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ABSTRACT 

Investigative Study of Gurney Flaps on a NACA 0036 Airfoil 

Greg F. Altmann 

 

This project examined the effect of Gurney flaps on a 2D, 2-ft chord NACA 0036 

airfoil in the Cal Poly 3‟x4‟ low speed wind tunnel at 25 m/s.  It also covered the 

numerical simulation of the experiment in computational fluid dynamics (CFD).  During 

the study, problems with the wind tunnel data were seen.  After a careful diagnosis, the 

problem was traced to dirty flow conditioners which were subsequently replaced.   

Five Gurney flaps at 1, 2, 3, 4, and 5% of the chord were tested.  The Gurney 

flaps had the effect of eliminating the lift reversal effect and lowering the profile drag at 

low angles of attack, ranging from 4-27%.  The optimal Gurney flap appeared to be 2% 

of the chord.  CFD modeling of the problem had limited success, with the best results 

coming from Mentor‟s k-w SST turbulence model.  This model reproduced the non-linear 

lift curve, and captured the trend in rising drag fairly well, but failed to predict the correct 

point of separation.  Attempts to model the Gurney flap in CFD were unsuccessful.  
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Foreword 

Many challenges and hurdles are always encountered in graduate level thesis work.  The 

scope of the current thesis was to investigate, experimentally and numerically, the effects 

of Gurney flaps on a NACA 0036.  However in the process of this investigation, many 

problems with the wind tunnel facilities were uncovered.  Fighting these fires before 

accurate data could be recorded amounted to a considerable workload in and of itself.  

Therefore, the work of restoring the facilities is presented along with the thesis work to 

enable the committee to gauge the quality and amount of work invested in the project.  

The additional section provides documentation of the diagnostics performed, the 

problems found, the actions taken to fix them, and further recommendations to improve 

the current state of the facilities.   
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1 Introduction 

The motivation of this research stems from the interest in reducing helicopter drag.  

Fixed-wing aircraft cruise drag is dominated by skin friction drag, which has led to large 

amounts of research into delaying transition.  Helicopter drag differs in that the primary 

source of cruise drag is attributed to form drag caused by massive separation of the 

fuselage, rotor hub, nacelles and landing gear.  A typical power breakdown is shown in 

Figure 1.  This places tight limits on max performance in range, fuel efficiency and top 

speed.   

 

Figure 1 Typical power breakdown for forward flight of a rotorcraft.  The reference cites that 

“parasite” corresponds to fuselage drag, and “profile” corresponds to blade-section drag
1
 

As Table 1 suggests, the largest component of drag is the rotor hub.  For this study, a 

NACA 0036 profile is used to simulate the bluff body of a rotor hub or nacelle.  This 

shape does not correspond to a particular geometry but relates more to bluff bodies in 

general, which also have applications outside of rotorcraft.  



2 

Table 1 Typical Breakdown of Parasitic Drag 

Components on a Helicopter
2
 

Component f/A* % of Total 

Fuselage 0.00210 30 

Nacelles 0.00042 6 

Rotor hub & shaft 0.00245 35 

Tail rotor hub 0.00028 4 

Main landing gear 0.00043 6 

Tail landing gear 0.00028 4 

Horizontal tail 0.00007 1 

Vertical tail 0.00007 1 

Rotor/fuselage interference 0.00047 7 

Exhaust System 0.00021 3 

Miscellaneous 0.00021 3 

Total 0.007 100 
 

*f/A is the ratio of parasite area to rotor area 

 

Previous research begins with Martin, Tung and Arad
3
 (2003) in studying the 

effectiveness of synthetic jets on controlling separation.  These authors observed a lift-

reversal phenomenon, which is characteristic of bluff bodes with sharp trailing edges.  

Further investigations by the same authors
4
 (2006) investigated the complicated 

computational fluid dynamics (CFD) modeling of the experiment, requiring detached 

eddy simulation (DES).  Successful modeling was only achievable with an ad-hoc 

adjustment to the near wall turbulence model.   This was aided by a Master‟s Thesis 

authored by Wilson
5
 (2006) on gathering Reynolds stress information in the flow field.  

In addition, a Cal Poly Master‟s thesis
6
 investigated the effect of placing trip strips in 

varying locations on the model. 

The scope of the current research is to investigate the idea of attaching a gurney flap to 

the NACA 0036 model and determining its effect on the lift reversal properties.   A 

Gurney flap is a small tab normal to the surface of the airfoil attached at the trailing edge.  

Previous research has shown Gurney flaps to ease pressure gradients on upper surfaces of 

airfoils, allowing for delayed separation.  The goals of this study are to reduce the 
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massive separation on the upper surface and to mitigate the lift reversal.  Another goal of 

this study is to further investigate the ability of different CFD modeling techniques to 

capture the complicated flow characteristics of this body.  
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2 Background 

2.1 Non-linear Nature of a NACA 0036 

The NACA 0036 cannot simply be treated as a regular thin airfoil.  Typical thin airfoils 

have linear lift-curve slopes near zero degrees angle of attack which proceed to nonlinear 

as separation occurs.  Because of its large thickness to chord ratio, a NACA 0036 flow 

field has separation even at zero degrees.  As the angle of attack is increased, the 

separation grows on the upper side, and is eliminated on the lower side.  The larger 

separation on the upper surface mitigates the pressure recovery and lowers the 

acceleration of the flow, while the bottom surface experiences relatively higher 

acceleration, creating negative lift.  After further increases in angle of attack, the upper 

surface flow accelerates to produce more suction on the upper surface and positive lift is 

restored. 

 For a visual explanation, see Figure 2.  This phenomenon was first observed by Horner 

for airfoils with very sharp trailing edges
7
.  In his observation, this occurred at Reynolds 

numbers of 2.6x10
6
.  However, he noted that for Reynolds numbers under 1x10

6
, lift 

reversal did not occur.  
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Figure 2 Illustration of lift reversal
8
 

 

Figure 3 Non-linear nature of a NACA 0036 lift-curve slope (Re ~1e6) 

 

2.2 Boundary Layer Transition 

Boundary layer transition refers to the change of a boundary layer from laminar to 

turbulent flow.  Everyday examples of this would be cigarette smoke rising smoothly 
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then shifting to unsteady random flow, or a garden hose changing from uniformly 

flowing to sporadic as the pressure is increased.  In a flat plate, the onset of transition 

begins with Tollmien-Schlicting waves, which are 2D oscillations in a viscous boundary 

layer
9
.  In natural transition a laminar separation bubble, or “cat‟s eye” cross-section, 

results at the start of these waves
10

, as shown in Figure 4.  These disturbances can either 

be damped out or amplified, progressing to 3D, high amplitude disturbances that result in 

turbulent flow.  Transition location is largely dictated by local Reynolds number, but is 

also very sensitive to pressure gradient, suction or blowing, temperature, free-stream 

turbulence or pressure/velocity fluctuations and surface roughness
10

. 

 

Figure 4 "Cat's eye" disturbance before onset of turbulent flow
10

 

Boundary layer transition is very important to aerodynamicists.  For high speed 

transports, early transition would create a higher skin friction drag, which is a large 

component of drag at cruise conditions.  For bluff bodies, early transition would 

conversely create much lower drag by postponing the separation due to higher energy in 

the boundary layer, thereby reducing the form drag on the object, i.e. the ripples on a golf 

ball.  Despite its importance, boundary layer transition is still very difficult to predict.  
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2.3 Transition Strips 

Most wind tunnel models use transition strips for two reasons.  For one, they make tests 

more repeatable by fixing the boundary layer transition point in place.  They also help to 

simulate flight Reynolds numbers.  For most tests, engineers assume that in higher 

Reynolds numbers and typical flight conditions transition occurs at the leading edge. 

Braslow
11

 describes a method to determine the height of the trip strip.  He defines a non-

dimensional roughness height Reynolds number as 

    
   

  
 

2-1 

where   is the roughness height and   and    are the velocity and kinematic viscosity at 

the top of the roughness height, respectively.  These terms would be determined by a 

boundary layer code or flat plate theory.  Ideally transition strips are 3D in nature.  

Previously 2D trips such as wire were used to force transition but studies have shown that 

3D trips cause turbulent flow to occur sooner, allowing better control
11

.  

The trip location is typically found at 5% of airfoils and 10% of bluff bodies
12

.  If the 

strip is placed too far forward the boundary layer can relaminarize.  At these percentages 

the trip is normally aft of the favorable pressure gradient, decreasing the likelihood that 

the boundary layer will shift back to laminar.  

2.4 Separation 

Separation is a viscous flow phenomenon in which the boundary layer, under near-wall 

friction and adverse pressure gradients, detaches from the surface and creates backflow.  

This can lead to a profile producing large amounts of form drag.  At the location of 
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separation, shear stress is zero because there is zero gradient in u-velocity at the point on 

the wall,    
  

  
  .  Predicting separation in two-dimensional laminar boundary 

layers with current boundary layer theory is very accurate; turbulent boundary layers, 

however, are much more complicated.  

Cebeci, Mosinskis and Smith
13

 review four techniques for predicting two-dimensional 

boundary layer separation, three of which prove to be in good agreement with 

experimental data.  Examining these techniques is an informative way of seeing what 

heavily influences turbulent separation.  One method covered, Head‟s Method, uses three 

empirical relations to solve the momentum integral equation, 

 

  

  
 (   ) (

 

  
) (

   

  
)  

  

 
 

2-2 

 

where   is momentum thickness,   is the shape factor which is the displacement 

thickness over the momentum thickness (
  

 
),    is the inviscid external flow velocity, 

and    is friction coefficient.  Once all unknowns are solved, the method predicts 

separation when   reaches a value between 1.8 and 2.4 (This range is of little importance 

because   is increasing very rapidly at this point.).  This reveals the important concept 

that a high shape factor results in separation.  In other words, high displacement 

thicknesses with low momentum thicknesses are prone to separation.  This is a good 

quantitative way to foresee the separation.  
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2.5 Gurney Flaps  

A Gurney flap is a short tab at the trailing edge of an airfoil protruding perpendicular to 

the surface.  It was first used by Dan Gurney on his Indianapolis 500 race car to increase 

aerodynamic down force, which provided a boost in cornering and braking performance.  

In his field tests, he observed that this flap increased down force, while slightly 

decreasing drag.
14

  Gurney flaps have been the focus of many studies on single element 

and multi-element airfoils.  Common sizes of gurney flaps range from 0.5% to 5% of 

chord, with most sources citing 2% as an ideal size.  

Gurney flaps work by separating flow near the trailing edge, inducing vortices that work 

to turn the flow.  In doing so, pressure is decreased on the suction side and increased on 

the pressure side.  This results in an increase in Clmax of the airfoil and a shift in the zero-

lift angle of attack.  Gains of 30% of Clmax have been observed for single element 

airfoils.
15

 

 

Figure 5 Diagram of vortices created by a Gurney flap
16
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Figure 6 Change in lift-curve from a gurney flap on either side of a S903 natural laminar flow 

airfoil.
13

  

The effect on drag that a Gurney flap exerts is largely dependent on the size of the 

flap
12,17

.  A Gurney flap of 5% can actually increase the lift to drag ratio, while increasing 

the size has a progressively higher drag penalty.  Observations from several researchers 

have concluded that optimal height for a Gurney flap should be smaller than the boundary 

layer thickness on the pressure side of the airfoil
12, 15

. 

