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daytime feeding. Interestingly, there was a significant diel 
variation in acoustic behaviour. Herding calls were signifi-
cantly associated with underwater tail slap rate and were 
recorded significantly more often at night, suggesting that 
in low-light conditions killer whales rely more on acoustics 
to herd herring. Communicative sounds were also related 
to underwater tail slap rate and produced at different rates 
during day and night. The capability to adapt feeding 
behaviour to different light conditions may be particularly 
relevant for predator species occurring in high latitudes 
during winter, when light availability is limited.

Introduction

Investigating top predator behaviour is essential for a full 
understanding of the ecosystem they inhabit and the role 
that they play in it. Indeed, marine predator’s behaviours 
are influenced by diverse intrinsic and extrinsic factors. 
Prey abundance and distribution vary spatially within the 
water column, i.e. in depth, but also with time, either on 
short timescales, such as diel migration, or on longer 
scales, such as seasonal migration. Such diverse use of 
the water column by prey, both spatially and temporally, 
should influence the diving and foraging patterns and 
behaviour of their predators (e.g. Baird et al. 2005; Fried-
laender et al. 2009; Arranz et al. 2011; Friedlaender et al. 
2013; Samarra and Miller 2015). Day-night differences 
in light availability may also affect predator–prey interac-
tions. For example, fish catchability may increase in the 
absence of light, either during night or at depth (Casey and 
Myers 1998). Thus, light availability could impact the for-
aging behaviour of marine predators. For example, Miller 
et al. (2010) revealed day-night differences in the diving 
behaviour of mammal-eating killer whales that were most 

Abstract  Herring-eating killer whales debilitate her-
ring with underwater tail slaps and likely herd herring into 
tighter schools using a feeding-specific low-frequency 
pulsed call (‘herding’ call). Feeding on herring may be 
dependent upon daylight, as the whales use their white 
underside to help herd herring; however, feeding at night 
has not been investigated. The production of feeding-spe-
cific sounds provides an opportunity to use passive acous-
tic monitoring to investigate feeding behaviour at differ-
ent times of day. We compared the acoustic behaviour of 
killer whales between day and night, using an autonomous 
recorder deployed in Iceland during winter. Based upon 
acoustic detection of underwater tail slaps used to feed 
upon herring we found that killer whales fed both at night 
and day: they spent 50% of their time at night and 73% of 
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likely explained by day–night ecological differences, such 
as differences in prey detectability due to ambient light or 
changes in prey behaviour.

Herring (Clupea harengus) is an important prey species 
for a number of marine predators, and it undertakes both 
diel and seasonal migrations. Throughout the year her-
ring migrates between overwintering, spawning and feed-
ing grounds (Holst et al. 2004) with concurrent changes 
in its behaviour, such as school size, preferred depth and 
density (Nøttestad et al. 2004). In addition, preferred depth 
also changes throughout the day, with a diel migration from 
deeper waters during the day to the surface layer during 
the night (Dommasnes et al. 1994; Huse and Ona 1996). 
In Iceland and Norway, killer whales (Orcinus orca) feed 
upon herring using a coordinated strategy to gather the her-
ring and then slapping the prey ball with their tail to debili-
tate the fish (Similä and Ugarte 1993; Simon et al. 2005, 
2007). These underwater tail slaps consist of multiple 
pulses over a short duration of ~300 ms with source lev-
els of 186 ± 5.4 dB re. 1 μPa at 1 m across a broadband 
frequency range centred at 46.1 ± 22.3 kHz (Simon et al. 
2005).

Killer whale groups produce unique and stable reper-
toires of stereotyped pulsed calls that differ between groups 
(Ford 1989, 1991) but are generally not specific to behav-
ioural context (Ford 1989). From well-known populations, 
such as in the North Pacific, killer whale finer-scale groups 
have been described as matrilineal units, i.e. matrilines 
composed of an oldest-surviving female adult with several 
offspring generations (Bigg et al. 1990; Baird and White-
head 2000; Ford et al. 2000). Matriline composition and 
interactions vary according to killer whale ecology. Indeed, 
optimal foraging group sizes depend on trade-offs between 
the ability to detect prey and the probability to be detected 
by potential prey (Baird and Dill 1996). Within a killer 
whale population, matrilines that associated at least 50% 
of the time were considered to form a ‘pod’ (Bigg et al. 
1990). Matrilines in the same pod share a unique acous-
tic repertoire (Ford 1989, 1991) and are genetically more 
closely related than matrilines from different pods (Barrett-
Lennard 2000). However, different pods can share a part 
of their repertoire, in which case they are considered part 
of the same acoustic ‘clan’ (Ford 1991). Yurk et al. (2002) 
revealed that two acoustic clans in Alaska are two maternal 
lineages, strengthening the idea of vertical maternal cul-
tural transmission of vocal repertoires. Unique pulsed calls 
work as vocal signature, either matriline or pod or clan, and 
thus contain important information during social activity 
with other groups (Ford 1989, 1991; Deecke et al. 2000; 
Miller and Bain 2000), or to maintain cohesion while hunt-
ing (Miller 2002; Lammers and Au 2003).

