simple 

3 Constant Ideal (non-linear) Moderate 

4 Single Taper None Moderate 

5 Single Taper Linear Moderate 

6 
Optimum taper 

(non-linear) 
None Moderate 

7 
Optimum taper 

(non-linear) 
Linear Difficult 

8 
Optimum taper 

(non-linear) 
Optimum (non-

linear) 
Difficult 

 

The following figures show examples of the different types of taper and twist 

distributions. Figure 8-10 depict top views of a constant-chord blade, single-taper blade, 

and optimally-tapered blade; all which have the same blade area. It should be noted that 

the scale of these planforms has been adjusted to emphasis the features of the chord 

distribution. The aspect ratio of the blades will be much higher in practice. Figure 11 

shows the twist distribution for the case with no twist, linear twist, and ideal twist. Note 

that an optimum twist distribution is not shown. In essence, ideal twist is a specific 

example of optimum twist, and therefore it was not repeated on the chart. Appendix B 

discusses how each of these distributions is achieved in much greater detail. 
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Figure 8: Constant chord planform 

 
Figure 9: Single-taper planform 
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Figure 10: Optimally-tapered planform 

 
Figure 11: Twist distributions 

 

It is important to mention the factor that optimal taper, ideal twist, and optimum twist all 

feature a segment of constant chord or twist towards the root of the rotor. This is because 
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0

2

4

6

8

10

12

14

16

0 1

T
w

is
t,

 d
e

g

radial station, r

Constant twist

Linear Twist

Ideal twist



34 
 

maximum chord was selected for each rotor so that the section of constant chord began at 

an �-value of 0.25. The twist for all non-linear cases was limited to 14 degrees. 
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Table 3 displays the thirty-six different configurations that were analyzed. All 

configurations utilize two blades with the same total blade area of roughly 314 ft2, and 

were required to produce 250 pounds of thrust, assuming no thrust was lost to rotor 

deflection. Rotor twist was limited to a maximum of 14 degrees. The chord of the 

optimally-tapered rotors was not allowed to exceed 3.57 feet for the 50-foot radius rotor 

and 5.28 feet for the 75-foot rotor. Profiles of the NACA 0012 and FX 63-137 airfoils 

appear in Figure 12 and 13. Da Vinci III utilized the FX airfoil for its favorable 

aerodynamic performance12. The NACA 0012 was selected for analysis simply because it 

is a symmetric, reasonably thick airfoil, which should be easier to manufacture than the 

cambered FX 63-137, and will produce consistent and predictable lift and drag results. 
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Table 3: Trade study configurations 

Mode Radius (ft) Ground Effect Coefficient Airfoil 

Constant chord, no twist 50 1.0 NACA 0012 

Constant chord, no twist 50 0.5 NACA 0012 

Constant chord, no twist 50 0.3 NACA 0012 

Constant chord, no twist 50 1.0 FX 63-137 

Constant chord, no twist 50 0.5 FX 63-137 

Constant chord, no twist 50 0.3 FX 63-137 

Constant chord, no twist 75 1.0 NACA 0012 

Constant chord, no twist 75 0.5 NACA 0012 

Constant chord, no twist 75 0.3 NACA 0012 

Constant chord, no twist 75 1.0 FX 63-137 

Constant chord, no twist 75 0.5 FX 63-137 

Constant chord, no twist 75 0.3 FX 63-137 

Constant chord, ideal twist 50 1.0 NACA 0012 

Constant chord, ideal twist 50 0.5 NACA 0012 

Constant chord, ideal twist 50 0.3 NACA 0012 

Constant chord, ideal twist 50 1.0 FX 63-137 

Constant chord, ideal twist 50 0.5 FX 63-137 

Constant chord, ideal twist 50 0.3 FX 63-137 

Constant chord, ideal twist 75 1.0 NACA 0012 

Constant chord, ideal twist 75 0.5 NACA 0012 

Constant chord, ideal twist 75 0.3 NACA 0012 

Constant chord, ideal twist 75 1.0 FX 63-137 

Constant chord, ideal twist 75 0.5 FX 63-137 

Constant chord, ideal twist 75 0.3 FX 63-137 

Optimum taper, optimum twist 50 1.0 NACA 0012 

Optimum taper, optimum twist 50 0.5 NACA 0012 

Optimum taper, optimum twist 50 0.3 NACA 0012 

Optimum taper, optimum twist 50 1.0 FX 63-137 

Optimum taper, optimum twist 50 0.5 FX 63-137 

Optimum taper, optimum twist 50 0.3 FX 63-137 

Optimum taper, optimum twist 75 1.0 NACA 0012 

Optimum taper, optimum twist 75 0.5 NACA 0012 

Optimum taper, optimum twist 75 0.3 NACA 0012 

Optimum taper, optimum twist 75 1.0 FX 63-137 

Optimum taper, optimum twist 75 0.5 FX 63-137 

Optimum taper, optimum twist 75 0.3 FX 63-137 
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Figure 12: NACA 0012 airfoil13 

 
Figure 13: FX 63-137 airfoil14 

 

The constant chord, untwisted rotor would likely be the most simple to design and 

manufacture. By adding ideal twist to the constant-chord rotor, we can theoretically 

improve the induced power characteristics while keeping the rotor relatively easy to 

manufacture. If a nonlinear optimum taper is introduced, the rotor becomes more difficult 

to make, but should theoretically require the least amount of power. However, the results 

of this study showed that this may not always be the case. 

Let us first examine the performance differences between the three rotor modes at each 

radius/airfoil combination. Figure 14-17 show the power required for each configuration, 

with three different values assumed for the ground effect coefficient. For each 

configuration, the rotor speed and twist distribution was varied to find the point at which 

the rotor could create the necessary thrust with the minimum power required. 
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Figure 14: Total power required, R = 50 ft, NACA 0012 

 

 
Figure 15: Total power required, R = 75 ft, NACA 0012 
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Figure 16: Total power required, R = 50 ft, FX 63-137 

 

 
Figure 17: Total power required, R = 75 ft, FX 63-137 
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and decreased another 31% percent when going from 0.5 to 0.3. This equates to an 

average reduction of 61% when going from 1 to 0.3. 

The next series of data helps illustrate why the optimally-tapered rotor does not perform 

as well as anticipated. Figure 19-22 depict the tip speed at which each rotor achieved its 

minimum power setting. But first, it should be noted that in some cases, the power 

required curve would exhibit similar behavior to a drag polar in the sense that for values 

near the minimum powered required there would be a sort of “power bucket”. Figure 18 

shows us one example, for the case of the mode 1, 75-foot radius rotor with a NACA 

0012 airfoil, which has a minimum power requirement of approximately 533 Watts. 