 

Figure 7 Effect of L/D from a gurney flap on two different airfoils, a) LA203A-UL and b) Gö 797-

UL
15
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Giguére
15

 also points out that a Gurney flap is most effective at reducing drag when there 

exists a small amount of trailing edge separation.  This observation is the prime 

motivation of the use of gurney flaps in this study.  
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3 Experimental Apparatus 

3.1 Wind Tunnel Facility 

The experiment was conducted in the Cal Poly 3‟x4‟ wind tunnel (precisely 34 ¼“x 46 

3/8“).  The tunnel is an open-circuit, in-draft design powered by a 150hp, 440 Volt three-

phase motor turning a nine-blade suction fan.  The inlet to the test section has an 11:1 

contraction ratio with newly installed honeycomb and screens for flow straightening.  

The honeycomb is 1” thick with .15” cell size, followed by three progressively smaller 

screens, the last of which has a 0.0075” wire diameter and a 0.031” opening.  The 

turbulence intensity for the current configuration is not yet known; however, from recent 

measurements, the mean stream-wise velocity is estimated to vary less than 1%.  Two 

pressure rings, one behind the last screen and one at the end of the inlet, calibrated by a 

Pitot-static measurement, are used to set velocity and dynamic pressure.  The section 

configuration started with the inlet, followed by the first test section without the access 

door, followed by the NASA steel and plexiglass section, which attached to the sting 

balance section and diffuser.  Calibration dynamic pressure was taken on the upstream 

side of the NASA section without the presence of the model. 
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Figure 8 Diagram of wind tunnel configuration
6 

An in-depth study was carried out before the test to determine the state of the wind 

tunnel.  Through many experiments, it was determined that the flow quality was 

unacceptable and the wind tunnel needed to be repaired.  The problem was determined to 

be poor flow conditioning through the flow straighteners.  After the screens and 

honeycomb were replaced, the tunnel flow was tested and deemed to be acceptable.  

Details of this study can be found in section 8.  

3.2 NACA 0036 Model 

The airfoil model used for this study was constructed for a previous experiment
3
.  It is a 

2D NACA 0036 section with a two foot chord and a finite trailing edge thickness of 

0.200”.  It has 34 pressure ports along its centerline: one at the front center, one on the 

finite trailing edge, and 16 on each side.  These points were located based on flow 

visualization for angles of attack ranging from 0° to 10°.  Both sides have two removable 

panels installed for synthetic jets.  The screw holes to access these panels were filled with 

museum wax.  The model was designed for a 3‟x4‟ cross-section wind tunnel.  Despite 

the large blockage effects seen with the model (the walls are one chord length away and 
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section blockage ranges between 18-19%), the large chord was chosen for higher 

Reynolds number scaling. The pivot point is located at 0.433c. 

 

Figure 9 NACA 0036 airfoil photo and tap locations 

Some experiments showed slight disagreement with angle of attack.  The method used to 

set angle of attack was originally to mark lines on a piece of paper on the wind tunnel 

floor and to align the trailing edge to the desired setting.   Also, no means existed to 

change angle of attack without shutting off the tunnel and crawling inside.  So for this 

experiment, turn tables with ball bearings were installed along with and angle of attack 

indicator to set precisely the angle down to the nearest half degree.  A collar was CNC 

manufactured to ensure a fixed pivot point.  Clamps were also required to withstand the 

large induced moment.  

 

 

 

Pressure Tap Locations
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Figure 10 Photos of installed pivot and angle of attack indicator 

There were also irregularities seen in the pressure data during the experiment.  

Completely identical pressure distributions could not be produced without trip strips.  

This is likely a cause of the slight deformations in the model surface since its creation.  

As a result, at a geometric zero degrees angle of attack, the lift is non-zero. Figure 11 

details this problem.  As a result, zero degrees alpha was set with trip strips applied which 

damped out the slight separation seen below. 

 

Figure 11 Non-symmetric pressure distribution of the NACA 0036 model with no strips 

3.3 Transition Strips 

To compare with previous studies, all Gurney flaps and angles of attack were taken with 

trip strips at 0.05c on both sides of the airfoil in addition to natural transition.  This 

location was determined by earlier studies
3
.  Previous experiments used a fine 3M Safety-
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Walk™ roughness tape (transparent in color) to force transition.  For this experiment, 

Mini-Logo™ skateboard grip tape was used with pinked (jagged) edges.  The 

theoretically determined roughness heights were significantly smaller than the 3M tape 

used before.  At 5% chord, CFD studies showed the boundary layer height to range from 

0.017”-0.020” and U values of 30-40m/s at various angles of attack.  With the 0.020” 

roughness height of the grip tape, Rk values ranged from 970-1143 when only >600 is 

required to force transition.  This supports the flow visualization studies that show 

successful transition to turbulent boundary layer.  Because no smaller transition strip was 

available, and the pinked grip tape was narrower, thinner and the most 3D to ensure 

precise transition location, the Mini-Logo™ tape was used.  The center of the tape was 

aligned at 0.05c. 

To determine the influence of trip strips on pressure distributions, a small study was 

performed on three different types of trip strips.  A thick 3M Safety-Walk™ (black , 

0.029”), thin 3M Safety-Walk™ (clear, 0.022”) and pinked Mini-Logo™ grip tape 

(0.020”) were tested.  The study showed that no significant differences were observed for 

any of the strips.  Perhaps the larger tape‟s influence would have been seen in a force or 

wake measurement because of its protrusion outside of the boundary layer; however, for 

this experiment, all strips were deemed acceptable. 
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Figure 12 Pressure distributions with three trip strips (thickness: Pinked – 0.020”, 3M rough – 

0.029”, 3M fine – 0.022”) 

3.4 Gurney Flaps 

Five Gurney flaps were constructed, designed to be 1,2,3,4 and 5% of the chord.  They 

were constructed of sheet metal 0.040” thick with an L-shaped cross-section.  Each was 

roughly cut, then milled to precision.  They were attached to the airfoil with double-sided 

tape, as shown in Figure 13. Because of the long flange shape of the Gurney flap, very 

high precision could not be achieved.  However, variances in the double-sided tape 

thickness made absolute precision difficult to achieve, regardless.  Table 2 outlines actual 

heights of Gurney flaps.  These heights were deemed acceptable because only a survey of 

the design space was desired.  Note: If Gurney flaps were to be used in future 

experiments, this author would recommend attaching the gurney flaps with small, tapped 
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screws.  This would allow faster change out, and more precision.  The small holes from 

the installation could be filled in with museum wax, just as the many other holes already 

are. 

Table 2 Manufactured gurney flap heights 

Nominal Size (% Chord) Actual Size (% Chord) h b 

1% 0.98% 0.236” 0.067” 

2% 2.08% 0.499” 0.080” 

3% 2.89% 0.693” 0.080” 

4% 4.04% 0.970” 0.075” 

5% 4.93% 1.182” 0.070” 

 

 

Figure 13 Diagram of Gurney flap installation 

3.5 Pressure Measurement 

Pressure measurement for this experiment was conducted with a Scanivalve system.  The 

pressure tubes from the model connect directly to the ZOC33/64Px pressure scanner.  

This unit has 64 differential pressure sensors; the first 32 ports have a ±10 in H2O 
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(0.36127 psi) range with accuracy of ±0.15% full scale reading, and the second 32 have a 

±1 psi range with accuracy of ±0.10% full scale reading.   Temperature sensitivities are 

0.25% and 0.10% of full scale reading per °C, respectively.  However, the unit is also 

equipped with an on-board thermal sensor to make temperature drift related adjustments. 

The designed temperature range for this unit is 0-60°C.  The internal multiplexer can scan 

ports at a rate up to 50kHz.  To set zero values, before testing all ports are calibrated to 

the „dual range manifold‟, which for this experiment was always set to ambient pressure.  

This unit is also capable of conducting a purge of all the lines, which clear the lines of 

any moisture or debris.  The pressure for this feature is provided by 65psi of compressed 

air attached to the „calibration control manifold‟ (This feature was not used in this 

experiment.). 

 

Figure 14 Scanivalve ZOC33-64/Px pressure scanning unit, and associated mode diagram. 

The ZOC33 pressure scanning module is connected to the RADBASE3200. This is, 

essentially, a mini computer that processes signals from up to eight ZOC units.  This is 

where commands are issued to the pressure scanners, temperature adjustments are 

applied, and units are converted.  The RADBASE3200 is designed to communicate using 
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TCP/IP Ethernet connection.  This unit is configured to communicate with a computer via 

a USB extender unit.  The RPM1000 supplies power to the unit.  

 

Figure 15 Scanivalve system 

  

ZOC33-64/Px 

RADBASE3200 

USB Extender 

RPM1000 Power Supply 
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4 Experimental Procedure 

4.1 Velocity and Dynamic Pressure Calibration 

Data was taken with a wind speed of 25 m/s, corresponding to a Reynolds number of 

9.96x10
5
 with a 2 ft chord.  Velocity was set with pressure rings on the inlet section of 

the wind tunnel calibrated to a Pitot-static tube at the location of the model in the test 

section, without the presence of the model. Note: The Cal Poly wind tunnel is very prone 

to static pressure losses downstream of the inlet.  It is vital that this calibration is 

performed in an empty test section at the location of the model.  Variances of 5% in 

dynamic pressure were seen over a distance of approximately six feet.  For this 

calibration, the wind tunnel was set to have the pressure rings to read a difference in 

pressure of 1.51 inch H2O.  Total and static pressure were read on the scanivalve from the 

Pitot-static tube as well as the pressure rings behind the screens and throat of the inlet.  

Calibration constants were determined to be 

                  4-1  

          4-2  

   
         

        
 4-3  

   
        4-4  

 

Then    was determined by 
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where    is a measured surface pressure,         
 is the measured pressure at the throat of 

the inlet.          
 is the pressure measured just behind the screens.  After these 

coefficients were determined, the Pitot-static tube was removed and the model put back 

in place.  Part of this procedure is described in Low-Speed Wind Tunnel Testing
12

, pgs 

218-22. 

4.2 Angle of Attack Calibration 

Because of the symmetric profile of the model, zero angle of attack was calibrated by 

aligning the airfoil to a point where both pressures curves were aligned as closely as 

possible.  This calibration was performed on an airfoil with trip strips because surface 

irregularities had less of an impact.  