During feeding, herring-eating killer whales increase 
the rate of production of communication sounds (Van 

Opzeeland et al. 2005; Samarra and Miller 2015), sug-
gesting that acoustic communication may be used to 
coordinate whale movements and/or help herd the her-
ring (Similä and Ugarte 1993; Simon et al. 2007; Shapiro 
2008). Call production decreases when whales feed non-
cooperatively upon herring discarded from fishing boats 
(Van Opzeeland et al. 2005), supporting the important role 
of acoustic communication during coordinated feeding. 
Thus, we might expect that variations in feeding behaviour 
in different ecological contexts will be reflected in differ-
ences in acoustic behaviour, but such variations are still 
poorly understood.

Herring-eating killer whales off Iceland produce a feed-
ing-specific pulsed call thought to be aimed at prey and 
function as an acoustic means to herd the herring (‘herd-
ing’ call; Simon et al. 2006). Feeding-specific sounds 
thought to be directed at prey are also produced by bot-
tlenose dolphins when feeding upon salmon (Janik 2000) 
and humpback whales when bubble-net feeding on herring 
(Cerchio and Dahlheim 2001). These calls are similar in 
structure to killer whale herding calls, suggesting con-
vergence in acoustic behaviour that would facilitate the 
capture of herring (Simon et al. 2006). The production 
of feeding-specific sounds allows investigation of feed-
ing occurrence, as well as variations with time of day or 
season, using passive acoustic monitoring (e.g. Schaffeld 
et al. 2016).

Herding calls of Icelandic killer whales have a high 
intensity (estimated source levels of 169–192 dB pp 
re 1 μPa @ 1 m; Simon et al. 2006), a low frequency 
(between 400 and 1400 Hz; Samarra 2015), a lack of fre-
quency modulation and a long (~3 s) duration (Simon 
et al. 2006). Similar herding calls were also recorded 
from herring-eating killer whales in Shetland (Deecke 
et al. 2011). However, herding calls are not consist-
ently produced in all feeding events (Simon et al. 2006; 
Samarra 2015), and it is not clear what factors drive its 
production. Variations in the production of the call and 
in the characteristics of calls produced may suggest that 
the herding call is group-specific (Simon et al. 2006; 
Samarra 2015); however, this has not been demonstrated 
to date.

In previous boat-based behavioural studies on herring-
eating killer whales (e.g. Similä and Ugarte 1993; Simon 
et al. 2005, 2006, 2007), data collection was only possi-
ble during the daytime. When feeding during the day, the 
whales flash their white bellies to scare the fish, herding 
the herring school further, and therefore killer whales may 
depend on daylight to catch herring (Nøttestad et al. 2002). 
However, given the short length, i.e. between 4 and 6 h or 
less, of daylight during winter in high latitude areas, such 
as Iceland, it appears unlikely that feeding is limited to 
daylight time.
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In this study we contrasted the acoustic behaviour of 
killer whales between day and night, using an autono-
mous acoustic recorder deployed in an Icelandic fjord dur-
ing 1 month in winter 2014. Overwintering herring gather 
in large aggregations in fjords during the winter months 
(Óskarsson et al. 2009), and killer whales are known to 
feed on these herring. Using acoustically detectable under-
water tail slaps as a proxy of feeding activity (Simon et al. 
2005, 2007; Samarra and Miller 2015), we aimed to assess 
whether killer whales feed at night, and how acoustic behav-
iour related to feeding might differ between day and night.