Figure 18: "Power bucket" 

We see that there is a range of about ±0.75 m/s where the power is within 5 W of the 

minimum power point. It could be possible that turning the rotor slightly slower or faster 

might provide us with benefits that would outweigh the modest power increase.  Now let 
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Figure 19: Optimum rotor tip speed, R = 50 ft, NACA 0012 

 

 
Figure 20: Optimum rotor tip speed, R = 75 ft, NACA 0012 
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Figure 21: Optimum rotor tip speed, R = 50 ft, FX 63-137 

 
Figure 22: Optimum rotor tip speed, R = 75 ft, FX 63-137 
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which increases the lift coefficient across the rotor. However, at a certain point the airfoil 

will reach its maximum lift coefficient, or the drag generated by the additional lift will 

become excessive. By tapering the chord, the local Reynolds is decreased, which will 

further degrade the airfoil’s lift and drag performance. The likely solution will be for the 

rotor to turn at a faster speed to achieve maximum performance, as shown in the 

preceding plots. It should be noted that the optimum tip speed does not fluctuate very 

much as the ground effect coefficient changes. It is especially stable with the larger 

radius rotors. The source of this discrepancy between our results and initial predictions 

can be illuminated further with the following set of plots. Figure 23-26 divide the total 

power into its induced and profile components. Before we analyze the results, let us recall 

the simplified equation for power required (repeated from Equation 24): 

? 8 jk{H FlDs	=t g * jcBCDEv�`v�h
         . 

In comparing these rotors, we held weight and density constant across the entire range, 

and then compared families of similar ground effect coefficient, radius, blade coefficient, 

and lift-to-drag performance. We will organize these plots in a different order to 

emphasize the effects not related to rotor radius, as this will be addressed next. 
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Figure 23: Induced and profile power, R = 50 ft, NACA 0012 

 

  

 
Figure 24: Induced and profile power, R = 50, FX 63-137 
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induced power decreases when the rotor is tapered, even though the twist distributions are 

similar. As we saw earlier, the optimally tapered rotor achieves it best performance when 

rotating faster than the constant chord rotor. This will result in a decrease in the inflow 

velocity ratio, thereby decreasing the twist required to achieve the same angle of attack. 

This allows for more of the rotor to follow the ideal twist distribution before reaching the 

specified maximum twist angle. 

Looking at the profile power term of Equation 23, we see that the blade 

coefficient, rotor tip speed, and airfoil performance are all factors that change when the 

rotor is tapered; the tip speed increases, while the blade coefficient decreases. The airfoil 

performance will also likely diminish which, as seen in these plots, ultimately results in a 

profile power increases. 

 
Figure 25: Induced and profile power, R = 75 ft, NACA 0012 
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Figure 26: Induced and profile power, R = 75 ft, FX 63-137 

The 75-foot radius rotors follow trends similar to that of the 50-foot radius rotors. 

However we see that the airfoil has even more of an effect on the induced/profile power 

relationship. Notice that for the NACA 0012 airfoil, when the ground effect coefficient 

drops to 0.3, the profile power essentially equals (or exceeds) the induced power—a clear 

distinction from the 50-foot case. 

 We have visibly identified the effects of all the parameters studied except for the 

rotor radius. Figure 27-29 will demonstrate the change in power required when increasing 

the radius from 50 to 75 feet for the NACA 0012 rotor. The FX 63-137 rotor follows a 

nearly identical trend, so for the sake of brevity only the NACA plots will be included. 

To infer the radius effect for the FX 63-137 one can simply return to Figure 16 and 17. 
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Figure 27: Effect of radius, Constant chord, no twist – NACA 0012 

 
Figure 28: Effect of radius, Constant chord, ideal twist – NACA 0012 
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Figure 29: Effect of radius, Optimum taper, optimum twist – NACA 0012 

These plots show us one important thing: the effect of the radius decreases along with the 

ground effect coefficient. For all three configurations the power required drops by 
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The consequences of the rotor operating in ground effect are substantial and all-

encompassing. The total power required, ratio of induced-to-profile power, and the 

benefits of a large radius are all significantly affected by this phenomenon. Because all 
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tools are extremely accurate. Obtaining a good estimate of the ground effect coefficient is 

the first step. All subsequent decisions are based on this first assumption, and therefore 

any errors in its estimation will propagate throughout the design.  

Recalling Figure 4, we can add the results of our trade study to get an idea in terms of the 

power reductions we can expect due to ground effect. Unfortunately we simply specified 

the ground effect coefficient, so we do not know how our results related to the quantity 

/V , which is what determines the actual magnitude of ground effect. However, for the 

sake of visualization, Figure 30 incorporates the range of 
G�k�G�k� values from the trade study 

by shading the design space that we might expect for the case of the human-powered 

helicopter. 

 
Figure 30: Calculated power reduction due to ground effect 
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Design Process 

Up to this point, our analysis has only included aerodynamic considerations. Obviously 

any changes to rotor planform will also affect the structural requirements and 

performance of the rotor. For this reason, the design process must link the aerodynamic 

and structural aspects. Unfortunately, in order to build accurate structural models, a 

certain amount of physical construction and testing must be performed. While there has 

been no work done to that end with this project, the places in the design process where 

the structural design and analysis will take place have been accounted for. Figure 31 

shows the proposed design process in its entirety. 

 

Figure 31: Complete design process  

The design loop is intended to have as few inputs as possible. However, given the 

number of variables that must be defined in order to have a constrained design, a fair 
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amount of parameters must be set before the process can be executed. This sequence of 

analysis blocks is not intended to provide a concrete answer, but rather to provide the 

designer with the necessary data from which to make decisions about the final design. 

The designer will be able to weigh the consequences of each incremental change, and 

thus be capable of creating the absolute best helicopter for the given circumstances. 

While some of these analysis steps are autonomous, others require significant user 

interaction. Appendix A discusses the inputs for each block, and the ways in which the 

blocks connect to each other. 

  



52 
 

Conclusion 

The concept of human-powered vertical flight was studied in great depth. Through the 

manipulation of preexisting theory and analytical methods, a collection of design tools 

was created to expediently conceptualize and then analyze virtually any rotor. The tools 

were arranged to form an aerodynamically-focused rotor design process, which can 

potentially be implemented into a larger complete helicopter design process. We 

discovered that ground effect is crucial to the design and performance of the helicopter; 

also essential are the rotor radius and airfoil selection. Every design decision must keep 

both aerodynamic and structural ramifications in mind. By considering the many aspects 

of human-powered vertical flight, it appears possible that future engineers can design and 

build a helicopter capable of capturing the Sikorsky Prize. The preceding discussion 

should help them get closer to that goal. 
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APPENDIX A: Design Process 

The design process introduced earlier (reproduced below) will now be discussed in depth.  

 

Figure 32: Complete design process (reproduced) 

Each block corresponds to one or MATLAB scripts that perform a particular function. 

These function, and the inputs and outputs they involve, are explained below. 

GEOMETRY 

The GEOMETRY block begins the design process and requires four inputs in order to 

create an initial rotor planform: 

 Rotor radius B+E: By fixing the radius, we have more of a control on the weight 

and strength of the rotor. We can conduct several trade studies in order to see its effects, 

but for the iterative process, it should be left as a constant. 
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 Rotor solidity B�E or rotor blade area B��E: In order to compare rotors, we 

would like to constrain the rotor blade dimensions somehow, which can most easily be 

done by fixing the blade area or fixing the solidity. The advantage of the solidity is that it 

is non-dimensional, which allows it to be relevant for every type of rotor configuration. 

The advantage of the rotor blade area is that it should theoretically keep the rotor weight 

from varying as much when the radius is changed. It will also hold the Reynolds numbers 

constant for corresponding � values. 

Number of rotor blades B)E: this design study is only considering 

configurations with two blades. An odd number of blades would create unnecessary 

complexity at the rotor hub, and any additional blades after four would not provide 

enough of a benefit to offset their weight. However, the case with four blades should 

certainly be considered, as it could have potential stability and control benefits. 