4.3 Data Collection 

Pressure measurements were conducted for airfoil at 0,3,5,7 and 10 degrees.  Gurney 

flaps of 1%, 2%, 3%, 4% and 5% of chord were then installed and measured at all angles 

of attack.  All data was repeated with trip strips at 0.05c. Data was measured using the 

scanivalve at a rate of 200Hz with 4,000 samples taken.  This number was determined to 

be sufficient for time- averaged data.  Note: This author would recommend faster 

sampling rates for future tests. Also, the scanivalve must be set to one scan per frame. 

Otherwise, fluxuation information will be lost. 
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4.4 Observable Error Analysis 

The measurement uncertainty in Cp must be determined to know the reliability of each 

data set.  The equation of Cp is as follows: 

   
         

(     )   
   

 

4-6  

where     is the measured pressure,     is the total pressure,    is the static pressure, and 

   
 and    are calibrated tunnel constants.  In order to determine how the error 

propagates through this equation, one can say, in general, for some  (       ) with 

uncertainties of             the uncertainty can be stated as 

 

   
  

  
   

  

  
      

  

  
     

 

4-7  

However, this might overstate the error.  If each variable‟s error is random and 

independent, the probability of all error maximizing at one time is statistically unlikely.  

A more accurate estimation of the measurement error would be to take the quadratic sum 

of the errors, shown by the following equation: 
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For more information on this technique, refer to An Introduction to Error Analysis
18

.  

Simplifying the partial derivatives, the equation for uncertainty in the coefficient of 

pressure measurement becomes: 
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where   is the standard deviation.  Using equation 4-4, the reasonable experimental 

uncertainty can be determined.  However, due to long tubing lines to the scanivalve, 

oscillations in the pressure can be quite low.  This element in the system would 

underestimate the uncertainty related to pressure fluctuations.  

4.5 Force Calculation 

A standard panel method for determining normal and axial coefficients can be calculated 

as follows: 
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where  ( ) and  ( ) are the 2D point locations of the pressure taps.  It was found, 

however, that this method can be improved to more accurately suit the experimental 

model.  Instead of modeling panels between pressure ports, each pressure port was 

assumed to be a center of one panel.  The angle of the panel was analytically determined 

from the equations that define a NACA 4-series airfoil.  The endpoints and corresponding 
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lengths of each panel can then be determined from this geometry.  For the trailing edge 

point, endpoints were fixed to the width of the measured finite trailing edge of the model.  

This method assumed to be superior to the first method differed in lift by 5% and in drag 

by up to 15%.  Therefore, the complexity of this method was justified.  An image 

generated by the MATLAB code to run this calculation is shown in Figure 16. Code for 

this method can be found in Appendix F.  

 

Figure 16 Diagram of panel method used with pressures of a zero degree lift distribution overlaid 

After normal and axial coefficients were calculated, they were converted to lift and drag 

coefficients by: 

        ( )       ( ) 4-12  

        ( )        ( ) 4-13  
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5 Numeric Simulation 

5.1 Governing Equations 

Computational fluid dynamics (CFD) is generally understood to be any numerical 

method used to solve a set of equations to model the flow-field of study.  For this case, 

FLUENT was used to solve the Reynolds-averaged Navier-Stokes equations (RANS).  

These equations are based on the fundamental concepts in physics of conservation of 

mass, momentum and energy.  

5.1.1 Continuity 

The continuity equation ensures that no mass is created or destroyed in the system, and 

that the mass in equals the mass out in steady flow.  For an inertial reference frame, the 

equation can be expressed as: 

  

  
   (  ⃑ )    5-1 

where the first term represents the time rate of change of the mass in a control volume 

element, and the second term represents the time rate of change in mass due to 

convection.  

5.1.2 Momentum Equation (Navier-Stokes Equations) 

The next set of equations establishes a conservation of momentum in each spatial 

dimension.  In the current 2D study, only equations for the x and y direction were solved.  

The equations can be expressed as: 
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(  ⃑ )    (  ⃑  ⃑ )        ( ̿)      

5-2 

The first term represents the time rate of change of the momentum into the volume 

element; the second term represents the change in momentum due to convection; the third 

is the change due to pressure forces; the fourth represents the rate of change due to 

viscous forces, and the last is the change due to gravitation.  

5.1.3 Energy Equation 

The energy equation is required whenever heat transfer or pressure work is present in the 

flow.  For the current case, the flow is assumed to be incompressible and constant 

viscosity (which is related to temperature); therefore the energy equation is not solved.  

Instead, a pressure based solver is used, which decouples the pressure and velocity terms.  

For more information, refer to the SIMPLE algorithm
19

.  

5.1.4 Reynolds Averaging 

In order to simplify flow characteristics, the quantities in the Navier-Stokes equations are 

separated into time-dependent, turbulent fluctuations (denoted as   ) and “time-

averaged” quantities (denoted as  ̅) that represent the changes that are of interest in the 

flow quantities.  This is analogous to a low-pass filter in which all unsteady quantities 

that are very high frequency are separated out so that only low frequency fluctuations can 

be examined.  This assumption is valid for steady-state problems as well as some 

unsteady problems but is not valid for problems such as acoustic modeling where high 

frequency fluctuations are of interest.  Using this assumption, the Navier-Stokes 

equations can be re-written in Einstein notation as: 
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The most challenging part of this equation is the last term     
   

 ̅̅ ̅̅ ̅̅ , which is called the 

Reynolds stress tensor.  This is the focus of most present day turbulence modeling. 

5.2 Turbulence Modeling 

5.2.1 The Boussinesq Approximation 

In 1877, Joseph Boussinesq proposed that the Reynolds stresses could be modeled by a 

fictitious “eddy” viscosity.  His assumption states that: 
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where    is the turbulent viscosity,  ̅ is the turbulent kinetic energy, and     is 

determined by: 
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Introducing the two terms    and  ̅ requires two additional equations
19

.  However, this 

assumption is the foundation of all eddy viscosity turbulence models.  
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5.2.2 Turbulence Models 

There are numerous turbulence models available; therefore choosing one for a particular 

problem can be somewhat difficult.  Little weight is given to models with strong 

theoretical backing; there have been far too many assumptions made thus far.  Therefore, 

the success of a turbulence model is primarily determined by its high correlation with 

experimental data.  It is the author‟s experience that two models have become fairly 

widespread, the Mentor     SST model and the     Realizable model.  The     

Realizable model is a set of two partial differential equations that is used to determine   

and  ̅.  Mentor‟s     SST model is more complicated, and blends     near the walls 

with     away from the walls.  These two models were employed for the current 

problem, as well as a model newly provided by FLUENT 12.1 that attempts to model 

transition.  The details of their implementation can be found in the FLUENT 

documentation.  

5.3 Mesh Approach  

GAMBIT 2.2.30 was used to create the 2D mesh.  Three mesh styles were attempted 

before the final mesh was selected.  The first mesh approach was to have a structured 

domain and an unstructured interior zone with prism cells to capture the boundary layer.  

This was unsatisfactory because mesh cells created near the trailing edge were highly 

skewed. Because they were often located in separation, they would cause slight 

convergence problems.  A completely structured H-grid was also attempted; however, the 

blunt leading edge of the NACA 0036 airfoil resulted in highly skewed cells that could 

not be corrected with smoothing algorithms within GAMBIT, especially at high angles of 

attack. 
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Figure 17 Undesirable qualities of first mesh approach 

 

Figure 18 Second mesh approach contained too many skewed cells in front of leading edge, causing 

diverging solutions 

The final mesh approach was somewhat of a hybrid between these two techniques and 

produced the highest quality mesh.  The mesh had a structured mesh in close proximity of 

the airfoil which extended through the rear domain.  Outside of that was an unstructured 

Undesirable skewed cells 

Trailing Edge 

Large volume change 
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zone that transitioned to the structured domain far from the airfoil surface. Figure 19 

shows this in detail.  All walls including wind tunnel walls were sized to produce y
+
 of 

less than one.  This was verified with a converged solution. The domain was sized 

according to actual wind tunnel dimensions: 46.375” tall, 74” in front of the leading edge, 

and 130” behind the trailing edge (1.93, 3.08, and 5.42 chord lengths respectively).  This 

resulted in a 68,000 cell mesh. 

 

 

Figure 19 Final mesh approach 
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Figure 20 Example of Y
+
 values 

5.4 Solver Settings 

FLUENT 12.1 was used to resolve the RANS equations over the mesh.  A 2D, steady-

state, pressure based solver was implemented.  The Green-Gauss node based gradient 

option was selected for its preservation of second order accuracy on triangular cells
20

.  

Mentor‟s k-ω SST and k-ε Realizable were both used to determine which turbulence 

model was more successful in modeling the flow of interest.  For k-ε Realizable, 

enhanced wall treatment was employed to give mesh cells with y
+
 of 1 proper treatment.  

Second order upwind discretization was used for all equations solved.  The SIMPLE 

scheme was used to resolve the pressure-velocity coupling.  

5.5 Boundary Conditions 

Wall boundary conditions (with enhanced wall functions with k- ) were applied for the 

wind tunnel walls and the airfoil surface.  A „velocity-inlet‟ condition was applied for the 

inlet, with a speed of 25m/s.  Outlet was set to „pressure-outlet‟.  For inflow turbulence, 

the intensity and viscosity ratio specification method was specified with a turbulence 
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intensity of 0.5% and turbulent viscosity ratio (the ratio of eddy viscosity to dynamic 

viscosity) of 2. 

 

5.6 Convergence Criteria  

For convergence criteria, the lift data was monitored for several cases.  Once the number 

of iterations was known to allow the force data to approach a steady rate, 4000 iterations 

for this study, the CFD cases were simply set to run a fixed number of iterations. 

 

Figure 21 Residuals verses iterations and lift coefficient verses iteration. Drag plot (not shown) 

similar to lift coefficient 

5.7 Data Post-Processing 

The post-processing of the CFD data was complicated by the way FLUENT exports the 

pressure data.  FLUENT prints out pressure data with respect to the x-values; however, 

for a fair comparison to experimental data the pressure data must be plotted with respect 

to the chord line.  All pressure data from CFD was transformed by rotating the points 

around the center of rotation back to zero degrees.  In addition, the reported force data 

were only the pressure forces without the viscous components.  
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5.8 Mesh Independence  

To determine the sensitivity of the solution on the mesh parameters, a mesh independence 

study was performed according to the Journal of Fluids Engineering
21

.  The method 

involves five steps to evaluate the error on given parameters.  For this study, Cp values at 

the pressure tap locations on the experimental model were the parameters chosen.  

Three different grids of varying density were solved on for the NACA 0036 at 10 

degrees, with cell counts of 34,000, 68,000 and 135,000.  When cells were added, efforts 

were made to distribute them evenly across the mesh.  

The first step of the method is to calculate a representative cell size, h.  The area of each 

mesh was 6.371m
2
.  The number of cells divided by the area gave the average area per 

cell, which was 0.0137, 0.00968, and 0.00384 m
2
 respectively.  The second step is to 

simply find the ratio between these sizes, which is          and          (1 being 

the fine grid, and 3 being the coarse grid). 