Materials and methods

Data collection

An Ecological Acoustic Recorder, EAR (Lammers et al. 
2008), was deployed in Kolgrafafjörður, Iceland (64°57′N, 
23°07′W, Fig. 1) for 37 days (from 22 February to 31 
March) in winter 2014. This fjord was part of the overwin-
tering grounds of the Icelandic summer-spawning herring 
stock in 2014 (ICES 2014). During the deployment, the 
EAR recorded 5 min of audio every 10 min at a sampling 
rate of 64 kHz, and used a Sensor Technology SQ26-01 
hydrophone with a sensitivity of −193.5 dB (frequency 
response: ±1.5 dB from 1 Hz to 28 kHz). The small size of 
the fjord (approximate width of 2 km and length of 5 km) 
allowed us to consider that we would not miss high-inten-
sity sounds (such as the herding call) produced by killer 
whales within this fjord.

Acoustic processing

In order to reduce the dataset for analysis and to obtain 
representative samples across the entire recording period, 
we analysed the first minute of each 5-min file. The files 
were processed manually using Adobe Audition CS6 (ver-
sion 5.0), by aural and visual inspection of spectrograms 
to detect killer whale sounds. Each sound was marked and 
then classified into one of seven categories (Fig. 2). Based 
upon consistent variations, we classified the ‘herding call’ 
into two categories: calls with high intensity (source level 
estimated at 169–192 dB pp re 1 μPa @ 1 m), low fre-
quency (400–1400 Hz), lack of frequency modulation and 
a long duration (~3 s), similar to those described in earlier 
studies (Simon et al. 2006; Samarra 2015) were referred 
to as “linear herding calls” (Fig. 2a); herding calls that 
included nonlinear phenomena, such as frequency jumps, 
subharmonics or noise, as defined in Fitch et al. (2002) and 
Tyson et al. (2007), were referred to as “nonlinear herd-
ing calls” (Fig. 2b; Samarra 2015). Sounds with very short 
duration, i.e. around 300 ms, and with very large broad-
band frequency (up to the limit of the recording system) 
as described by Simon et al. (2005) were categorised as 
underwater tail slap (Fig. 2c). Pulsed calls consisting of a 
single frequency component, and which were not “herd-
ing” calls, were categorised as monophonic calls (Fig. 2d, 
Filatova et al. 2007) and those containing an overlapping 
of two independent frequency components were marked 
as biphonic calls (Fig. 2e, Miller 2002). Sounds based on 
a non-pulsed tonal format with a narrow-band tone above 
4 kHz were categorised as whistles (Filatova et al. 2016), 

Fig. 1  Field site (Kolgrafaf-
jordur) with the location of the 
deployed hydrophone repre-
sented by a star

Kolgrafa�ördur
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visually and aurally distinguishable from pulsed calls (Ford 
1989; Riesch et al. 2006), with an approximately maxi-
mum frequency range 3–17 kHz (Fig. 2f, Thomsen et al. 
2001), and those with fundamental frequency contours 
above 17 kHz, were classified as high-frequency whistles 
(Fig. 2g, Samarra et al. 2010). We chose these broad sound 
categories (i.e. monophonic calls, biphonic calls, whistles, 
high-frequency whistles and underwater tail slap) to avoid 
unnecessary variation caused by group-specific differences 
in repertoires within these broad sound categories. Day 
and night data were processed identically, and the observer 
classifying sounds was blind to the period of the day when 
sounds were recorded.

For each file, we summed the total number of sounds 
of each category. We then estimated the solar angle using 
time and spatial coordinates, using the function solarpos 
(package maptools) from the software R (R Development 
Core Team 2015) in order to define whether each file was 
recorded during the day, night or civil twilight. Solar angles 
are estimated from the horizon, so in theory they could vary 
between −90° and +90°. As we considered the civil twi-
light, we set this period between −6° and 0°. Thus, day is 

defined by positive solar angles, i.e. the sun is above the 
horizon, and night is defined as negative angles below −6°.

In order to ensure the detectability of sounds did not 
vary between day and night, we compared ambient noise 
levels on the recorder during daytime and night-time. Addi-
tionally, we used a proxy for recording quality comparable 
between daytime and night-time. Due to their high intensity 
(source level 169–192 dB pp re 1 μPa @ 1 m), long dura-
tion (~3 s) and low frequency (400–1400 Hz, Simon et al. 
2006; Samarra 2015), we assumed that herding calls could 
be detected from a longer distance than sounds of other cat-
egories. Thus, we assessed the quality of all herding calls 
in the recording periods, as a proxy for overall recording 
quality, by establishing whether each herding call was 
masked by noise or could be clearly distinguished. For that 
purpose, we measured the root mean square (RMS) sound 
pressure level (SPL) values of the recorded waveform 
over one-third octave bands with a custom-written script 
in MATLAB (The MathWorks, Natick, MA, USA). An 
octave band filter has been applied to both the signal-plus-
noise and the noise within the extracted marked sound. The 
process compared the RMS SPL (dB re 1 muPa2) of calls 