Mode: In order to create the rotor planform, the mode must be specified 

beforehand. Many of the differences between modes are qualitative rather than 

quantitative, and therefore they cannot be compared within an autonomous process. 

WEIGHT 

The WEIGHT block is crucial to the design process, as it captures the effects of 

increasing the rotor radius and blade area in terms of weight. 

Rib spacing (ribs): In order for the weight to be estimated, a rib distribution must 

be specified. The other option is to space the ribs so that the critical buckling load or 

bending moment is the same at each rib. However, this would require some previous 

knowledge of the rotor spar, which will be designed in a later step. Therefore, at least for 
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all but the final iterations, the ribs will be spacing according to a predetermined layout, 

most likely an even spacing, several different evenly-spaced sections placed together, or a 

linearly-varied spacing. 

The WEIGHT block also requires information regarding the construction of the rotor. It 

uses material densities to determine the weight of the ribs, spars, and skins. The main 

purpose of this block is to sufficiently incorporate the effects of increasing the rotor 

radius, chord, and number of ribs, which all lead to structural benefits, but also cause 

weight increases. The more information that is available about the rotor construction, the 

higher fidelity output this block will provide. However, if little is known about the rotor 

at this stage, then the weight function can just assume an area density and evaluate the 

rotor weight based on this value. 

QPROP 

With the rotor planform and rotation speed defined, we can now determine the twist 

necessary to generate enough thrust to hover. This requires five additional inputs: 

Ground effects coefficient B
�E: this value will affect the inflow velocity 

through the rotor, which changes the angle of attack seen along the rotor. Assuming that 

the rotor placement has been specified, PQ  can be estimated according quantity Bx V⁄ E. 

Thrust loss due to coning B"�,--E: as the aerodynamic loads increase, the rotor 

deflects upwards, which changes the direction of the thrust vector. This resultant loss of 

thrust is treated as a design variable rather than an output because the spar can be 

strengthened to achieve whatever amount of thrust retention is necessary. 
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Fixed system weight Bz-�-"0&E: this variable includes all other components of 

the helicopter that have a fixed weight, such as the pilot, fuselage, rotor hub, and tip 

propellers. The weights of these components will not likely be known until after 

construction, so they should be built as early in the design process and possible. 

TIP PROP 

The tip propellers will be on a scale that is much more common that the main rotor, and 

therefore their performance will be more predictable. Minimum-induced loss propellers 

have been researched quite extensively, and have found success on other human-powered 

vehicles such as the Daedalus or Gossamer-series human-powered aircraft. 

Propeller diameter B#!+,!E: The primary limiting factor on the performance of 

the propellers will be their diameter, which is driven by the placement of the rotor (unless 

the propellers are placed on booms, in which case there is essentially no restriction).  

Rotor tip speed B."$!E: If the diameter is known, we can simply design a 

propeller for maximum efficiency at each of several inflow velocities, which will 

translate into rotor tip speeds. 

Taking the power required output from the QPROP block, we can find the power input 

necessary to generate enough tip propeller thrust to turn the rotor at the specified rotation 

speed. 

SPAR DESIGN 

Once the OMEGA loop has finished running and determined a solution for the given 

inputs, the rotor parameters are then sent to the SPAR DESIGN block. At this point we 

will know the thrust, power, and weight characteristics of the rotor, how fast it is 
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spinning, and the resulting spanwise lift distribution. We now have enough information to 

determine the loads that the spar will see, as well as the power surplus that can be spent 

on strengthening the spar and implementing a control system. Other than the inputs that 

have already been discussed, the SPAR DESIGN will need two specified variables: 

Pilot power available B!�.E: Extensive testing should be done to determine the 

maximum  power output we can expect from the pilot for the duration of the mission. 

Total mechanical efficiency B/&0�1E: this incorporates the total efficiency of the 

components in between the pilot’s feet and the propeller (or rotor) shaft. This value 

multiplied by the pilot power available will give us the actual value of our available 

power. 

The spar design process is one that will be just as complex as the rotor aerodynamic 

process, and therefore will not be attempted here. But it is important that the rotor design 

decisions are made with the spar design in mind. We would like to maximize the volume 

inside the rotor as best we can, as that will give the spar designer the most room to work 

with and allow for the spar to be larger and therefore thinner and lighter. The SPAR 

DESIGN block will output all of the characteristics of the rotor, which can be 

implemented in the simulation tool described in a later section. 
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Appendix B: Other Considerations 

There are some other factors that may affect the rotor performance that were not 

researched thoroughly enough to be discussed in depth, but are certainly worth 

mentioning. 

Indoors vs. Outdoors 

Da Vinci III was flown inside Cal Poly’s Mott Gym. While this building is large enough 

to seat a couple thousand people, it becomes extremely small when a 100-ft diameter 

helicopter is placed inside. The amount of air being displaced by the rotors is by no 

means negligible compared to the size of the room. It was observed that while the Da 

Vinci III rotor blades were spinning, the sports banners hanging on the walls of the gym 

were sticking out at 90-degree angles. In other words, the air that was being pushed down 

through the rotor was being circulated out to and up the walls of the gym, hitting the 

ceiling, and then coming back towards the center of the room. At this point the air would 

come back through the rotor, so instead of the helicopter operating in a hover condition, it 

was essentially in a climb. Therefore the rotors were forced to create even more thrust in 

order to lift off the ground. This phenomenon leads to the belief that when attempting to 

capture the Sikorsky Prize, the helicopter should be flown out of doors, in as large of an 

open area as possible. 

There is another problem that arises from a room that is too small. Regardless of the 

operating environment, as the rotor turns, vortices will build at the tips as they gain 

strength until the point where they are shed from the rotor and head outward in a radial 

direction. If the rotor was outside, these vortices would simply travel away from the 

helicopter until they lost their energy and disappeared. However, when inside a room, 
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they will reflect off the walls and travel back towards the helicopter. They will interact 

with the rotor blades aperiodically, which will interfere with the stability of the 

helicopter. Given the fact that the any control inputs will increase the power requirement 

of the aircraft, these vortices will have a clear adverse effect on its performance. Again, 

this leads to the argument that the rotor should be operated outside, in extremely still air. 

Theory vs. reality 

One subject that has not been addressed is the difference between the expected rotor 

performance and its actual performance. The helicopter rotor blades are designed using 

very precise methods, and optimized for a very specific condition. In reality, each blade 

airfoil will not be experiencing the Reynolds number and angle of attack for which it was 

designed. Assuming that theory used for analysis is sound, this margin of error should 

hopefully be small, but it will not be negligible. A simple solution would be to just 

implement a performance degradation factor that would accompany both the lift and drag 

performance calculations. The other option is to run several analysis cases with the rotor 

twist at each station being randomly increased or decreased within a given range. This 

would simulate the uncertainty of the inflow velocity. While the performance factor 

method seems faster, the designer would be forced to build a physical model for the sake 

of comparing analytical and experimental results in order to have any faith in the 

accuracy of the performance factors that are chosen. Therefore the inflow uncertainty 

method appears to be preferable. However, these are only two suggestions. It is quite 

likely that another solution exists which would provide better results. 
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QPROP vs. simple theory 

Unfortunately, there is very limited data available for the flight regime in which we are 

interested. So while we would like to validate the analytical tools we have against some 

sort of experimental benchmark, we cannot do so for the conditions that the helicopter 

will experience. One comforting fact is that the theory behind QPROP is relatively 

simple, meaning that we can analyze the same problems with an elementary code and 

expect to get similar results. We would be lacking any three-dimensional considerations, 

but for the most part, our results should agree. There are two ways we can compare these 

methods:  

1. Take the same geometry and analyze it using both methods and then compare 

performance. 