The third step is to solve the set of equations for p: 
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where          ,          , and    is a data point from each grid. With a few 

simplifications, this can be solved with MATLAB‟s fzero() function.  Once solved, p 

gives the apparent order of the method.  The Journal does note that if     or     are “very 

close” to zero, the method does not work and might suggest oscillatory convergence.  

After   is determined for each data point, step four is to calculate the extrapolated 

solution using the following equation: 

    
   

   
 
     

   
 

  
 5-9 

The last step is to calculate the fine-grid convergence index (GCI) which will be used to 

bound the solution uncertainty.  This can be determined by the following equations: 
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Once the GCI is determined, it can be used to plot error bounds over the solution. 

Figure 22 shows the solutions produced by the three different meshes and the 

extrapolated solution.  Out of the 35 data points measured, 27 of them were oscillatory in 

convergence which signifies very high mesh sensitivity on the solution.  There exists a 

very large outlying point on the upper surface at the point of separation for the 

extrapolated result.  This is a clear failure of the method, and is a strong sign of 

oscillatory convergence.  The differences of the point were “very close” to zero, which is 

a stated shortfall of the method.  This could be a result of the CFD solution being unable 

to determine the exact point of separation for a large separation zone.  Although less 
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abrupt, there are also extrapolated values near the trailing edge that deviate from the three 

solutions.  Again, this signifies difficulty of the solution to spatially resolve the 

separation.  

 

Figure 22 CFD results of a pressure distribution over the NACA 0036 at 10 degrees using three 

different size meshes, and the extrapolated solution 

Below, Figure 23 shows the extrapolated CFD solution with the error bars from the GCI.  

The one large outlier noted before (0.6 x/c, upper surface) was replaced with the fine grid 

data point.  The error bars represent the uncertainty of the CFD solution as a result of 

mesh discretization.  Notice the high error bars on each of the outliers which were 

pointed out previously.  Data from this graph can be compared to experimental data to 

gain insight on how well the CFD actually models the flow field. 
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Figure 23 GCI error bars on the extrapolated CFD solution of a NACA 0036 at 10 degrees 
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6 Results and Discussions 

6.1 Wind Tunnel Experiment 

Before testing Gurney flaps, the baseline data was compared with previous data in order 

to verify the accuracy of measurement equipment and procedure.  Figure 24 shows the 

comparison of current data to two sets of previous data for airfoils with trip strips at 0.05c 

on both sides of the airfoil.  At zero angle of attack, the current data shows good 

agreement of the two symmetric sides of the airfoil.  For higher angles of attack, slight 

variances arise in the point of separation.  This might be a result of the sonic choke at the 

end of the NASA tunnel used in the Martin data, because both Jacob‟s data and the 

current experiment were tested in the Cal Poly low speed wind tunnel.  A sonic choke 

prevents interactions from the unsteady wake with the diffuser to propagate upstream. 

The main difference in the current data is a 5-6% higher peak negative Cp at 5 and 10 

degrees angle of attack.  This can be attributed to larger boundary layers in the wind 

tunnel test section resulting from a different tunnel section configuration. 

 

Figure 24 Comparison of baseline data to former experiments:  all airfoils are tripped at 0.05c and 

tested in 4'x3' wind tunnels at Re ~1e6. 
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All data was also taken with trip strips at 0.05c on both sides of the airfoil and also 

without trip strips.   Figure 25 shows the significant effect of these trip strips.  

 

Figure 25 Pressure coefficient of NACA 0036 with and without trip strips 

Tripping the boundary layer shows a larger separation, shown by a flattening out of the 

pressure distribution.  To understand this phenomenon, take the example of a cylinder.  

For a smooth circular cylinder, once the cylinder reaches the critical Reynolds number, 

transition occurs and the boundary layer has the added momentum of a turbulent 

boundary layer to remain attached for longer.  However, in the present case transition 

already occurs, just later than 5% of chord.  Tripping the boundary layer early causes 

larger boundary layer growth due to the higher growth rate of turbulent boundary layers.  

The trip strip also creates an added displacement thickness.  Recall Equation 2-2, which 

states that a boundary layer with a higher displacement thickness and a constant or lower 

momentum thickness is more likely to separate.  In addition, the clean airfoil shows 

significantly higher negative Cp peaks at both 5 and 10 degrees.  This is because larger 

separated regions reduce pressure peaks, just as the pressure peak of a NACA airfoil 

drops as it approaches stall.  
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Figure 26 shows the effect of adding a Gurney flap to a clean (natural transition) airfoil.  

For clarity only 1, 3, and 5% Gurney flaps are shown.  Complete data can be found in 

Appendix A.  At zero angle of attack, only the 5% Gurney shows any deviation over the 

suction peak.  For higher angles of attack, much more deviation is seen over the peak, but 

the separation point is not changed.  At high angles of attack the Gurney flap does not 

mitigate separation as predicted.  

 

Figure 26 Effect of Gurney flaps on an untripped NACA 0036 

The same data was also taken with transition strips at 0.05c and is shown in Figure 27.  

Again, only 1%, 3%, and 5% Gurney flaps are shown for clarity.  Similar trends can be 

seen with the tripped data when compared to the clean data.  One noticeable difference is 

that the effect of the Gurney flap at zero degrees is much less with a tripped boundary 
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layer.  This is because the boundary layer thickness is larger and decreases the 

effectiveness of the Gurney flap.  This trend also continues at higher angles of attack. 

 

Figure 27 Effect of Gurney flaps on a NACA 0036 with transition strips placed at 0.05c on each side 

Despite the asymmetric Gurney flap, there is no effect of the flap at negative angles of 

attack, even with the largest flap tested.  However, because this data was only recorded 

before fixes to the tunnel were made, it is only included in Appendix A. 

Force data was calculated by integrating the pressure over the surface with a panel code.  

This produces lift and the pressure component of drag, but not viscous drag.  Figure 28 

shows the force data for a smooth wing with varying Gurney flaps.  Lift is non-zero at 

zero angle of attack because of imperfections of the wing surface (which are surprisingly 

diminished with a tripped boundary layer, shown later).  All Gurney flaps produce less 

drag at zero angle of attack, but this advantage is quickly lost as angle of attack is 
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increased.  However, this does not include the drag on the flap, which would require 

force data to accurately measure.  The lift curve slope is also straightened out to produce 

a linear lift curve slope typical of a normal thin airfoil, with higher lift for lager Gurney 

flap.  The lift to drag ratio is vastly improved as the Gurney flap size is increased, an 

effect usually not observed with Gurney flaps.  Normally, Gurney flaps decrease the lift 

to drag ratio after 0.005-0.02c
4
. In drag and L/D, the positive effect of the Gurney flap is 

rapidly diminished as angle of attack is increased.  

 

Figure 28 Lift, Drag, and L/D data for Gurney flaps on a clean NACA 0036 (no trip) 

The force data for the tripped case is shown in Figure 29.  Here, the lift-reversal 

phenomenon is observable.  At zero angle of attack, lift is essentially zero, which is the 

behavior expected.  The lift curve slope does not appear linear with the addition of a 

Gurney flap, even with a 5% Gurney flap.  However, lift reversal is eliminated with 2% 

and larger Gurney flaps.  High non-linearity also arises in drag as the Gurney flap size is 

increased.  This fact was confirmed by several measurements.  At zero angle of attack, a 

drag reduction still remains for the tripped case and appears slightly less sensitive to 

angle of attack.  Lift-to-drag ratios are still improved with increasing flap size, but are 

much less in magnitude to the non-tripped case. 
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Figure 29 Lift, Drag, and L/D data for Gurney flaps on a NACA 0036, with tripped boundary layer 

at 0.05c 

To quantitatively evaluate the drag benefits from Gurney flaps at low angles of attack, 

Table 3 is provided.  At zero degrees, all Gurney flaps tested show a decrease in drag, 

with a max reduction of  27% and 18% for non-tripped and tripped airfoil, respectively.  

With a 2% Gurney flap, the lift reversal is eliminated and the drag of the wing is reduced 

at low angles of attack.  Most drag reductions are eliminated with an increase of just three 

degrees in angle of attack.  Also, a larger Gurney flap is more effective when the 

boundary layer was tripped; the best size was 0.04c compared to the 0.03c Gurney flap 

for natural transition. 

Table 3 Drag figures for low angles of attack 

Angle of Attack: 

0 Degrees 

Form Drag, 

Natural 

Transition 

Form Drag, 

Trip Strip at 

0.05c 

Angle of Attack: 

3 Degrees 

Form Drag, 

Natural 

Transition 

Form Drag, 

Trip Strip at 

0.05c 

Clean Airfoil 0.0128 0.0332 Clean Airfoil 0.0123 0.0367 

1% Gurney Flap 0.0109 (-15%) 0.0320 (-4%) 1% Gurney Flap 0.0112 (-9%) 0.0358 (-2%) 

2% Gurney Flap 0.0098 (-23%) 0.0284 (-14%) 2% Gurney Flap 0.0152 (+24%) 0.0356 (-3%) 

3% Gurney Flap 0.0094 (-27%) 0.0272 (-18%) 3% Gurney Flap 0.0176 (+43%) 0.0368 (~0%) 

4% Gurney Flap 0.0106 (-17%) 0.0270 (-19%) 4% Gurney Flap 0.0204 (+66%) 0.0439 (+20%) 

5% Gurney Flap 0.0112 (-13%) 0.0289 (-13%) 5% Gurney Flap 0.0230 (+87%) 0.0495 (+35%) 
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Because the 2% Gurney flap would seem the most desirable for drag and lift benefits, a 

more refined study was conducted with respect to angle of attack.  Figure 30 shows the 

lift and drag curves with data refined to one degree.  Because of the asymmetry of the 

Gurney flap, negative angles of attack were also measured.  Little effect can be seen at 

these negative angles because at this point the Gurney flap falls in the wake of the airfoil.  

Data on this plot is slightly different than displayed in the table above.  In comparison of 

the surface pressures, the result is from high sensitivity in the model due to changing of 

removable plates (they had to be removed and reinstalled between these data sets).  This 

possibly signals the fickle and sensitive nature of this drag savings.  

 

Figure 30 Refined lift and drag data for 2% Gurney Flap 
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6.2 CFD Simulation  

Because of problems with the wind tunnel facility, less time was devoted to the CFD 

study than initially expected.  The current study does not represent a completely adequate 

correlation with experimental data; however, it serves as a strong base for further analysis 

if closer correlation is required.  

CFD simulations were run using FLUENT 12.1 software to gain better insight into the 

experiment.  This experiment, though only 2D in nature, is difficult to model in CFD 

because of the large region of separation observed.  Also, because the trip strip selected 

has such a strong effect on the boundary layer, only the clean data was simulated.  

Therefore, this should serve the reader as a first-cut attempt in modeling the problem in 

CFD.  If more accurate modeling is desired, further assumptions must be dropped and/or 

higher fidelity techniques must be implemented. 