Fig. 2  Examples spectrograms 
for each sound category, a 
linear herding call, b nonlinear 
herding call, c tail slap, d mono-
phonic call, e two-voice call, f 
whistle and g high-frequency 
whistle. Spectrogram param-
eters: window = Hanning; 
FFT length = 2048; window 
length = 1024; overlap = 0.875
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(with overlapping background noise) to the RMS SPL of 
the ambient noise (without any call) a few seconds before 
or after each call. Then we calculated the signal-to-noise 
ratio (SNR) as the difference of both RMS measures (call 
and noise). We considered calls to be of high quality if they 
had peak SNR > 10 dB in at least one of the third octave 
bands. Finally, we compared the proportion of high qual-
ity herding calls between day and night to assess whether 
there were differences in recording quality between day 
and night. Additionally, we compared the mean RMS 
SPL of the ambient noise between day and night within a 
200 Hz–15 kHz band, by estimating the mean difference of 
random RMS noise levels between the two periods.

Units of analysis

Killer whale presence in the fjord was assumed if any 
killer whale sound was marked within each 5-min acous-
tic file. Files with killer whale sounds appeared to occur 
in bouts. Absence of sounds could be due to true killer 
whale absence or because killer whales were present but 
not vocalising (e.g. travelling, Simon et al. 2007; Samarra 
and Miller 2015) or remained undetected by the record-
ing equipment. Therefore, we conducted a bout analysis 
to determine the bout criterion interval (Slater and Lester 
1982; Sibly et al. 1990), i.e. we aimed to objectively define 
a time interval threshold between files with sounds to 
establish a ‘presence event’. We plotted the log frequency 
of intervals between files with detected sounds using cftool 
in MATLAB and fitted the distribution with one- and 
two-process exponential models (Sibly et al. 1990). We 
observed that the best curve fit to the distribution of inter-
vals was a two-process exponential model (r2 = 0.95). We 
then minimised the total time misclassified to specify the 
threshold (Slater and Lester 1982; Miller et al. 2004) giving 
us a time interval threshold of 10.8 files, i.e. any two files 
with killer whale sounds separated by more than 10 files 
(approximately 110 min) without sounds were considered 
two different presence events.

Each presence event was then assigned to one of two 
periods: day or night. All cases where the presence event 
continued through day into night or vice versa (8 presence 
events), and included twilight were removed. By removing 
the twilight we removed the gradient of luminosity between 
day and night.

To provide an overview of variations in sound produc-
tion with day/night we calculated the sound production rate 
(number of sounds produced per minute) for each presence 
event by dividing the total number of sounds from each cat-
egory by the duration of the presence event. We also cat-
egorised each presence event as either a feeding event, if it 
contained at least one underwater tail slap, or a non-feeding 

event if it contained no underwater tail slaps. Thus, each 
presence event was either considered as a ‘feeding event’ or 
a ‘non-feeding’ event, allowing us to estimate the number 
of feeding events for day and night. Indeed, Simon et al. 
(2007) observed that underwater tail slaps occurred dur-
ing all events with feeding activity and that no underwa-
ter tail slaps were detected during other behaviours such 
as socialising or travelling. If killer whales switched to a 
feeding behaviour that does not rely on underwater tail 
slap production, whether during day or night, such feed-
ing events would remain undetected in our study. However, 
given known feeding behaviour of killer whales in Iceland 
when feeding upon herring, we are confident that recorded 
underwater tail slaps were good proxies of feeding activ-
ity within presence events. To compare the difference in the 
number of presence events with feeding activity (i.e. pres-
ence events with at least one underwater tail slap) between 
day and night, we used a generalised linear model (Zuur 
2009) in R (package stats). Presence events with feeding 
activity (i.e. feeding events: 0 if no tail slap and 1 if at least 
one tail slap recorded) were used as the binomial response 
variable, and the explanatory variable was the day–night 
period:

We also used the same model to compare the difference 
in the number of presence events with at least one of each 
sound category between day and night:

