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Algebra Universalis

Defining subdirect product closed classes
in infinitary logic

Micha�l M. Stronkowski

Abstract. We note that a class of models is subdirect product closed if and only if
it is definable by a class of L∞∞-sentences of a special form.

1. Introduction

By a weak implication we mean a sentence in L∞∞ of the form

(∀x̄)(∃y)
[
[y ∈ x̄] ∧ ∧

i∈I

�i(x̄) → δ(x̄)
]
, (ω)

where �i for i ∈ I, and δ are atomic first-order formulas, x̄ = (xk)k∈K , and
[y ∈ x̄] is an abbreviation of

∨
k∈K [y = xk]. Note that (ω) is equivalent to

(∀x̄)
[[

(∀y)[y ∈ x̄] ∧ ∧
i∈I

�i(x̄)
] → δ(x̄)

]

and M |= (∀y)[y ∈ ā] if and only if the valuation xi �→ ai is onto M . Thus, M
satisfies (ω) if and only if M |= ∧

i∈I �i(ā) yields M |= δ(ā), for every valuation
xi �→ ai onto M .

A model M is a subdirect product of models Ms, s ∈ S, if M is a submodel
of the direct product

∏
s∈S Ms and all projections of the product restricted

to M are onto [2]. We write then M �SD

∏
s∈S Ms. A class C of models

is subdirect product closed if every subdirect product of models from C also
belongs to C. (All considered classes are assumed to be classes of models in
the same fixed first-order language L and are closed under taking isomorphic
images.)

In this note we would like to present the following observation.

Theorem. A class is subdirect product closed if and only if it is definable by
a class of weak implications.

The proof of this fact is obtained by appropriate modifications in the proof
of A. Shafaat’s theorem [11], which states that the class of models is submodel
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and direct product closed (is a prevariety) if and only if it is definable by
possibly infinite implications.

In Section 3, we describe an example showing that we cannot obtain an
axiomatization by a set of infinite sentences of a bit more general form than
weak implications even for the class PS(M) of all subdirect products of a given
finite model M. This is contrary to the situation for prevarieties.

Classes typically considered in universal algebra, such as prevarieties, qua-
sivarieties, and varieties, are subdirect product closed. But the fact that they
are closed under additional operations, such as taking subalgebras, ultraprod-
ucts, and homomorphic images, makes their axiomatizations simpler. Classes
of models closed solely under taking subdirect products appear in abstract
algebraic logic as classes of Suszko reduced matrices for deductive systems
[5], in particular as classes of reduced matrices for protoalgebraic deductive
systems [4]. In the protoalgebraic case though, we also have a simpler axiom-
atization. Indeed, by [3, Theorem 13.10], such classes may be defined by finite
implications (quasi-identities) and one possibly infinite sentence of the form
(∀x, y)(∃z̄)[

∧
i∈I �i(x, y, z̄) → x ≈ y], where �i are atomic first-order formu-

las and there are only countable many variables in z̄. However, no particular
axiomatization is known in the general case.

The problem of the existence of a first-order axiomatization for PS(M),
where M is finite, was considered by G. Grätzer in [7], and later revisited by
J. T. Baldwin and M. A. Samhan in [1], where certain sufficient conditions
were presented.

Let us recall an important result of R. C. Lyndon [10, 9]. He showed that
subdirect product closed classes that are first-order definable are in fact defin-
able by first-order special Horn sentences.

Finally, note that there is an easy semantical characterization of subdirect
product closed classes. For a class C and a model M let ConC(M) be the
ordered set of congruences α of M such that M/α ∈ C. For algebras the
order is set inclusion, and for models it is pairwise set inclusion (see [6] for
the definition of congruence for models). Then C is subdirect product closed
if and only if ConC(M) is a complete lattice, for every M.

2. Proof of the theorem

We start by verifying the easier forward direction of the Theorem.

Lemma 2.1. The subdirect product operation preserves the satisfaction of
weak implications.

Proof. Let σ be a weak implication of the form (ω), let Ms, s ∈ S, be models
satisfying σ, let M �SD

∏
s∈S Ms be a subdirect product, and let xi → ai =

(as
i )s∈S be a valuation onto M such that M |= ∧

i∈I �i(ā). Then

Ms |=
[ ∧

i∈I

�i(ās) → �(ās)
]
∧

[ ∧
i∈I

�i(ās)
]
,
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and hence Ms |= δ(ās). This proves that M |= δ(ā). �

Let us now fix a subdirect product closed class C. For every model M (not
necessarily in C) define

ΦM = {ϕ : M → Mϕ | ϕ is onto, Mϕ ⊆ M, and Mϕ ∈ C}.
Let ηM : M → ∏

ϕ∈ΦM
Mϕ be the homomorphism given by ηM(a)(ϕ) = ϕ(a).

Put R(M) = ηM(M). Next let x̄ = (xa)a∈M be a sequence of distinct variables
and xa �→ a be the valuation onto M . Define ΩM to be the set of all weak
implications of the form

(∀x̄)(∃y)
[∧{�(x̄) | � is atomic, M |= �(ā)} ∧ [y ∈ x̄] → δ(x̄)

]
,

where R(M) |= δ(ηM(ā)). Note that M |= ΩM yields M ∼= R(M). Finally,
put Ω =

⋃
M ΩM.

Lemma 2.2. The class of weak implications Ω defines C.