Figure 31 shows the clean experiment data to CFD solutions for three different 

turbulence models: k-ω SST, k-ε realizable and a k-ω transitional model, new to 

FLUENT 12.1.  Fair correlation is observed with the simulations and clean experiment.  

However, for k-ω SST (traditionally the most accurate) the point of separation is 

incorrectly predicted but the pressure side of the airfoil is accurately modeled.  The two 

other turbulence models come closer with the point of separation but do not accurately 

predict suction peak values and lower surface pressure.  All models under-predict the 

separation on the wing but the k-ε and the transition model come much closer.   
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Figure 31 CFD results compared to clean experimental data 

The correlation between CFD and experiment is disrupted when the data is tripped.  

Arguably, CFD should be closer aligned with the tripped solution because the turbulence 

models assume a turbulent boundary layer from the leading edge. This does not appear 

the case.  One explanation is that the trip strip is altering the boundary layer in a way that 

is not normally seen for this shape at this Reynolds number.  The definitive answer to this 

question remains unknown.  

 

Figure 32 CFD results compared to tripped experimental data 
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Figure 33 and Figure 34 show velocity contours and vectors from the CFD solution using 

the k-ω turbulence model.  

  

Figure 33 Contours of velocity and velocity vectors on NACA 0036 at 0° angle of attack with k-ω SST 

  

Figure 34 Contours of velocity and velocity vectors on NACA 0036 at 10° angle of attack with k-ω 

SST 

 

Figure 35 plots the experimental uncertainty for the k-ω SST model along with numerical 

uncertainty resulting from spatial discretization determined from a mesh independence 

study for the airfoil at 10° angle of attack.  The error bars show that the CFD is capable of 

predicting all pressures with accuracies within experimental uncertainty except the area 
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leading up to the point of separation.  The error bar is very large at the onset of 

separation, signifying the high oscillations seen in the solution at that point. 

 

Figure 35 Experimental error compared to CFD discretization error 

Force data for the CFD runs can be seen in Figure 36.  Drag shown is only the pressure 

component of drag without skin friction drag to properly compare to experimental data.  

Lift does not equal zero at zero degrees as a result of minor model problems, which was 

explained previously in the model description in section 3.2.  
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Figure 36 Force results from CFD simulation 

Although under-predicting the separation point, the k- SST turbulence model shows fair 

correlation with experimental force data.  It correctly models the initial flat slope of the 

lift curve and rises at around 5 degrees, only too abruptly.  The drag is incorrect in 

magnitude but captures the trend extremely well.  The k-ε realizable does not capture the 

non-linearity of the lift slope– an important flow feature of the NACA 0036.  It also does 

not follow the trend of the drag curve.  

CFD simulation was also run for the case of a 2% Gurney flap.  The results are shown in 

Figure 37.  Trends of larger negative pressure peaks and lower negative pressures of the 

lower surface are over pronounced in CFD.  This signifies that in addition to not 

predicting separation correctly, CFD is also over-predicting the effect of the Gurney flap.  

At 10 degrees, problems arise around the trailing edge region, indicating problems in 

meshing or convergence.  This also resulted in highly irregular force plots which are not 
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shown.  Perhaps large cell volume change is responsible for some of the added error in 

the solution.  More work must be done in meshing as well as modeling for adequate 

correlation of Gurney flap CFD to experimental data.  

 

Figure 37 Comparison of CFD to experimental pressure data of NACA 0036 with 2% Gurney flap 

 

Figure 38 Mesh detail of Gurney flap 
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Figure 39 Contours of velocity and velocity vectors of NACA 0036 at 10° angle of attack with a 2% 

Gurney flap, using k-ω SST turbulence model 
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7 Final Remarks on Research 

7.1 Conclusions 

After significant work in repairing the Cal Poly low speed wind tunnel, fair correlation 

with previous data was achieved.  Correlation is as close as possible without more 

information on the specifics of each previous test.  However, much more work is 

necessary in order to improve the data quality and repeatability of the wind tunnel data 

which is outlined at the end of the next section.   

The effect of the Gurney flap was to lower the peak pressures on the upper surface and 

raise the pressures on the lower surface.  This resulted in a straightening of the lift curve 

slope, eliminating the lift reversal phenomenon.  In addition, small but significant drag 

decreases can be seen at small angles of attack, ranging from 4-27% of form drag; 

however, these are quickly diminished as angle of attack is increased to 3 degrees or 

more, limiting their possible application.  Also, increasing Gurney flap size increased the 

lift to drag ratio. 

Attempts to simulate the flow field with 2D Reynolds averaged Navier-Stokes (RANS) 

CFD were marginal.  Mentor‟s     SST eddy viscosity model proved the most 

accurate, with only slight error in over predicting separation.  However, the tripped 

boundary layer proved too difficult to model.  CFD modeling of the Gurney flap was 

inadequate, with the CFD over predicting the effect of the flap seen in the experiment. 
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7.2 Future Work 

Future work on the experimental side of the research could involve trying to increase the 

drag benefit of the Gurney flap.  The effect of a double-sided Gurney flap (T-flap) might 

result in a wider band of drag benefits in angle of attack, with straighter lift curve slopes 

for better controllability.  Surface flow visualization such as China clay, tuffs, or 

florescent oil would also be helpful to better understand the flow physics. 

For the CFD simulation, there are many new ideas to explore; many of which are 

eliminating assumptions previously made with the current simulation.  Because the 

separation was not modeled correctly, assumptions simplifying the separation would be 

the primary focus.  One idea would be to try an unsteady simulation.  Figure 40 shows 

smoke visualization performed on the NACA 0036
3
 which clearly shows unsteady vortex 

shedding.  Eliminating the steady state assumption might capture this effect.  Another 

idea would be to model the flow in 3D.  Figure 41 shows the 3-D separation pattern 

between the junction of the model and the wind tunnel walls.  With an aspect ratio of 

only 2, these effects might have influenced the flow field along the centerline, where 

pressure measurements were taken.  Finally, if these methods prove unfruitful, then 

higher fidelity turbulence modeling would be required, such as higher-order eddy 

viscosity model such as v
2
-f, or going beyond Reynolds averaging to Large Eddy 

Simulation (LES).  Before embarking on such complicated modeling techniques, this 

author would recommend first cross-checking the accuracy of the current experimental 

data with alternate wind tunnels.  This demonstrates the ever-present challenge of 

matching aerodynamic experiments to numerical simulation.  
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Figure 40 Unsteady vortex shedding seen in smoke visualization
3
 

 

Figure 41 3-D separation of the junction between the model and wind tunnel walls
3
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8 Wind Tunnel Facility Investigation 
A collaborative effort by Greg Altmann and Joshua Roepke 

8.1 Discovery of a Problem 

After looking over several data sets, a problem was seen with the wind tunnel data.  The 

best way to describe what was happening was abnormal blockage effects.  This was 

readily apparent in three data sets: the 2D cylinder used in the Aero 307 lab class, the 2D 

NACA 4412 airfoil also used in the Aero 307 lab class, and the NACA 0036 airfoil used 

in two masters‟ theses.  For the cylinder, the pressure peaks observed were much higher 

than those predicted by the theoretical inviscid pressure distribution.  Normally, this 

would be attributed to wall blockage effects.  Wall blockage effects are when the model 

and the wall are close enough together to cause an increase in acceleration of the flow 

that would not otherwise be seen.  The flow between the cylinder and the wall is being 

restricted and made to accelerate more than it would if no walls were present. This 

accelerated flow is seen in the data in the form of lower pressures as seen in Figure 42.  

In these cases, the wall was originally thought to be too close to the cylinder and a 

smaller model should be used.  However, this same effect was viewed again with the 

NACA 4412 airfoil, only for this case it was compared with a CFD simulation which 

included the wind tunnel walls in the model.  The CFD run with walls did not change 

from the solution run without walls, but the experimental data still showed the blockage 

problem, as can be seen in Figure 43.  When comparing the NACA 0036 model data to 

NASA experimental data a similar effect was observed, as can be seen in Figure 44.  All 

of this evidence led to the following investigation. 
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Figure 42 Cylinder Cp data with high negative peaks 

 

Figure 43 NACA 4412 airfoil at 8° angle of attack compared to a 2D CFD simulation with wind 

tunnel walls modeled and NASA wind tunnel data
22
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Figure 44 NACA 0036 data compared with NASA data
3
 taken in the same size tunnel cross-section 

and older Cal Poly Data (Jacob Wilson
5
) 

8.2 Wall Boundary Layer Measurement 

The first theory as to why the data looks as it does was abnormally high boundary layers 

on the wind tunnel walls.  The idea was that the boundary layers were taking up a large 

amount of the space between the walls and wind tunnel models and reducing the area that 

the freestream air can flow through, and this restriction was causing the flow acceleration 

which lead to the lower than expected pressures on the surface of the models.  To test this 

idea, a total pressure probe mounted on a traverse was built to fit into a panel space on 

the wind tunnel.  The traverse and equipment can be seen in Figure 45.   

Using this device, boundary layer measurements could be taken wherever there was an 

access panel.  A Velmex 10” traverse was used with movement precision up to 0.00025”, 

and a 1/32”OD Pitot tube.  Matlab was used to automate the probe measurements through 

the use of a Graphical User Interface (GUI) as seen in Figure 46.  The GUI allowed the 

user to do many manual or automatic operations.  The manual operations included the 
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ability to reset the position of the probe, set a step size, and step the traverse in both 

directions.  The automatic operation was meant for the automatic capture of the pressure 

data from the Scanivalve, converting this data to dynamic pressure, and plotting this in 

the form of a boundary layer profile.  Especially useful was the ability to specify the 

heights off the wall that the probe would capture data.  This allowed the user to resolve 

important flow features while keeping measurement time to a minimum.     

The probe dimensions can be seen in Appendix B.  The diameter of the probe head was 

chosen to allow measurements as close as possible to the surface of the tunnel.  The 1/32” 

OD tubing was the smallest size that was felt to be rigid enough to not deflect under a 35 

m/s freestream velocity.  The probe was manufactured to take advantage of the long 10” 

of travel that was available with this particular traverse system.  

 

 

Figure 45 Traverse support panel constructed to measure wall boundary layers 

Velmex 
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Pitot Probe 

Controller Power Cable 

 

Probe Carriage 

Serial Cable Velmex 

Controller 
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Figure 46 MATLAB GUI for traverse system 

 

Two sets of data were taken with the probe mount.  First, all four walls were measured 

just behind the inlet.  These profiles can be seen in Figure 47. After this test, it was 

determined that strange behavior was observed in the flow direction along the floor and 

ceiling walls.  This led to the second survey, which was along the bottom wall. The 

bottom wall was investigated instead of the ceiling wall because the floor has more 

removable panels, i.e. measurement locations, than the ceiling.  For these tests, all joints 

upstream of the measurement were sealed with silicone calking to be sure leaks were not 

causing the disturbance. Many small and large scale leaks had been detected and fixed 

and this made almost no impact on the disturbance seen in the boundary layer profiles.  