Variations in sound production with feeding behaviour 
and day/night

To test whether sound production was related to underwa-
ter tail slaps (as a proxy of feeding activity), and whether 
there were differences between day and night, we used 
generalised linear models where the number of sounds of 
each category was the response variable and both the rate 
of underwater tail slaps per presence event, and the light 
period (as a categorical variable: day/night) were explana-
tory variables. Killer whale group composition during all 
presence events was unknown, thus we could not control 
for group identity in our analyses. Presence events were 
assumed to be statistically independent feeding bouts, 
either performed by the same or by a different group. As 
our response variable was a number per presence event, we 
used a Poisson distribution (with a log link function), and 
set the duration of each presence event as an offset, thus 
approximating a production rate (Zuur 2009). We then 
repeated the same model structure but added an interaction 

Glm (Feeding event ∼ Light period,

family = binomial (link = logit))

Glm (Sound category event ∼ Light period,

family = binomial (link = logit))
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term between the two explanatory variables. We chose 
the better of the two models (with or without interaction) 
for each sound category based upon the Aikake Informa-
tion Criterion (AIC) selection. Two models were consid-
ered different if their ΔAIC was higher than 2, in which 
case the lowest AIC defined the best model. However, if 
the ΔAIC was lower than 2, we selected the model with 
the lower degrees of freedom. In addition, we supported 
the models’ selection by conducting an ANOVA between 
the two models with and without the interaction term. We 
used the function anova in R, by setting a χ2 test, which 
allowed us to test for a significant difference between the 
two models. To avoid type 1 error inflation with multiple 
tests in our interpretation of the 6 models (one per sound 
category, excluding tail slaps) we applied a Bonferroni 
correction, by dividing the significant p value threshold by 
6, so that a factor had a significant effect if its p value was 
lower than 0.008.

Results

Acoustic processing

The EAR recorded a total of 5093 files, 47% during day 
and 46% during night. At the beginning of the recording 
period (22 February) sunrise occurred around 8:46 GMT 
(0) and sunset around 18:45 GMT (0), while at the end of 
the recording period (31 March) sunrise occurred around 
6:30 GMT (0) and sunset around 20:22 GMT (0). From 
these files we extracted 3239 sounds from the first minute 
of 544 files (S1 Table), representing 11.5% of all record-
ings. From all the files with recorded sounds during the 
first minute, 59% were during the day, 34% during the 
night and 7% during twilight. Excluding recordings dur-
ing twilight, we obtained 544 files with sounds, i.e. 10.7% 
of all recordings (63% during the day and 37% during the 
night).

We obtained similar mean RMS SPL of the ambient 
noise between day and night, with a mean difference of 
1.71 ± 5.2 dB re 1 muPa2 between the two periods. Simi-
larly, we found that 91% of herding calls (linear and non-
linear) recorded during the day and 87% of herding calls 
recorded during the night were of high quality, i.e. the 
signal-to-noise ratio in at least one 3rd-octave band was 
at least 10 dB. These results allowed us to consider that 
recording quality between day and night periods were 
similar. Given the high quality rate of recorded calls, we 
used the entire dataset without removing the lowest quality 
sounds, assuming that in the rare cases when lower-quality 
herding calls were detected, other sounds could also be rep-
resentatively detected.

Diel variation in sound production

From all the extracted sounds, we plotted mean numbers 
of sounds detected in each 1 min sample recorded every 
10 min among a 24-h timeline (Fig. 3). This shows time of 
occurrence of killer whales acoustic encounters within the 
fjord. Interestingly, most of the sounds were produced at all 
times of day (Fig. 3), except for biphonic calls which were 
only produced during daytime and at the beginning (until 
23:00 approximately) and the end of night-time (after 5:00 
approximately). We also noticed a very low occurrence of 
nonlinear herding call during daytime and tail slap sounds 
during the middle of the night-time (Fig. 3). Observing raw 
data among a 24-h timeline revealed some diel trend, which 
we then tried to assess through presence events. Thus, we 
obtained 22 presence events during the day, with a mean 
duration of 18.7 ± 2.8 min per presence event, and 24 dur-
ing the night, with a mean duration of 9.6 ± 2.8 min per 
presence event. Because we obtained a similar number 
of presence events between day (22) and night (24), but 
observed twice-longer durations during the day than night 
(Difference = 9.1 ± 3.9, t = 2.3, p = 0.03), we decided to 
use the rate of sound production for each sound category 
per presence event for all subsequent comparisons of sound 
production between day and night. These observations 
allowed us to compare characteristics of presence events 
between these two periods.