Proof. Assume that M |= Ω. Then in particular, M |= ΩM, and we have
M ∼= R(M) �SD

∏
ϕ∈ΦM

Mϕ. Hence, M ∈ C.
Now suppose that M ∈ C. Consider a model N. Let x̄ = (xb)b∈N be a

sequence of distinct variables and xb �→ ab a valuation onto M . Assume that
M |= �(ā) whenever N |= �(b̄) for every atomic �(x̄) (here we employ the val-
uation xb �→ b). This means that the mapping ϕ : b �→ ab is a homomorphism
from N onto M. Without loss of generality, we may assume that M ⊆ N , and
hence ϕ ∈ ΦN. Let π : R(N) → M be the restriction of the ϕ-th projection.
Then π ◦ ηN = ϕ. This yields that whenever δ(x̄) is an atomic formula such
that R(N) |= δ(ηN(b̄)), then M |= δ(ā). This proves that M |= ΩN. �

3. Example

If we can define a subdirect product closed class C by weak implications in
which the number of universal quantifiers is bounded by a cardinal κ, then
all models of cardinality greater than κ belong to C. Thus, we cannot expect
in general an axiomatization by a set of weak implications. The following
example shows that it is also the case for finitely generated subdirect product
closed classes even if we allow sentences of a bit more general form than weak
implications.

Let ∀κ∃∞-L∞∞ be the language consisting of formulas in L∞∞ of the form
(∀x̄)(∃ȳ) γ(x̄, ȳ), where x̄ consists of less than κ variables and γ is quantifier
free.

Lemma 3.1. Let σ be a sentence in ∀κ∃∞-L∞∞. If

(∀C ⊆ M)
[ |C| � κ implies (∃N � M)[C ⊆ N and N |= σ]

]
,

then M |= σ.



234 M. M. Stronkowski Algebra Univers.

Let A = ({0, 1, 2}, +) be the algebra where the operation is given by the
table

+ 0 1 2
0 0 0 0
1 1 0 1
2 2 2 0 .

R. McKenzie showed that PS(A) is not definable in first-order logic [8, Chap-
ter 7, Exercises 55–58]. We slightly modify his argument in order to obtain
the following fact.

Fact 3.2. The class PS(A) is not definable in ∀κ∃∞-L∞∞ for any cardinal κ.

Proof. We may assume that κ is infinite. Let λ be a cardinal greater than κ.
For f ∈ Aλ, define supp(f) = {i ∈ λ | f(i) �= 0} and put

B = {f ∈ Aλ | f(0) ∈ {0, 1} and | supp(f)| � κ}.
Clearly, B is a carrier of the subalgebra B of Aλ. Note that for f, g ∈ B,

supp(f) ∩ supp(g) = ∅ ⇒ f + g = f. (L0)

Let us distinguish two elements f0, f1 in B by f0(0) = 0, f1(0) = 1, and
f0(i) = f1(i) = 0 for i �= 0. Then for every f ∈ B, we have f + f = f0 and f0

is the only idempotent element in B.
We will obtain the aim by verifying that every sentence in ∀κ∃∞-L∞ valid

in PS(A) is also valid in B and showing that B �∈ PS(A). The first fact follows
from the following claim and Lemma 3.1.

Claim. For every subset C of B with |C| � κ, there exists D � B such that
C ⊆ D and D ∈ PS(A).

Let I =
⋃

f∈C supp(f). As |C| � κ, so |I| � κ and there exists i∗ ∈ λ − I.
Let h be the element of B such that h(i∗) = 1 and h(i) = 0 for i �= i∗. Put

E = {f ∈ B | supp f ⊆ I}
and D = E ∪ {h}. Clearly, E � B, and by (L0), D � B. Observe that for a
homomorphism ψ : E → A and an element a ∈ A − ψ(E), the mapping given
by ϕ(g) = ψ(g) for g ∈ E and ϕ(h) = a is a homomorphism from D into A.
In order to show that D ∈ PS(A), we have to find an onto homomorphism
ϕ : D → A separating g1 and g2 for every pair g1, g2 of distinct elements in D.
If g1(i) �= g2(i) for some i ∈ I − {0}, then as ϕ we can take the projection on
the i-th coordinate. If g1(0) �= g2(0) or {g1, g2} = {f0, h}, let ψ : E → A be
the projection on the 0-th coordinate and define ϕ(g) = ψ(g) for g ∈ E and
ϕ(h) = 2.

Claim. B �∈ PS(A).

Let ϕ : B → A be any homomorphism separating f0 and f1. The element
f0, as the only idempotent one in B, must be mapped by ϕ onto 0. Assume
that ϕ(f1) = a �= 0. For f ∈ B satisfying f(0) = 1, the equality f1 + f = f0
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yields ϕ(f) = a. Now for g ∈ B such that g(0) = 0, let g′(0) = 1 and
g′(i) = g(i) for i �= 0. Since κ is infinite, g′ ∈ B. Then ϕ(g′) = a, g + g′ = f0,
and hence ϕ(g) ∈ {0, a}. Thus, ϕ is not onto. �

Note however that for a finite model M in a finite language, the class PS(M)
is definable in Lℵ1ℵ1 by a sentence of the form (∀x̄)(∃ȳ)(∀z̄) γ(x̄, ȳ, z̄), where
γ is quantifier free and x̄, ȳ are finite [7, Point 3.3].
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