Therefore leaks were removed from the list of possible sources of the disturbances.   
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Figure 47 Boundary layer measurements over all four walls. On the “floor wall” graph, 

"Downstream" corresponds to panel 2, and "Upstream" refers to panel 1 (in the following figure). 

For the ceiling measurements, “Upstream” corresponds to 2.5’ from the inlet, and before and after 

seal measurements were 7.5’ from the inlet at the same location.  (Local dynamic pressure/freestream 

dynamic pressure; q/q) 

 

Figure 48 Boundary layer measurements along the floor of the wind tunnel.  Panels 4, 3, 2 and 1 are 

9’, 7.5’, 4’, and 1’ away from the inlet respectively. 
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The boundary layers on all panels within 2.5‟ from the inlet are fine.  The vertical walls 

have very clean profiles and show no problems except a higher than normal dynamic 

pressure, but no measurements were taken downstream to verify that no problems 

develop.  The horizontal wall boundary layers grow much quicker than they should and 

have highly erratic behavior.  It was thought that the abnormal boundary layer profiles 

were caused by flow problems in the inlet that might even include separated flow in the 

inlet. This led to an investigation of the inlet contracting section in the inlet. 

8.3 Smoke Visualization 

To gain insight into what is happening in the inlet, streaklines were created with a smoke 

machine starting from outside the screens.  An observer would then stand in the inlet 

while the tunnel was on to take pictures and/or video.  The smoke generator was not the 

lab‟s smoke wand, but a commercial “Fog machine” smoke generator.  This allowed for a 

thicker stream of smoke, which was more useful for this study.  The following pictures 

show some peculiarities.  

   

Figure 49 Smoke visualization inside the inlet 

For both bottom corners of the tunnel, the streakline was pushed to the center of the wind 

tunnel.  It also was pushed upward toward the center of the tunnel almost hitting the sting 

balance when reaching the last test section.  As the smoke machine was moved up along 
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the vertical edge, the streakline shifted across the bottom wall of the wind tunnel until the 

smoke machine was about three to four feet high, when it then aligned with the bottom 

left corner of the test section.  This can be seen in the far left picture of Figure 49.  As the 

smoke machine was raised along that vertical edge, the smoke stayed close to the vertical 

wall in the test section, as would be expected for uniform flow. The top corners did not 

have this strange behavior.   A streakline released from the bottom center would rise very 

high, and would not follow the bottom wall of the tunnel.  This was interpreted as 

possible separation, even though a recirculation zone was not seen with the smoke.  This 

can be seen in the far right picture of Figure 49.   

8.4 Oil Visualization 

At first, the peculiar behavior of the inlet was attributed to poor inlet geometry.  Oil 

visualization was used to investigate the possibility of separation in the inlet.  For this 

experiment, white Mylar was taped to the throat of the inlet, and a mixture of 100 

centistoke oil (SAE 30) and dry graphite lubricant, for visibility, was brushed over the 

surface.  This did show a line of separation near the inflection point of the inlet. It was 

not an even or straight line, but it did show that the oil was pooling up at that location, 

most likely a result of reversed flow.  As can be seen in Figure 50, the entire centerline of 

the tunnel through the first test section was covered with Mylar and oil flow was done 

and no reattachment point was found. A trip strip was added to try to trip the flow to 

turbulent in an attempt to energize the boundary layer and keep it attached.  This was 

unsuccessful and resulted in a line of separation in the same location as before.  Ideally, 

the oil upstream of the separation line would have been pushed in the direction of flow 

while the oil downstream would have been pushed opposing the direction of flow as is 
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characteristic of a recirculation region.  Unfortunately, this was not the case because the 

tunnel wall in the area of interest was heavily sloped.  Between the time that the tunnel 

had shut down and the technicians could get inside to document the results, the oil had 

run down the slope in the upstream direction.  As a result, no flow direction could be 

found from this visualization.  Looking at the smoke lines, no sudden breakaway of 

boundary layer is seen. 

 

Figure 50 Flow visualization showing oil pooling in the throat (before and after) 

Before After 
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Figure 51 Materials for oil visualization and conversion chart for oil viscosities 

8.5 Initial CFD Investigation 

At this point the inlet geometry was thought to be the problem because of the apparent 

separation.  A CFD study was performed to determine whether separation was predicted 

in the inlet.  One corner of the inlet was measured in 3D coordinates, then modeled in 

Solidworks, meshed in ICEM and solved in Fluent.  A structured mesh was used because 

of geometric simplicity with a y+ of less than 1 on the walls.  The k-ω SST turbulence 

model was used for its ability to capture separation accurately.  For the first case, two 

lines of symmetry down the center of both walls were drawn to reduce cell count, leaving 

only one quadrant.  The following images show the result of this study. 
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Figure 52 Preliminary CFD study. Streaklines colored by velocity with contours of static pressure on 

the walls. Symmetry lines are mirrored 

Figure 52 shows small problems in the corners of the wind tunnel, but no major issues 

exist.  On the image to the left, separation is visible in the corners of the test section, but 

not enough to disturb any 2D airfoil sections.  Also, importantly, no separation was 

predicted at the throat, contrary to our latest theory.  The streaklines also did not match 

those seen with the smoke visualization.  At this point, the differences between the CFD 

study and the real tunnel were thought to be the true source of the problem.  Of those, the 

assumption of a uniform inlet velocity seemed to be the poorest assumption.  This created 

a need for inlet velocity measurements. Lastly, this indicated that if we could get a 

uniform velocity profile at the inlet, the geometry of the contraction would probably be 

sufficient for uniform flow in the test section.   

8.6 Inlet Velocity Measurements 

For this experiment, a Pitot-static tube was used to measure inlet velocity behind the 

screen.  Reproducibility for the data proved to be challenging as the normal method of 

acquiring this data, a traverse of some sort, would be very expensive in an area that is 12‟ 

wide and 9‟ tall.  Initial data showed high sensitivity to movements of the probe, and 

distance away from the screen.  To alleviate some of these issues, the probe was mounted 
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to a piece of 1”x2” timber with a spring loaded clamp as can be seen in Figure 53.  Using 

this method, measurements were fairly reproducible.  Each set of measurements was 

taken twice to verify accuracy, with each data point averaging 15 frames with 100 scans 

per frame. Measurements were taken across both centerlines every foot, and six 

additional measurements were taken in each quadrant. The actual measurement points 

can be seen in Figure 55 as black crosses.   

 

Figure 53 Configuration for velocity measurements 

 

Figure 54  Plots showing the repeatability of the measurements on the vertical centerline (left) and 

horizontal centerline (right) 
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Figure 55 Contours of velocity in the inlet, downstream of all screens and honeycomb.  The black “+” 

are the points of measurement inside the tunnel. 

This data showed high non-uniformity, and much slower velocity towards the ground and 

on one side.  In the room of the wind tunnel, the defect was on the side of the room with 

the exit door.  A certain degree of non-uniformity at the inlet is expected.  The expected 

profile should show a slightly larger velocity in the center section of the inlet with low 

velocity close to the walls because of the friction of walls slowing down the flow in those 

regions. The magnitude of the velocity variations that were measured were on the order 

of 200%-350%, which is considerably more than expected.   

After taking this data, the velocity data was imposed onto the inlet boundary condition in 

the CFD to determine if this would reproduce what was happening in the wind tunnel.  

Symmetry was no longer utilized in the CFD solution because of this non-uniform 

velocity profile.  The new CFD results matched extremely well to streaklines viewed with 
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smoke in the inlet.  This confirmed that the inlet geometry was not the major problem, 

but the inlet velocity was the problem. 

 

Figure 56 CFD case with measured velocity imposed on the inlet boundary 

8.7 Inlet Diagnosis  

Once it was determined that the inlet velocity profile was the fault of the non-uniform 

flow problem, the source of the non-uniform inlet velocity profile was sought.  Initially, 

the source of this problem was thought to be the inability of the air coming from the roof 

vents to reach the lower portions of the tunnel inlet.  This idea proposed by Dr. Tso was 

tested by putting a splash shield below the inlet vents to force the flow to “splash” around 

the shield.  This would force the air to take a longer path to the inlet and would, therefore, 

have a better chance of making it to the lower portions of the inlet.  This test failed to 

produce any noticeable change in the smoke streamlines in the inlet.   

The second theory was that the air entering the room was restricted.  This is obvious 

when one compares the inlet size of 108 ft
2
 to the roughly 36 ft

2
 of the roof vents.  These 

vents might not have been letting in enough air.  The inlet creates a low pressure region 

directly in front of it which was drawing in air from not only the roof vents, but also the 
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large exit door.  It is a common occurrence that when the tunnel is set above 20 m/s, air is 

felt coming in from this exit door toward the tunnel inlet.  The thought was that this flow, 

when it reached the inlet and tried to turn 180°, was disturbing the flow from the roof and 

this disturbance resulted in the distinct non-uniform flow pattern in the inlet.  This flow 

from the exit door could not make the 180° turn and was trying to enter the straws at such 

a large angle that the straws were “stalled” which resulted in their inability to 

accommodate as much air as they normally would, thus acting as a restriction.  To test 

this theory, the side doors of the wind tunnel room were opened allowing a large amount 

of air to enter through them.  This would surely create a different flow pattern in the room 

and would change the inlet disturbance pattern.  But, no changes in the streamlines in the 

inlet were observed. 

Next, the inlet itself was investigated.  Initially, it was thought that the inlet should not be 

clogged because there was still smoke going through the straws and light could be seen 

when a flashlight was shown through them as well.  In spite of this, a quick blast of 

pressurized air showed a large plume of dust and dirt coming out of the straws both on 

the inside of the flow straightener and on the outside.   A noticeable change in color was 

observed when the dirt was blown off of the straws.  After a thorough cleaning of the 

inlet from the outside, further smoke flow visualization was done to qualitatively evaluate 

the change.  These results can be seen in Figure 57 and Figure 58.  The cleaning 

produced a marked improvement, but the problem still existed, just to a lesser extent.  To 

test this promising theory that the straws were just clogged, a restriction was made out of 

cardboard to simulate the clogged straws.  The cardboard had 2”-3” holes cut in it and 

spaced roughly every 4”-5” on center in a semi-regular pattern.  This restriction was 
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placed in front of the top corner of the inlet where no unusual flow patterns were 

previously observed and smoke visualization confirmed that the flow irregularity had 

been reproduced. This confirmed that the flow irregularities in the contraction were the 

result of restrictions in the flow straightener.  Next, cleaning was done on the inside of 

the inlet.  This consisted of trying to blow, with compressed air, the dirt out from the 

inside of the tunnel.   

 

Figure 57 Smoke flow visualization before cleaning 

 

Figure 58 Smoke flow visualization after cleaning. Also visible is the dirt and dust that was removed 

during the cleaning process 

After further inspection, a thick layer of dirt and debris was observed between the straws 

and the 2
nd

 screen.  This layer of blockage was difficult to remove due to the 3
rd

 and 4
th

 

screen being behind the 2
nd

 screen.  To clean this blockage out thoroughly, the removal of 
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all of the straws was needed.  It was also concluded that the replacement of the straws 

was needed to ensure their cleanliness.  Upon pricing of replacement straws, it was 

decided that a better solution was to replace the straws with honeycomb, a much more 

traditional material for a flow straightener.   