For both day and night all sound categories defined 
in this study were observed, but with different occur-
rence percentages (Table 1). Underwater tail slaps 
were recorded during 77% of the day events and dur-
ing 50% of the night events, revealing feeding activity 
both during day and night (Table 1). Though the per-
centage of feeding events (i.e. presence events with at 
least one underwater tail slap) was greater during the 
day (77%,) than night (50%, Table 1), this difference 
was not statistically significant based on the general-
ised linear model (z = −1.88, p = 0.06). In addition, we 
observed that both during day and night, biphonic calls 
were produced less frequently than monophonic calls. 
Monophonic calls were produced in all but 2 presence 
events during night, whereas biphonic calls were used 
more often during day (50% of events, Table 1) than 
night (25% of events, Table 1) but this difference was 
non-significant (z = 1.38, p = 0.17). Similarly, whistles 
and high-frequency whistles were produced more often 
during day (86% and 59% of events, Table 1) than night 
(54% and 38% of events, Table 1), but the difference 
was only significant for whistles (z = 2.19, p = 0.03) 
and not for high-frequency whistles (z = 1.02, p = 0.3). 
Conversely, production of both linear and nonlinear 
herding calls occurred more frequently at night (71% 
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and 58% of events, see Table 1) than during day (50 and 
23% of events, Table 1), but the difference was non-sig-
nificant for linear herding calls (z = −1.87, p = 0.06) 
and significant for nonlinear herding calls (z = −2.65, 
p = 0.008).

Even when corrected for presence event duration, 
sound production rates followed the same pattern as 
described above, except for high-frequency whistles 
(Fig. 4). High-frequency whistles were produced at 
slightly higher rates at night than during the day, despite 
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Fig. 3  Mean number (nb) of all sound classes produced from all the recordings (37 days) plotted against time of day (hour). Blue indicates 
night-time, red indicates daytime and green indicates the twilight

Table 1  Percentages (and number) of presence events with at least one instance of each sound type

Sounds category Linear herding call Nonlinear herding call Tail slaps Monophonic Biphonic Whistles High-frequency whistles

Day (22) (number of 
presence events)

50% (11) 23% (5) 77% (17) 100% (22) 50% (11) 86% (19) 59% (13)

Night (24) (number of 
presence events)

71% (17) 58% (14) 50% (12) 92% (22) 25% (6) 54% (13) 38% (9)
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being produced in more events during day than night 
(Table 2).

Correlation with feeding behaviour

Based upon AIC criteria and the ANOVA tests, we found 
that the models without interaction between the rate of 
underwater tail slaps and the light period better explained 
the production of herding calls (both linear and nonlinear), 
whereas for all the other sound categories the models using 
the interaction term were selected (S2 Table). We observed 
that the production of linear herding calls was significantly 
and positively related to the rate of underwater tail slaps, 
consistent with the hypothesis of the herding role of this 
call just before slapping the herring schools increasing 
feeding efficiency. However, for nonlinear herding calls no 
correlation was found with the rate of underwater tail slap 
production. As for the light period, we observed that dur-
ing the night the numbers of herding calls (both linear and 
nonlinear) were significantly higher than during the day, for 
a given rate of underwater tail slap (Table 2).

The number of biphonic calls was significantly lower 
during the night than during the day; however, their pro-
duction was significantly associated to the rate of under-
water tail slap at night but not during the day (Table 2). 
In contrast, we observed that during the day monophonic 
calls and whistles were significantly and positively related 
to the rate of underwater tail slaps, while during the night 
whistles showed no correlation whereas monophonic calls 
were still positively related to the rate of underwater tail 
slap but with a much lower relationship than during the day 
(Table 2). Finally, high-frequency whistles were produced 

more often during night and had a significantly negative 
relationship to the rate of underwater tail slap, which was 
not observed during the day (Table 2).

Discussion

Remote acoustic monitoring of killer whale sounds showed 
for the first time that Icelandic killer whales fed roughly 
equally both during the day and night, using underwater 
tail slaps as acoustic markers of feeding activity. Com-
parisons of sound production during day and night showed 
significant diel variation in acoustic behaviour, previously 
undocumented in herring-eating killer whales. Acoustics 
is the main communication channel in killer whales, so the 
pronounced diel variation in production of different sound 
categories suggests underlying changes in behaviour.