2. Use each method to design a geometry to fulfill the same requirements, and then 

analyze and compare performance. 

The results of the first method appear below for the case of a 75-foot radius rotor, with an 

FX 63-137 airfoil operating in a regime where the ground effect coefficient is 0.5. The 

rotor geometry was created to generate 250 lbf of lift when analyzed using QPROP. This 

same geometry was then analyzed using the simplified theory, which resulted in both 

thrust and power differences. Because of this, we would also like to look at the 

differences in power required-per-unit-thrust for each method. Figure 33-35 depict how 

these two methods vary in their results. 
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Figure 33: Power comparison 

 

Figure 34: Thrust comparison 
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Figure 35: Power-per-thrust comparison 

As might be expected, simple theory tends to overestimate the thrust being produced, and 

underestimate the power required. This can likely be attributed to the tip losses, which 

QPROP accounts for, but are not addressed with the simply theory analysis. Overall, the 

results compare well enough that we are confident that QPROP is producing a reasonable 

solution. Again, this is not considered a rigorous validation, merely a “sanity check”. 

The second method of comparison was used for all of the analysis done during the trade 

study. This means that each power value corresponds to a thrust production of 250 lbf. 

Figure 36-40 show the power comparisons for all configurations analyzed. 
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Figure 36: Power comparison, R = 50 ft, NACA 0012 

 

Figure 37: Power comparison, R = 75 ft, NACA 0012 
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Figure 38: Power comparison, R = 50 ft, FX 63-137 

 

Figure 39: Power comparison, R = 75 ft, FX 63-137 
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Figure 40: Power ratio effect 

We see that QPROP and simply theory yield fairly similar results. Figure 40 points to the 

leading cause of any differences. As the induced power becomes dominant, the 

discrepancy between the two methods increases in magnitude, which suggests that the 

differences in power are tied to the induced power. This matches the earlier-stated 

presumption that the three-dimensional effects were causing the major discrepancies. 

The overall conclusion that can be made from these two comparisons is that QPROP 

should be used whenever possible, as it is a higher-fidelity solution, which is crucial for 

the success of this particular problem at hand. 

Rotor flapping 

The concept of a flapping hinge was developed by the Spaniard Juan de la Cierva in the 

early 1920’s as a remedy to the asymmetrical lift experienced by a rotor in forward flight, 

which resulted in a strong rolling moment towards the side of the rotor with the retreating 

blade. By replacing the fixed joint at the rotor hub with essentially a pin joint, the rotor 
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blade was allowed to move up and down according to the local lift conditions, thereby 

eliminating the resultant rolling moment. The centrifugal forces acting on the rotor 

prevented the blades from simply folding up, and instead managed to keep the blades at a 

reasonable angle of coning. Clearly these asymmetrical loads are not an issue in hover, 

but the concept of a flapping hinge could still be useful as it would eliminate the moment 

at the blade root, and could subsequently reduce the structure loads and hence required 

strength of the blade. It is possible that this weight savings could outweigh the 

accompanying loss of lift that result from the inherent coning associated with the flapping 

hinge. To analyze the amount of coning that the rotor would experience, we simply must 

know the lift distribution across the blade as well as its mass distribution. To quickly 

discover whether the flapping hinge is even viable, we can make some reasonable 

simplifications to make the process go very quickly. 

First let us examine the lift characteristics of the rotor. The moment caused by the lift at 

any point � along the rotor can be expressed according to Equation 32, where the first 

term is the radial station on the rotor, and the second term is the local lift force at the 

point. 

 ��R�<B�E 8  � � �B�E�� (32) 

To find the moment experience at the blade root, we simply integrate the expression from 

the root to the tip, as seen in Equation 33. 

 ��R�< 8 9 �B�E���D̂
 (33) 
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In terms of the rotor lift, we will assume a triangular lift distribution, which is the 

theoretically optimum result.  If we label the lifting load at the tip �^ , then the lift 

distribution can be expressed as Equation 34. 

 �B�E 8  �^ �D (34) 

Note the fact that the total lift from the two rotors must equal the weight of the helicopter, 

which we can incorporate into Equation 35. 

 �B�E 8 *<T<>� �DF (35) 

Putting this result back into Equation 34 and integrating twice, we obtain Equation 36, 

which provides the moment experienced at the blade root due to the rotor lift. 

 ��R�< 8 {M�M��Da  (36) 

The centrifugal force for an object with mass-per-unit-length 7 spinning with its center 

of mass at a distance � from as axis can be expressed by Equation 37, where Ω is the 

rotation speed in radians/sec. 

 �L.�. 8 7��Ω	� (37) 

This force points outwards away from the axis of rotation, but in the same rotational 

plane regardless of the coning angle, β. However, the coning of the blade will reduce the 

moment arm of the force. Assuming the angle is small, this moment arm at a point � 

along the blade becomes �¡. Therefore the moment at the any point along the blade 

caused by centrifugal force behaves according to Equation 38. 
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 �L.�. 8 Ω	¡7�	�� (38) 

If we assume that the mass is distributed evenly along the blade, we can replace the 

quantity 7 with the total mass of the rotor blade, and then solve for the moment seen at 

the blade root using Equation 39, which clearly becomes Equation 40. 

 �L.�. 8 Ω	¡ {¢��£�¤D 9 �	��D̂
 (39) 

 �L.�. 8 Ω	¡V	 {¢��£�2¤  (40) 

If the rotor blade is in equilibrium—as it should be while hovering—the moments due to 

lift and centrifugal forces will be equal, and therefore Equation 41 will be true. 

 V {M�M��a 8 Ω	¡V	 {¢��£�2¤  (41) 

For a given rotor design and rotation speed, all of these quantities are known except for 

the coning angle ¡, which is solved for in Equation 42. 

 ¡ 8 {M�M��{¢��£� ¤	KFD (43) 

If we take the Da Vinci III as an example, estimating its blade weight at 30 pounds each, 

with a total weight at 250 pounds, and assuming it would be turning at the design hover 

rotation speed of 8.5 RPM, we obtain a coning angle of approximately 194°. While this is 

not likely an accurate result, as the small angle assumption obviously no longer applies, it 

clearly shows that the rotor is simply not spinning fast enough to the generate the 

centrifugal force necessary for a flapping hinge to be viable.  
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Rotor stability 

One of the ways in which the stability of the helicopter can be affected is by changing the 

placement of the rotor itself relative to the center of gravity of the entire craft. Da Vinci 

III was configured with the rotor hub above the rider. This was most likely driven by the 

ground clearance required for the tip propellers. However, if the propellers were placed 

on booms in order to raise them up above the rotor, then the rotor plane could essentially 

be lowered all the way to the ground. For one thing, this would magnify the beneficial 

effects caused by the ground. It could also conceivably improve the stability of the rotor. 