8.8 Honeycomb Selection 

To determine the required size of the honeycomb, many sources of information were 

consulted.  In these sources, the important parameters for the selection of the honeycomb  

was the pressure drop coefficient, K, the actual cell hydraulic diameter, Dh and the L/Dh 

ratio of the cells. The pressure drop across the flow straightener is important to ensure 

that the new flow honeycomb will not pose a larger restriction on the inlet than the 

straws.  If the honeycomb had a larger pressure drop across it, the fan would have to 

expel more energy to produce a given speed in the test section and the maximum speed of 

the tunnel will be reduced.  Equation 8-1 was said to be the most common
12

 one used; 

therefore, it was used here. 
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A summary for the sizes and pressure drop values for the proposed honeycomb sizes can 

be seen in  Table 4.  As mentioned in the literature, the honeycomb is the best at reducing 

the transverse turbulence.  It does this by literally dividing the turbulence into small 
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disturbances the size of the honeycomb cells as the turbulence is drawn into the 

honeycomb.  But the honeycomb produces turbulence as well as destroys it.  Care must 

be taken to ensure that the production of turbulence by the honeycomb is minimized by 

limiting the boundary layer growth. The longer the cell, the larger the boundary layer 

inside it and the larger and stronger the turbulence will be that is produced by the cell.  

The general rule is that the cell must have an L/Dh in the range of 6-8
2
.  In these 

equations, T is the material cell wall thickness. For the derivation of Equation 8-5, see 

Appendix D. For the Matlab code that performs the calculation for Table 4, see Appendix 

E.  All flows in nature contain turbulence.  But if the turbulence intensity is low enough, 

we can consider them as laminar.  For our case, because of the flow path, the turbulence 

intensity is not low enough to classify the flow as laminar. 

Table 4 Summary of straws and proposed honeycomb sizes 

Material Dh  (in) L  (in) L/ Dh Wall Thickness (T) (in) A/Aflow K 

Straws 0.219 7.75 35.4 0.006 1.09 1.66 

HC  0.25 2.0 8 0.002 1.02 0.40 

HC 0.125 1.0 8 0.002 1.04 0.55 
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The only general rule that could be found for the sizing of the honeycomb was that the 

cell size "shall be smaller than the smallest lateral wavelength of the velocity variation"
23

. 

The problem is that the upstream velocity and turbulence data is not available for this 
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open circuit tunnel as it is for a closed circuit tunnel.  Even if it were available, with an 

in-draft tunnel such as ours with the in-flow coming from the atmosphere, the incoming 

flow could vary considerably day to day, depending on the atmospheric conditions such 

as wind and temperature.  Unless measurements were taken over a considerable time span 

to capture variations mentioned above, the above data would not be very useful.  

Therefore, based on the above calculations, it was thought that the smaller celled 

honeycomb would be best for our inlet.  This was because the pressure drop coefficient 

was still 3 times less than that for the straws and would reduce the turbulence levels in 

the transverse directions by a factor of 1.75.  Also, by choosing the correct L/Dh, the 

amount of turbulence produced by the honeycomb would also be reduced considerably.  

This should result in a large net reduction in turbulence over the current straws.   

Other secondary items such as soiling/fouling, susceptibility to suffering permanent 

damage, mounting difficulties, and price were also considered in the honeycomb 

selection.  Soiling and fouling were important because it appears as though the current 

state of affairs was brought on by soiling and fouling of the straws and screens without an 

adequate way to clean them.  To prevent this from happening again, the inlet will be 

designed with the ability to clean both sides of each screen and the honeycomb. 

The materials that were evaluated were Nomex, Kevlar, and aluminum.  After samples 

were received of the three materials, it was believed that the Nomex would be susceptible 

to fouling because of the surface “fuzziness” that was apparent at the entrance and exit to 

the cells.  Of the aluminum and Kevlar sample, the aluminum was thought to be 

susceptible to permanent damage.  The Kevlar displayed a good degree of resiliency 

when the cells were subjected to harsh handling.  Susceptibility to damage was important 
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because, downstream of local damage in the honeycomb, the turbulence level can 

increase up to 3 times that of the average freestream value
24

.  For these reasons, Kevlar 

seemed to be the best choice, but on the receipt of price quotes for the material, it was 

deemed too expensive. Polycarbonate honeycomb was used because it was a good 

compromise with all of the requirements, and was very cost effective. 

8.9 Screen Selection 

Incoming flow contains turbulence on a larger scale than the openings in the screens.  

The flow is restricted and drawn through the screens by a driving pressure force supplied 

by the fan of the wind tunnel.  The wire of the screens acts like small subcritical cylinders 

in the flow.  The flow separates before it reaches the maximum thickness of the wire.  

This separation breaks down into turbulence, leaving the honeycomb as smaller-scale 

turbulence.  The small-scale turbulence then dissipates at a much higher rate as it is closer 

to the Kolmogorov scale in which turbulence is small enough to turn to heat.  Because of 

the previously mentioned lack of upstream turbulence information, the actual turbulence 

inside the test section cannot be estimated accurately.  When the wind tunnel was housed 

in the hanger (Building 4), the turbulence intensity was measured and found to be 0.5%.  

No information is available as to what tunnel speed this test was conducted. It is 

unknown if the test was performed in the longitudinal or transverse direction, or even 

how accurate the test is believed to be or what method was used to obtain the 

measurements.  This is also, presumably, conducted when the straws were clean.  If these 

conditions were known, the upstream flow turbulence condition could be found and used 

as a reference to estimate the test section turbulence in its current state.  Turbulence 

levels below 0.1% are considered acceptable and levels below 0.05% are required for any 
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kind of laminar flow research
25

.   But because 0.5% has been deemed an adequate 

turbulence level by the overseer of the wind tunnel, Dr. Jin Tso, no significant reduction 

of the turbulence below this level will be sought. Before repairs, there were four screens 

which all had a mesh size of 18 openings per inch in each direction.  This is referred to as 

an 18 mesh screen. The first two screens were just in front and behind the straws and 

used to hold the straws in place. This was followed by a gap of about 1.5” between the 

second and third screen and the same gap between the third and fourth screens.  The new 

screens just before and after the honeycomb are still 18 mesh screens.  The last two 

screens get progressively finer with the third screen being a 22 mesh screen and the last 

screen being a 26 mesh screen.  

Another important design aspect is the open ratio of the screen.  This is defined in a 

similar manner to the A/Aflow ratio for the honeycomb sizing.  It is the ratio of the open 

area in cross section of the screen to the area of the opening that holds the screen.  The 

open ratio should be at least 57%
22

.  Below this value, the jets of air that go through the 

small screen openings start to form instabilities in the flow and actually produce more 

turbulence.  For this reason, an open ratio of between 64% and 72% will be maintained 

for all screens.   

Many general rules for the spacing of the screen have been given, but few can be 

implemented into the current inlet design because they would make the inlet too long.  

The general rule is that the screen should be spaced at least 0.2 times the settling chamber 

diameter
22

.  For our inlet the settling chamber diameter is equal to the hydraulic diameter 

of the inlet, which is 10.28 ft.  This would require a screen spacing of 2.06 ft.  This is not 

possible because it would require the addition of about 4 ft to the length of inlet.  A 
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second general rule for screen spacing is that they should be at minimum 25 divided by 

the mesh size. For an 18 mesh screen, the next screen should be no closer than 25/18, or 

1.39”.  This method is based on analysis that assumes that the wires are operating in the 

supercritical Re region
24

.  The applicability of this assumption is questionable because of 

the low Re for the wires. In either case, using this as a minimum guide will be sufficient 

for our case.   

Table 5 shows the spacing between the screens and other screen parameters.  A common 

structural lumber width is 1.5”; this was used for most of the construction.  The width of 

the first and second spacing is 1.5”. Equations 7 and 8 are the formulas for the pressure 

loss coefficient, K, as well as the Re for the wire screen
26

.  This design is easy to take 

apart and clean, and allows for easy screen replacement. 
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Table 5 Summary of screen parameters 

Screen # Mesh Size (M) Open 

Ratio (β) 

Wire 

Diameter (d) 

K Reβ 25 M Actual Spacing 

1 18 0.704 0.009” 0.906 82 -- -- 

2 18 0.704 0.009” 0.906 82 1.39” 1.5” = 27 M 

3 22 0.697 0.0075” 1.001 69 1.14” 1.5” = 39 M 

4 26 0.65 0.0075” 1.300 74 .96” -- 

 

8.10 Post-repair Inspection 

After installation of the screens, tests were carried out to verify that the proposed 

modifications did successfully alleviate the problems observed.  Three tests were 



77 

conducted: smoke streakline visualization, boundary layer surveys on the bottom floor 

and NACA 4412 pressure measurements at 8 degrees.  

For the first test, streaklines were recreated in the troubled regions before the repairs. 

Figure 59 shows images of these new streaklines.  As would normally be expected, now 

the streaklines follow the corners and the bottom contours very closely, and now 

resemble the CFD with a uniform velocity at the inlet.  In addition, the center bottom 

streaklines no longer hits the sting balance, but remains along the wall below the 

measurement device.  

 

Figure 59 Streaklines after screen and honeycomb replacement 

The next test carried out was a boundary layer survey of the bottom floor.  Figure 60 

shows the results of these measurements.   After the repairs, the boundary layers showed 

clear profiles and steady growth along the bottom of the wind tunnel, as would be 
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expected.  The local dynamic pressure, outside the boundary layer, showed a variance of 

less than 1% from the average and from the nominal freestream value over all 

measurements.  The largest boundary layer measured was about 3 inches at a distance of 

about 9‟ from the end of the contraction. If this is the boundary layer thickness on all 

walls at this location then the usable tunnel area is 73% of the geometric tunnel area.   

 

Figure 60 Boundary layer measurements before and after replacement screens and honeycomb along 

the floor of the wind tunnel.  The panels measured from the inlet are 1', 4', 7.5’, and 9’ away 

respectively 

A Pitot-static tube measured the centerline variance in dynamic pressure.  Barlow et. al. 

recommends a variation of less than 0.5% in q
12

, while Payne and The Boeing Company 

recommend a variance of less than 0.3% for their commercial low-speed tests
27

.  The 

variance for the Cal Poly tunnel was measured to be 0.76%.  This measurement is likely 

understated because long pressure tubing used during measurement often damps out 

pressure fluctuations.  This high variance in mean dynamic pressure is likely a result of 

poor fan speed regulation. 
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The lab‟s cylinder was re-examined to observe the effect of the new flow quality.  Sadly, 

it was determined that many of the problems with the cylinder are a result of poor 

manufacturing quality.  Full 360° observation of all pressure ports showed extremely 

differing data sets, shown in Figure 61.  It is postulated that either problems with 

individual pressure port installations or a warped circular profile is the cause of the 

problem matching theoretical distributions.  