Using underwater tail slaps as a direct indicator of feed-
ing, we observed that killer whales foraged during 77% of 
the day presence events and 50% of the night events. The 
overall difference of these percentages of feeding events 
between day and night was not significant (p = 0.06), 
albeit close to significance at 0.05. This suggests that killer 
whales foraged at night to a similar extent as during the 
day; however, we cannot rule out that significant differ-
ences could be identified with an increased sample size.

Marine mammals are adapted for low-light conditions 
(Peichl et al. 2001) and use acoustic senses to their maxi-
mum advantage, such as in localising prey (Norris 1968). 
Night-time foraging is common and often advantageous 
because many prey species come closer to the surface at 
night and are less likely to detect predators (Norris et al. 

Fig. 4  Mean rate of sound 
production (number of sounds 
per min) of different sound 
categories during day and 
night. Note that ‘Tail slaps’ are 
acoustic cues of feeding activ-
ity, whereas all other sounds are 
produced by the killer whales 
directly as acoustic signals
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1994; Thomas and Thorne 2001; Plötz et al. 2001; Benoit-
Bird and Au 2003).

For instance, several studies using bio-loggers revealed 
diel foraging variation in southern elephant seals, as they 
dove at shallower depth during the night than during day-
lights hours (Hindell et al. 1991; Biuw et al. 2007; Guinet 
et al. 2014), suggesting a migration of seals’ prey, the myc-
tophids, to a shallower depth. Indeed, light level is most 
likely to induce the vertical distribution of myctophids, 
since southern elephant seals avoid layers in the water 
column where the light intensity is too high during day-
time foraging as well (Jaud et al. 2012). Similarly, deploy-
ing tags on long finned pilot whales, Baird et al. (2002) 
revealed diel variation of pilot whales foraging behaviour 
feeding on squid, but in contrast they observed very shal-
low dives during the day but deep dives at night. This was 
presumably because the whales could only hunt at night 
when squid came closer to the surface and spent daytime 
hours resting or socialising at the surface. Similar stud-
ies have also been conducted among baleen whales. For 
example, Friedlaender et al. (2009) observed that North 
West Atlantic humpback whales fed at the surface during 
the day, whereas at nigh they fed near the bottom, which 
correlated with the diel migration of their prey, the sand 
lance.

Predators that target herring in high latitudes during win-
ter, when daylight is very short, such as killer whales, likely 
face selective pressures to adjust their foraging strategies 
to successfully capture their prey despite changes in the 

prey’s behaviour. Variations in herring schooling behaviour 
depending on light availability (Blaxter and Batty 1987) 
may lead to changes in their predators’ foraging strategies. 
We found that killer whales produced sounds from every 
category during feeding events during both day and night, 
but that the production of linear herding calls was higher 
at night and positively associated with the rate of underwa-
ter tail slaps. This result is in agreement with previous sug-
gestions of the function of herding calls to herd the herring 
(Simon et al. 2006). The lack of light at night may make 
it more difficult to herd herring into schools because killer 
whales cannot use their white undersides to scare and herd 
the fish as they do during the day (Similä and Ugarte 1993). 
Thus, killer whales may significantly increase the produc-
tion of herding calls at night to deal with the lack of light 
as tools to assist the herding of herring. However, we also 
noticed a short period during the night (between midnight 
and 3 am) that killer whale have produced some linear 
herding call without any tail slap production. This absence 
of co-occurrence between both sounds may reveal a feed-
ing failure. During the middle of the night, at the darkest 
period, herring might be more disperse (Blaxter and Batty 
1987), making killer whales’ foraging harder.

Variation in daytime vs night-time acoustic behaviour 
during feeding can be related not only to the amount of 
light, but also to differences in herring behaviour. Herring 
perform diel vertical migrations, rising closer to the surface 
at night (Dommasnes et al. 1994; Huse and Ona 1996). Our 
study area was rather shallow (max depth about 40 m), but 

Table 2  Results of the 
generalised linear models, 
explaining the different sound 
categories in relation to tail 
slap rate and the light period 
per event, with or without 
interaction (Rate of tail 
slap:Night) and using event 
duration as an offset

The base level for the categorical variable ‘Period’ is ‘Day’. Thus, the effect of the variable ‘Rate of tail 
slap’ was estimated for data where Period = Day, and the interaction (Rate of tail slap:Night) estimated the 
difference between the effects of the variables ‘Rate of tail slap’ for both categories, i.e. the effect during 
night minus the effect during day. We considered a fixed factor significantly related to the explained factor 
if the P value was below 0.008 (in bold), after applying a Bonferroni correction