A reasonable method for analyzing the behavior of the helicopter as a function of rotor 

placement begins with first limiting the motion to purely longitudinal movement16. The 

yaw axis is clearly not driving, as there should be essentially zero forces causing any sort 

heading changes. The lateral behavior should be very similar to the longitudinal result, 

due to the fact that the helicopter is symmetric about the rotational axis other than the 

weight distribution of the pilot, which if anything, could be used to help stabilize the 

aircraft. The longitudinal motion of the helicopter can be defined by Equations 44-46, 

shown below. 

 ' {M�M��¤ ¥¦ g §¨§©� ¥� g §¨§ª� x� g §¨§« ¬ ' *<T<>� 8 ' §¨§®� ¯^ ' §¨§°± ²] (44) 

 
§³§©� ¥� g �§³§ª¦ ' {M�M��¤ � x¦ g §³§ª� x� g §³§« ¬ 8 ' §³§®� ¯^ ' §³§°± ²] (45) 

 
§§́©� ¥� g §§́ª¦ x¦ g §§́ª� x� ' µ¶¶¬� g §§́« ¬ 8 ' §´§®� ¯^ ' §´§°± ²] (46) 

Using the substitutions shown in Equations 47-49, we can alter the equations so that they 

may be rearranged in order to extract a characteristic equation that will define the 
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longitudinal motion of the helicopter. The unforced equations in matrix form appear in 

Equations 50. 

 ¥ 8 ·B¸E�¹º (47) 

 x 8 »B¸E�¹º (48) 

  8 B¸E�¹º (49) 

¼½½
½¾�' {M�M��¤ � g §¨§©� � §¨§ª� �§¨§« � ' *<T<>��§³§©� �¿§³§ª¦ ' {M�M��¤ À � g §³§ª�� §³§« �§§́©� �§§́ª¦ � g §§́ª� � �'µ¶¶�	 g §§́« ��ÁÂÂ

ÂÃ Ä¥� B¸Ex�B¸EB¸EÅ 8 0 (50) 

After several cancellations, which are not presented here, the characteristic equation 

obtained by expanding the determinant appears in Equation 51. 

 �% ' Ç ¤{M�M�� �§¨§©� g §³§ª�� g ]RÈÈ §§́« É �2 g §³§ª� Ç� ¤{M�M���	 §¨§©� g ¤{M�M��RÈÈ §§́« É �	 g ¤RÈÈ §§́©� � '
                                                                       ¤{M�M��RÈÈ §§́©� §³§ª� 8 0 (51) 

While we can use this equation, it might be more useful to make one additional 

simplification in order to reduce the characteristic equation from its fourth-order form to 

that of a third-order. By constraining the helicopter in the Z-direction (as would be 

appropriate for hover), we can reduce the number of state variables by one, resulting in 

Equations 52 and 53. 

 ' {M�M��¤ ¥¦ g §¨§©� ¥� g §¨§« ¬ ' *<T<>� 8 ' §¨§°± ²] (52) 

 
§§́©� ¥� ' µ¶¶¬� g §§́« ¬ 8 ' §´§°± ²] (53) 
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Using the same substitutions as defined previously, we can again put the unforced version 

of these equations in matrix form. 

 Ä�' {M�M��¤ � g §¨§©� � �§¨§« � ' *<T<>��§§́©� �'µ¶¶�	 g §§́« ��Å Ç¥� B¸EB¸EÉ 8 0 (54) 

Taking the determinant of the square matrix, we obtain the characteristic equation of the 

longitudinal motion. 

 �2 ' q ¤{M�M�� §¨§©� g ]RÈÈ §§́« r �	 g ¤RÈÈ §§́©� 8 0 (55) 

While we could find the roots of this equation, it would be easier to analyze the effects of 

the rotor placement by simply determining the coefficients. Appearing in the form of 

Equation 56 shown below, Equation 55 can be used to calculate Routh’s discriminant, 

which can predict whether the rotor will be unstable, neutrally stable, or stable. 

 3�2 g ²�	 g A� g � 8 0 (56) 

Routh’s discriminant for a cubic function is defined by Equation 57, which in this case 

becomes Equation 58. 

 V. �. 8 ²A ' 3� (57) 

 V. �. 8 ' q ¤RÈÈ §§́©� r (58) 

We are purely interested in the sign of this value, and the term 
¤RÈÈ clearly will be positive. 

Therefore we must only evaluate 
§§́©�  and we will obtain some important information 
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about the inherent stability of the helicopter. Equation 59 shows how this term can be 

found.  

 
§§́©� 8 i´iÊ±Ë

§Ê±Ë§Ì §Ì§©� ' �§¨§©� � Í´ (59) 

Because the stability derivatives that appear in this equation require some general 

knowledge about the helicopter, we will use Da Vinci III as an example. However, rather 

than using the tapered rotor of Da Vinci III, a constant-chord rotor with the same radius 

and solidity will be utilized. The calculations for this analysis appear in Appendix D, 

however the conclusion from this analysis appears below. 

Í´ Î '0.90 ÐÑ                   ÒÓÓÓÓÔ §§́©� Î 0         (60) 

We look to Table 4 and see that if Da Vinci III were to be placed at least 0.9 inches below 

the helicopter’s center of gravity, Routh’ s discriminant becomes negative, which implies 

that the rotor will not exhibit any unstable oscillation. Placed directly at 0.9 inches below 

the center of gravity, the helicopter should be neutrally stable. Anywhere above that and 

the helicopter becomes unstable. 

Table 4: Routh's discriminant 

TEST CONSEQUENCE 

1. All coefficients are positive No pure divergence 

2. R.D. is positive No unstable oscillation 

3. R.D. = 0 Neutrally stable 

4. R.D. is negative Unstable 

5. D = 0 (for cubic, E = 0 for quartic) Non-oscillatory 

6. One coefficient is negative Pure divergence or unstable oscillation 

 

We now have the coefficients A and D from Equation 55, and C is clearly zero. Solving 

for B will allow us to determine if the helicopter might exhibit any pure divergence. 
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 ² 8 ¤{M�M�� §¨§©� g ]RÈÈ §§́«  (61) 

 ² 8 Õ]a=>cBKDEF
ÖK�]�×Ø�F Ù Ú ¤{M�M�� ¿2	 �A< b⁄ ' Ê]n .̄ÛÜ�À � ]KD� '

]RÈÈ ÕHuÝÊÖ g 2	 �A< b⁄ ' Ê]n .̄ÛÜ� Í´Ù Þ (62) 

 ² 8 P]BP	 ' P2 ' P%Í´E (63) 

We see that depending on the positive constants P], P	, P2, and P%, as well as the sign 

and magnitude of Í´, the coefficient B could either be positive or negative. However, we 

expect B to be negative (see Appendix D), which according to Table 4 will result in a 

pure divergence, represented by the helicopter’s tendency to translate across the ground 

during flight. In other words, given the best case scenario, the aircraft will still require 

some sort of control system, although placing the rotor beneath the pilot will likely ease 

the requirements of the system considerably. 