 

Figure 61 Cal Poly lab cylinder pressure distributions 

Another test was to re-measure the pressure over the NACA 4412 to determine if the high 

blockage effects were eliminated.  Despite positive results from other diagnostics, the 

new screens did not visibly change the profile over the airfoil.  A more in depth study of 

the CFD simulation at this point would be advisable, possibly eliminating the 2-

dimentional assumption.  However, measurements of the boundary layers and flow 

visualization attest to much cleaner flow qualities after the repair.  
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8.11 Facility Improvement Recommendations 

This study uncovered many problems of the facility as it exists today.  The facility has a 

strong potential to serve many practical uses of the current Aerospace student body.  The 

tunnel could be used by Design Build Fly (DBF) to obtain stability derivatives.  The wind 

tunnel is also capable of delivering Reynolds numbers adequate for small UAVs, in 

which there is presently a growing interest.  Yet another application could be for the 

current senior design class, which is currently designing a hybrid airship.  Wind tunnel 

data would be excellent to provide when the teams get to detailed design spring quarter.  

All these uses, and more, are compelling reasons for improving the wind tunnel. It could 

become more than just an instructive tool which, in its current state, is all it is capable of 

being.  

The first recommendation is to establish a calibration model for the lab.  A symmetric, 

zero-lifting airplane or airfoil model on the scale of common test sizes would be ideal.  

This could be used to perform up-flow calibrations (by measuring lift curves for the 

model upright and inverted and measuring the offset) and to establish a historical 

database for reference.  This would be extremely useful to show the repeatability of data, 

as well as to signify if something has gone wrong in the facility or data acquisition 

equipment.  

The next piece of equipment the wind tunnel urgently needs is a hazardous materials 

cabinet stocked with flow visualization materials including kerosene, diesel, DayGlo 

powder, kaolin powder (China clay), various viscosity oils, and titanium dioxide.  

Currently, if data appears amiss, there are no established methods of flow visualization to 

help investigate the problem.  This is an extreme disability that is relatively easy to fix.  
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A practice that is seriously lacking from the current operations of the wind tunnel is 

periodic calibration tests.  This includes measuring q fluctuations, tunnel up-flow in 

various test sections, clear tunnel buoyance measurements, flow angularity distributions, 

and q distributions.  These tests are vital to any facility aiming to provide repeatable, 

accurate data.  During the current experiment, large static pressure losses were detected 

through different wind tunnel sections.  This is a problem that could be reduced by 

adding fillets to the corners of the wind tunnel‟s rectangular cross-section. 

Some of these tests could be incorporated into the AERO 307 laboratory.  This would 

provide the double benefit of providing annually collected data for reference, as well as 

showing students industry practice for wind tunnels.  AERO 307 students would also 

benefit from learning more about pressure transducers, an indispensable tool for the 

modern experimental aerodynamist.  

Lastly, the wind tunnel lab needs some additional lab equipment.  A hand-held vacuum 

pump is needed to perform pressure port leak tests.  Scanivalve brand couplers are 

necessary to provide leak-free connections between pressure tubes and the Scanivalve 

EPS modules.  Also, the lab needs the ability to provide a regulated pressure to calibrate 

pressure transducers for other experiments.  

Figure 62 shows requirements common to commercial low speed wind tunnels.  Perhaps 

the Cal Poly wind tunnel cannot achieve all of these requirements; however, this table 

outlines the metrics that should be examined.  
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Figure 62 Typical flow quality requirements for a commercial low speed wind tunnel 

 In conclusion, laboratory data is only as accurate as the tools used to measure it.  If 

reliable, useful wind tunnel data is desired, many of the recommended changes must be 

performed.  
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Appendix A – Complete Data 
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Pressure data for negative angles of attack 

Note: Data considered obsolete because it was recorded before tunnel improvements. 

Provided only for informative purposes 
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Appendix B – Probe Dimensions 

 

Appendix C – Tunnel Geometry 

Here are the measured wind tunnel inlet 3D coordinates of the bottom corner ( the 

intersection of the horizontal and vertical walls).  These were used to model the inlet in 

Solidworks for the CFD study.  They are probably accurate to ±1/4”.   

115.5in 84.25in 51.5in 

104.75in 84.25in 51.5in 

87.5in 83.5in 51in 

74.75in 82.13in 50in 

66.5in 80.75in 48.75in 

60in 79.38in 47.5in 

53.25in 77.63in 45.75in 

47.13in 75.75in 43.75in 

40.88in 73.13in 41.13in 

32.38in 69.38in 37.25in 

22.38in 63.5in 31in 

16.88in 59.75in 27.38in 

8.88in 53.75in 22.5in 

3.88in 49.5in 20.13in 

-1.5in 44.38in 18.25in 

-6.12in 40.13in 17.25in 

-11in 37.63in 16.63in 

-16in 36.25in 16.25in 

-22.25in 35.75in 16.25in 

-27.37in 35.75in 16.25in 
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Appendix D – A/Aflow Equation Derivation 

 

For the straws, the diameter is equal to the hydraulic diameter.  It is assumed that the 

straws are perfect circles that touch at 4 points on their outer edge.  The above figure is 

the domain that repeats over and over.  The vertical and horizontal edges of the bounding 

box can be thought of as planes of symmetry or as the edges of the inlet.  The derivation 

looks like this. 
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For the Honeycomb, the following figure was used for the analysis in the same manner as 

above in order to come to the relation given in the text. 

 

Appendix E – Matlab Code for Honeycomb Pressure 

Drop Coefficient 

close all;clear all;clc 
%% Inputs (some of these values need to be changed)  
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delta=.001;      % roughness (inches)-see "Handbook of Hydraulic 

Resistance" 
dh=0.125;        % hydraulic diameter in inches 
L=1;             % Length of the cell in the streamwise direction in 

inches 
t=0.002;         % thickness of the cell walls in inches 
shape='circle';  % shape of the cell (either circle or hexagon for now) 

  
V=3.7;           % speed of the air at the entrance to the cell in m/s 
nu=1.46e-5;      % kinematic viscosity in metric units 

  
%% Preliminary Calc 
dh=dh.*0.0254; 
L=L.*0.0254; 
delta=delta.*0.0254; 
t=t.*0.0254; 
Re=delta.*V./nu; 

  
if strcmp(shape,'hexagon')==1 
    A_Aflow=dh./(dh-8.*t./3); 
elseif strcmp(shape,'circle')==1 
    A_Aflow=dh.^2./(dh.^2-pi.*(dh*t-t.^2)); 
end 

  
%% Main Calcs 
if Re<=275 
    lamda=0.375.*Re.^(-0.1).*(delta/dh).^.4; 
else 
    lamda=0.214.*delta_dh.^.4; 
end 
k=lamda.*(3+L/dh).*A_Aflow.^2+(A_Aflow-1).^2 

 

Appendix F – Matlab Code for Panel Method 

function [Cl Cd] = calc_coeff(CP,alpha) 
%  Calculates lift and drag coefficients for a NACA 0036, giving the CP 
%  vector used for plotting, and alpha in degrees 

  
 x = [0  0.0200    0.0700    0.1200    0.1700    0.2500    0.3600  

0.4000... 
      0.4500    0.5000    0.6000    0.7000    0.7400    0.7800    

0.8300... 
      0.9000    0.9700    1.0000    0.9700    0.9000    0.8300    

0.7800... 
      0.7400    0.7000    0.6000    0.5000    0.4500    0.4000    

0.3600... 
      0.2500    0.1700    0.1200    0.0700    0.0200  0]; 
y = [0    0.0708    0.1226    0.1496    0.1659    0.1782    0.1778... 
    0.1741    0.1674    0.1588    0.1369    0.1099    0.0979    

0.0853... 
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    0.0685    0.0434    0.0162         0   -0.0162   -0.0434   -

0.0685... 
   -0.0853   -0.0979   -0.1099   -0.1369   -0.1588   -0.1674   -

0.1741... 
   -0.1778   -0.1782   -0.1659   -0.1496   -0.1226   -0.0708         

0]; 
ref = [1 2 3 4 5 31 32 6 7 8 34 33 9 10 11 12 13 14 15 16 17 18 19 30 

29 20 21 22 28 27 23 24 25 26 1]; 
CP = CP(ref); 

  
%Equation for the derivative 
dydx = @(x) .36/0.2*(0.2969/2*x.^-0.5-0.1260-2*0.3516*x+3*0.2843*x.^2-

4*0.1015*x.^3); 
%f = @(x) .36/0.2*(0.2969*x.^0.5-0.1260*x-0.3516*x.^2+0.2843*x.^3-

0.1015*x.^4); 

  
%Deterimines the 'm' for each panel (y=mx+b) 
m = y./abs(y).*dydx(x); 

  
%Removes NaN from first vertical panel 
index = isnan(m); 
m(index) = 0; 

  
%finds b (y=mx+b) 
b = y-m.*x; 

  
%Find the endpoints for each panel 
mdpt = zeros(2,length(x)-1); 
for i = 1:length(mdpt) 
    if i == 1 
        mdpt(1,i) = 0; 
        mdpt(2,i) = b(2); 
    elseif i == length(mdpt)         
        mdpt(1,i) = 0; 
        mdpt(2,i) = b(end-1); 
    elseif x(i+1) == 1 
        mdpt(2,i) = .1/24; 
        mdpt(1,i) = 1; 
    elseif x(i) == 1 
        mdpt(2,i) = -.1/24; 
        mdpt(1,i) = 1; 
    else 
        mdpt(:,i) = [m(i) -1;m(i+1) -1]^-1*[-b(i);-b(i+1)]; 
    end 
end 

  

  

  
%Find the length of each panel 
l = zeros(1,length(x)); 
gamma = zeros(1,length(x)); 
for i = 1:length(l)-1 
    if i == 1 
        l(1) = sqrt((mdpt(2,i)-mdpt(2,end)).^2+(mdpt(1,i)-

mdpt(1,end)).^2); 
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        gamma(i) = atan2(mdpt(2,i)-mdpt(2,end),mdpt(1,i)-mdpt(1,end)); 
    else 
        l(i) = sqrt((mdpt(2,i)-mdpt(2,i-1)).^2+(mdpt(1,i)-mdpt(1,i-

1)).^2); 
        gamma(i) = atan2(mdpt(2,i)-mdpt(2,i-1),mdpt(1,i)-mdpt(1,i-1)); 
    end 
end 

  

  
C_a = sum(l(1:end-1).*CP(1:end-1).*sin(gamma(1:end-1))); 
C_n = sum(l(1:end-1).*CP(1:end-1).*-cos(gamma(1:end-1))); 

  
Cl = C_n*cosd(alpha)-C_a*sind(alpha); 
Cd = C_a*cosd(alpha)+C_n*sind(alpha); 
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