This method has a limitation in the fact that the reactions of the rotor to any perturbations 

will occur more slowly than with a typical helicopter rotor spinning at a much higher 

rotation speed. More work is necessary to determine just exactly what part of the theory 

can be applied to the human-powered helicopter application. There are two senior 

projects in the Kennedy Library archives at Cal Poly that discuss this issue in reference to 

designing a control system for the Da Vinci series of helicopters. Since controllability is a 

major issue in terms of staying with a 10-meter box for the Sikorsky Prize, this issue 

should be investigated more closely in the future. 
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Rotor Wind-up Simulation 

One factor that not been discussed in other reports is the significance of the wind-up 

portion of the helicopter mission. The vigor and duration of the output required during 

the time from when the rotor is at rest until it has reached the rotation speed required for 

hover has the potential to affect the pilot’s energy available for the remainder of the flight 

(this is most relevant when the rotor is driven by tip propellers, as there is not a single 

direct physical link between the output of the rider and the rotation of the rotor, but rather 

additional connections of the rider to the propeller, and the propeller to the air). With the 

human pilot already on the cusp of his/her performance threshold, the path taken to reach 

the hover rotation speed could possibly make the difference between a successful and 

unsuccessful mission.  

There are two parts to the design and analysis of the wind-up procedure: the design of the 

rotor, and the pilot output “schedule”.  

To understand how the rotor design affects the rotor wind-up, we can employ the 

relationship between torque and angular acceleration, as seen in Equation 64. 

 [ 8  ßR (64) 

To put this in a more familiar format, let us use the following definition of torque. 

 à 8 GK (65) 

Substituting this back into Equation 64, we obtain Equation 66. 

 [ 8  GRK (66) 
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Note that the power in this equation is the net power applied to the rotor shaft, which can 

be expressed as the difference between the power supplied by the rider (multiplied by the 

total system efficiency) and the power required to spin the rotor at the current rotation 

speed.  

 [ 8  G�Oh×���e�á`�G�e�e�RK  (67) 

The larger the angular acceleration, the less time the pilot has to be pedaling during the 

wind-up phase, which will leave him/her with more energy for the hover and climb 

portions of the flight. Clearly designing the rotor to turn with a minimum power 

requirement will produce higher accelerations, but this has been a driving factor from the 

beginning. We turn instead to the denominator, which holds the rotor angular moment of 

inertia µ, as well as the rotation speed, Ω. By making a conscious effort to keep the mass 

of the rotor concentrated as much towards the rotor shaft as possible, the moment of 

inertia will be minimized. Building the aircraft as light as possible is not the only means 

by which this is accomplished. One must also consider the inertial impacts of each 

planform design. A tapered chord will place less mass towards the tip of the rotor, which 

may offset the manufacturing penalty by increasing the wind-up performance. 

Pilot output 

It has been repeatedly demonstrated that a human can deliver low power outputs for 

hours at a time. At a certain point however—which varies from individual to individual—

the strain on the body transitions from being purely aerobic to purely anaerobic. Humans 

can maintain anaerobic activity for much shorter periods of time. As the power demand 

increases, the sustainable duration decreases respectively. While this is an intuitive 
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concept, it is very difficult to predict the possible duration for any given output level. 

Instead, one must rely primarily on testing to determine the performance capabilities of 

the pilot. This adds a level of difficulty when it comes to designing the rotor, as one must 

first know the rotor power requirements before a suitable testing and training program 

can be developed and implemented. At the same time, if the capabilities of the pilot were 

thoroughly determined beforehand, the data could be used to positively influence the 

rotor design. 

Rather than attempt to determine the power requirements before the rotor has been 

designed, we can simply determine the most efficient way for the rotor to wind-up. A 

simulation was created using MATLAB’s ode45 function, which can numerically 

evaluate a given set of ordinary differential equations. In this case the equations for 

angular acceleration and angular velocity were used. When written with respect to time, 

they can be presented according to the following equations. 

 
iF®iºF 8  ßR (68) 

 
i®iº 8 Ω (69) 

The simulation begins with the rotor at rest and runs until it has reached hover rotation 

speed. At each time step the function evaluates each parameter. As discussed earlier, the 

torque is a function of the rotor power required and the power output by the pilot seen at 

the rotor shaft. Because the pilot is driving propellers at the tip of the rotor, this power 

output will vary with rotor rotation speed as well as pilot power input. 
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In the past, the pilot would begin by pedaling as hard as possible, and continue this effort 

throughout the duration of the flight. However it might be possible to experiment with 

different power “schedules” to keep the pilot’s effort in the aerobic range for as long as 

possible. The only foreseeable downside is that a longer run time would require a larger 

supply of thread to be wound around the tip propeller shafts. This could add to the 

probability of the thread getting tangled while the propellers were being driven, and also 

conceivably contribute a non-negligible increase in system weight and moment of inertia. 

Nevertheless, the prospect of reducing the pilot load significantly is certainly worth the 

effort of developing this simulation to a level of high fidelity. The tools to predict the 

rotor power required and tip propeller output are already in place, and measuring the total 

efficiency between the rider and propeller would be a simple task. The tedious part of the 

simulation development would be weighing each component of the rotor so that an 

accurate estimation of the moment of inertia can be obtained. With these elements in 

place, the simulation can be run as many times as necessary, with a very low 

computational cost to the user. 

The concept of the ideal path to 3 meters raises another issue to consider: off-design 

performance. 

Off-design performance 

One unfortunate fact about the Sikorsky Prize task is that the rotor must be capable of 

operating within a 3-meter range in terms of height above the ground. We have already 

seen the significance of ground effect, and how it—and the corresponding rotor design— 

varies with x/V. We must select the ground effect coefficient at the very beginning of the 

design process. For example, if we would like the rotor to be most efficient at a height of 
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3 meters, then it will be at an off-design condition for the entire climb up to 3 meters. 

This would not likely be ideal, as we would rather spend as little time at 3 meters as 

possible. Thus, there are two quantities that must be balanced: time spent hovering, and 

time spent climbing. The fact that our pilot is human makes this problem all the more 

difficult. In purely mathematical terms, it is ideal to spend as little time climbing as 

possible; this results in the least amount energy being expended.  However, this may 

require such a large power output from the pilot that their available power degrades much 

more quickly than would otherwise occur with a modest output. And so we must balance 

the benefits of the power reduction in deeper ground effect with the potential reduction in 

pilot workload by allowing more time for the climb. Again, this all depends on 

physiology, and so much more research is needed before a conclusion can be reached. 
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Appendix C: Methods 

There were several methods mentioned in the body of this paper whose details were not 

shown. The section will portray the details behind those methods, which should allow the 

reader to reproduce the same conclusions, if desired. 

Linear algebra method for desired inflow or lift distribution 

A method for achieving an arbitrary lift distribution with an arbitrary wing planform was 

developed by a student and two professors at Cal Poly17. This concept was applied to a 

helicopter rotor with the expectation that similar principles would apply, thereby allowing 

an arbitrary inflow velocity distribution to be generated with an arbitrary rotor planform. 

Assuming that the airfoil is known for every radial location on the blade, the velocity 

distribution is achieved by altering the twist on the blade. For this particular application, 

we were only interested in a uniform velocity distribution, as this is the condition 

required for a minimum-power rotor. However, this method was also used to generate 

arbitrary lift distributions over the rotor. 

The governing principle behind this method is a simple application of linear algebra, 

utilizing the well-known form of Equation 70. 

 3 · ¥ã 8 (äã (70) 

Using our analytical tools we can build the 3 matrix and (äã vector, so that we may solve 

for the ¥ã vector, which will be the incremental incidence that must be added to the 

current rotor incidence in order to obtain the desired inflow velocity distribution. The 

defining dimension of these matrices is å, which is equal to 
�æ]	 , where Ñ is the number 

of radial stations (and always odd). While the effects of each radial station was analyzed, 
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only every other station was used to build the A matrix in order to reduce the singularity 

that tended to accompany the use of too many entries.  

¥ã 8 ç ]̄¯	è̄éê      (71) 

The first step in the process was to evaluate a given rotor at the design conditions, but 

with zero degrees incidence. The results from this analysis were set as the baseline 

condition. The rotor was also evaluated at the design condition, which was created using 

blade element and moment theory. By subtracting the baseline results from the design 

results, we were able to build the (äã vector as seen in Equation 72, with each entry 

corresponding to one of the å cases. 

(äã 8 Ä 6],iÝ¹@�Ýi ' 6],wÊ¹ÝY@�Ý6	,iÝ¹@�Ýi ' 6	,wÊ¹ÝY@�Ýè6ì,iÝ¹@�Ýi ' 6ì,wÊ¹ÝY@�Ý
Å         (72) 

Then å cases were run, with the index Ð having an initial value of 1, and incrementing by 

2 at each iteration. At each case the incidence at the Ðºí radial station ( @̄) was set to 1°, 

and the radial stations on either side ( @̄�], @̄æ]) were set to 0.5° (except of course at the 

boundaries, where only there was only one point within the range of the rotor). All the 

other radial stations retained their zero-incidence settings. This was done so that the 

effect of each radial stations on the inflow velocity could be determined, thereby allowing 

the theory of superposition to be utilized in building a twist distribution to match the 

desired inflow velocity distribution. With each case, a row was added to the 3 matrix. 

Because the analysis yielded an output vector with Ñ entries, every other value was taken, 
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which reduced the row vector placed in the 3 matrix to a length of å entries. Each row 

represented the change in velocity distribution from the design condition to the altered 

condition for the given twist distribution. 

3 8 ¼½½
½¾�6®±,] �6®F,] … �6®é,]�6®±,	 �6®F,	è ï è�6®±,ì �6®F,ì … �6®é,ìÁÂÂ

ÂÃ
              (73) 

With all the matrices populated, it is possible to solve for x by multiplying both sides of 

Equation 72 by the inverse of A. For the sake of robustness, the pseudo-inverse was used 

instead of the true inverse, as the 3-matrix tended to be near singular. 

¥ãi@ðð 8 3�](äã           (74) 

Recall that this ¥-vector is of length N, while the rotor contains n radial stations. In order 

to obtain values for the remaining stations, a linear interpolation was used in between 

each point to create a new, complete ¥-vector. Again, ¥ã corresponds to the value of 

incidence at each radial station that needs to be added to the original design twist, so the 

final twist distribution can be defined according to Equation 75. 

¥ãiÝ¹@�Ýi 8 ¥ãwÊ¹ÝY@�Ý g ¥ãi@ðð        (75) 

We can see an example of how this method can be used in Figure 41. 



86 
 

 
Figure 41: Matching triangular lift distribution 

The dotted line shows the lift triangular distribution that would result from a rotor 

operating with a constant inflow velocity. If the rotor is ideally twisted and then analyzed 

using QPROP, it will experience lift degradation at the rotor tips due to three-dimensional 

effects. However, using the aforementioned method, the twist can be modified to account 

for these effects, and bring the predicted lift distribution back much closer to its intended 

shape. Analysis has suggested that there is not much to be gained in terms of power 

savings, however, the ability to manipulate the rotor while incorporating three-

dimensional effects could prove useful in terms of structural considerations. From this 

figure we can see that compared to the untwisted case, the twisted rotors shift a 

significant part of the lift away from the tip and towards the root. This decreases the 

bending moment seen by the entire rotor, meaning that the rotor structure could either be 
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made lighter to yield the same deflection, or not changed and deflect less. The downside 

is that it is computationally expensive, and therefore should likely be used in later phases 

of the design. 

Creating the chord distribution by means of the solidity 

The rotor solidity, σ, is defined as the ratio of rotor blade area to rotor disc area, which 

can be expressed according to Equation 76.  

b 8 ì 9 ñB�Ei�Ø�tDF            (16) 

For a constant-chord rotor, this reduces to Equation 77 

b 8 ìñtD      (77) 

It was shown that an optimally tapered blade X� 8 ò�� \ is not realizable at the root, and 

therefore a maximum chord value must be established. If we label this value �óÊ© and 

define �óÊ© as the radial station at which �óÊ©  is first reached, then Equation 78 must 

hold. 

 �º 8 �óÊ©�óÊ©  (78) 

Accordingly, the solidity for a practically optimal rotor is calculated using Equation 79. 

b 8 ìñ�tD ô1 ' �ÑB�óÊ©Eõ             (79) 

For the single-taper blade, two variables must be predetermined in order to find a suitable 

chord distribution. Although there are three relevant variables (�º, ��, Λ), they are related 

by expression ö 8 ò�ò�, which eliminates the need to initially define all three. As was done 
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with the optimally tapered blade, it may be necessary to set a maximum allowable chord 

value. If the desired solidity cannot be obtained with taper that extends the entire length 

of the rotor, then a constant-chord inboard section will be required, again similar to the 

optimally tapered rotor. Using the same notation as presented in Equation 78, the solidity 

for a single-taper rotor can be found with Equation 80. 

b 8 ìñ�¿÷�øáùæ�±úûF �B]��øáùEÀtD       (80) 

One can see that if the rotor is tapered over the entire span B�óÊ© 8 0E, Equation 80 

reduces to Equation 81. 

b 8 ìñ��±úûF �tD        (81) 

Similarly, if the rotor has a constant chord for the entire span B�óÊ© 8 1 �Ñ� ö 8 1E, 

then both Equation 80 and Equation 81 will reduce to Equation 82, which is the same 

result we obtained with Equation 77. 

b 8 ìñtD                          (82) 

Conversely, it is possible to create a chord distribution that will yield a desired rotor 

solidity. The non-tapered blade is most obvious, as Equation 82 simply can be 

manipulated to take the form seen in Equation 83. 

� 8 ìWh×ËO�×htD        (83) 

The chord distribution for an optimal rotor was already discussed, but it is presented here 

in a more succinct form: 
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� 8 ü�óÊ©, � ý �óÊ©
ñ�� , � þ �óÊ©

�              (84) 

�Í��� �óÊ© 8 �º�óÊ© 

The single-taper blade requires multiple steps to calculate the chord distribution, because 

in order to maintain the desired taper while still achieving the specified solidity, the chord 

might tend to exceed the previously defined maximum chord value.  

We can find the maximum possible solidity for which the rotor could be tapered for the 

entire span by using Equation 85. 

bóÊ© 8 ìB]æ÷Eñøáù	÷tD             (85) 

If the desired solidity is less than or equal to this value, the tip and root chords could be 

defined according to Equation 86 and Equation 87, respectively. 

�º 8 	tDWh×ËO�×hìB]æ÷E         (86) 

�� 8 ö�º               (87) 

However, if the desired solidity exceeds this value, then the rotor will have to remain 

constant at �óÊ© from the root until some place along the span, �óÊ© , after which the 

rotor can taper for the remainder of the span. In order to calculate �óÊ© , the tip chords 

must be defined according to Equation 88.  

�º 8 ñ�÷               (88) 
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Setting the root chord equal to �óÊ© , we can calculate �óÊ© using Equation 89. 

�óÊ© 8 �Ø�h×ËO�×hé ��ò�úòøáùF ��òøáù�ò�F �     (89) 

The value of �óÊ© should range from 0 to 1. If it is less than 0, then the rotor should be 

able to be tapered its entire length, and therefore the value �óÊ© is not relevant. Similarly, 

if it is greater than 1, the desired solidity is greater than the maximum possible solidity, 

and thus the value �óÊ© is again of no consequence. Assuming that this value falls within 

the acceptable domain, the chord will be fixed at �óÊ© from the root until �óÊ© , and will 

then taper to the tip of the rotor. 

Rotor inflow velocity, � 

In order for the rotor to be operating at point of minimum induced power, a constant 

inflow velocity ratio—and hence a constant inflow velocity—is desired. This is proved 

using the calculus of variations. The induced power is proportional to the kinetic energy 

of the rotor wake. Writing the induced velocity as a mean value 6_ plus a perturbation �6 

the proof can be demonstrated through Equations 90-93: 

��~9 6	�3          (90) 

6 8 6_ g �6        (91) 

9 �6�3 8 0         (92) 

9 6	�3 8 6_	3 g 9B�6E	�3        (93) 

Clearly for a minimum kinetic energy, the perturbation value �6 must be zero, which 

implies that the induced velocity is constant over the entire rotor. 
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Rotor twist for constant inflow velocity 

Achieving this desired velocity is possible through the use of rotor twist, although the 

twist required will always be nonlinear. The simplest case is that of the constant chord 

rotor, for which the twist distribution follows Equation 94. This is referred to as ideal 

twist. 

¯ 8 ®��                    (94) 

While this twist distribution is not recognizable near the root, it will yield a uniform 

induced velocity over nearly the entire rotor. Analysis suggests that for the inboard 25% 

of the rotor, a non-uniform velocity produces negligible power increases. 

Theoretically, a uniform velocity distribution can be realized for any rotor geometry.  

Blade element theory gives the rotor thrust coefficient as Equation 95. 

A< 8 9 W	 
AYZB¯�	 ' I�E g AY��	���]̂
                (95) 

Accordingly, the differential thrust coefficient can be examined at each radial station 

using Equation 96-99. 

�A< 8 W	 
AYZB¯�	 ' I�E g AY��	�            (96) 

�A< 8 W	 ¿AYZ �¯ ' ��� �	 g AY��	À            (97) 

�A< 8 W	 
XAYZ[ g AY�\�	�          (98) 

�A< 8 W	 ôAY�	õ          (99) 

At the rotor tip, where r=1, the expression reduces to Equation 100. 

�A<� 8 W�	 AY�       (100) 
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The quantity bº does not have any physical significance, as the solidity only 

applies to the entire rotor. However, it represents the relationship between local 

chord and total rotor radius, as depicted by Equation 101. 

bº 8 ìñ�tD               (101) 

A uniform inflow velocity yields a triangular lift distribution. Therefore the differential 

thrust coefficient can be related to the tip coefficient according to Equation 102. 

�A< 8 �A<��       (102) 

Integrating Equations 99, 100, and 102, we obtain Equation 103. 

W	 ôAY�	õ 8 W�	 AY��          (103) 

Equation 104 delivers the lift coefficient at any point along the rotor, assuming that the 

rotor geometry is known. 

AY 8 W�W L`��      (104) 

Equating this to the original expression for the lift coefficient, which appears in Equation 

105, the twist distribution to yield a constant inflow velocity is determined by Equation 

106. When applied to an optimum chord distribution, this twist will yield a constant lift 

coefficient over the entire rotor; it is then called an optimum twist distribution. 

AY 8 AYZ �¯ ' ��� g AY�                                (105) 

¯ 8 ��� v`�� �L`�L`Z g ��                      (106) 
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Appendix D: Routh’s Discriminant Hand Calculations  
Here we are solving for Routh’s Discriminant in order to determine where the rotor 

should be placed to eliminate any unstable oscillation14. Earlier, this discriminant was 

reduced to the following equation for the situation we are considering. 

V. �. 8 ' o �µ¶¶
�
¥� p 

We know that � and µ¶¶ will both be positive, therefore we must solve for 
§§́©�  , which can 

be expanded as follows: 

�
¥� 8 ����]Ë

�]Ë
�

�
¥� ' ·

¥� Í´ 

Using the definition of each coefficient and inserting values corresponding to Da Vinci 

III’s geometry, we obtaining the proceeding expressions: 

�
�]Ë 8 34 �3w5BΩVE	�

�
 

� 8 5��V%µw  

�]Ë
�

8 8
3

¯^ g 2 ]̄ ' 2 6]ΩV 

�
¥� 8 1ΩV 

·
¥� 8 '53wBΩVE	  A� b⁄

�]Ë
�]Ë
�

�
¥�  
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 A� b⁄
�]Ë 8 32 �A< b⁄ ' �18 .̄ÛÜ� 

�]Ë
¬ 8 ' 16

�Ω �1 ' �V�	 

3w 8 414.8 ��	 

b 8 0.0502 

A< b⁄ 8 0.12212 

]̄ 8 '8° 8 '0.1396��� 

.̄ÛÜ � 6° 8 0.1047 ��� 

� 8 2�� 

6] 8 2.4819 

Í´ 8 2 

� � 6 

Ω 8 0.8901 ���/� 

ΩV 8 44.5059 

�_ 8 b�Vå 8 4 �� 

µw 8 124 7B�_	 g B2VE	E ' 1257B�_	 g B2�E	E  



95 
 

µw 8 387.63 ����� ��	 

We can now begin to place the newly determined coefficients back into our original 

equation. 

�
¥� 8 ����]Ë

�]Ë
�

�
¥� ' q·

¥� r Í´ 

�
¥� 8 ����]Ë

�]Ë
�

�
¥� g 53wBΩVE	  A� b⁄

�]Ë
�]Ë
�

�
¥� Í´ 

�
¥� 8 �]Ë

�
�
¥� Õ ����]Ë g 53wBΩVE	  A� b⁄

�]Ë Í´Ù 

�
¥� 8 P] Ä34 �3w5BΩVE	�

�
g 53wBΩVE	 32 �A< b⁄ ' �18 .̄ÛÜ� Í´Å 

�
¥� 8 P] 34 3w5BΩVE	 Ç��

�
g 2 �A< b⁄ ' �18 .̄ÛÜ� Í´É 

�
¥� 8 P	 ç ��5��V%µw

g 2Í´ �A< b⁄ ' �18 .̄ÛÜ�ê 
�
¥� 8 P	 Ç �µw5�V% g 2Í´ �A< b⁄ ' �18 .̄ÛÜ�É 

�
¥� 8 P	B0.0130 g 0.1744Í´E 

�& Î '0.90 ÐÑ                   ÒÓÓÓÓÔ �&
��� Î 0 

We see that a rotor placed in a plane at least -0.90 inches above the helicopter center of 

gravity should eliminate any unstable rotor oscillations. 