Response variable Explanatory variables Estimate Z-value P

Linear herding calls Rate tail slap 1.37 6.55 <0.001

Night 1.50 9.86 <0.001

Nonlinear herding calls Rate tail slap −0.09 −0.19 0.85

Night 2.95 8.83 <0.001

Monophonic calls Rate tail slap 0.78 9.49 <0.001

Night −0.10 −1.54 0.12

Interaction (Rate tail slap:Night) −0.62 −3.17 0.002

Biphonic calls Rate tail slap 0.26 0.76 0.45

Night −1.15 −3.96 <0.001

Interaction (Rate tail slap:Night) 2.01 3.74 <0.001

Whistles Rate tail slap 1.13 0.20 <0.001

Night −0.19 −1.03 0.30

Interaction (Rate tail slap:Night) −1.09 −1.88 0.06

High-frequency whistles Rate tail slap 0.97 2.01 0.04

Night 1.34 4.43 <0.001

Interaction (Rate tail slap:Night) −5.73 −3.52 <0.001
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still the diel variation in the depth distribution of prey may 
have caused changes in the hunting tactics and therefore 
acoustic behaviour of killer whales. Variations in herring 
schooling behaviour depending on light conditions have 
also been reported: herring was less active and less likely to 
form schools in darkness (Blaxter and Batty 1987), which 
may affect killer whale foraging tactics and calling behav-
iour. If so, the effort to herd herring might increase during 
night-time with an increase in herding call production in 
order to stimulate the anti-predatory schooling behaviour of 
the fish.

In contrast to the typical ‘herding’ calls, nonlinear herd-
ing calls were produced without any relation to the under-
water tail slap rate, suggesting that they might have a dif-
ferent function. Nonlinear herding calls might be more 
effective than linear herding calls in herding herring in the 
absence of light, as they reach a larger range of frequencies 
that could match herring of diverse body sizes and swim-
bladder resonant frequencies. In other species, nonlinear 
calls are produced predominantly by specific age-classes, 
such as juveniles, and can be a non-adaptive by-product of 
the physics of the sound production mechanism (Fitch et al. 
2002). Future work will be necessary to investigate if this is 
the case in killer whales as well.

As killer whales were acoustically active and foraged 
both at night and during the day, we assessed how each 
sound category was associated with feeding context and 
whether it was used similarly during the day and at night. 
At night biphonic calls were positively related to feeding 
attempts, while monophonic calls were positively corre-
lated with the rate of underwater tail slaps during the day. 
These results are in agreement with previous studies, which 
showed that killer whales have high rates of sound produc-
tion during feeding (Simon et al. 2007; Samarra and Miller 
2015). Day-night variation in correlation with underwater 
tail slap rate may suggest different functional roles of these 
sound categories. In the North Pacific fish-eating killer 
whales, biphonic calls have higher source levels (Miller 
2006) and are more directional (Miller 2002) than mono-
phonic calls. Together with their increased usage in the 
contexts of pod mixing (Filatova et al. 2009, 2013), this 
suggests that biphonic calls are used to track the position of 
family members, while monophonic calls are close-range 
intra-group contact signals (Filatova et al. 2009). Icelandic 
killer whales produced more biphonic calls during the day 
than during night, but they were related to the underwater 
tail slap rates only during the night. This result could reflect 
the possibility that their directionality allowed the whales 
to acoustically track the orientations and movements of 
each other in darkness in the context of a coordinated hunt 
(Miller 2002; Lammers and Au 2003). Although herring-
eating killer whales in Iceland also increase the use of 
biphonic calls during daytime feeding (Samarra and Miller 

2015), their use in other behavioural contexts in our data-
set may have explained the lack of a significant relationship 
with tail slap rate.

Whistles appeared positively correlated with the rate of 
underwater tail slaps both during the day and night. Whis-
tles are characterised by high frequencies and low sound 
pressure levels (Miller 2006), and so are considered to be 
important in close-range communication, such as during 
social interaction (Riesch et al. 2006, 2008). Simon et al. 
(2007) also showed increased whistle production during 
feeding activity for Icelandic killer whales. Therefore, we 
could assume that whistles may play a role in coordinated 
foraging.

In Iceland, killer whales are acoustically active while 
foraging and socialising but not while travelling (Simon 
et al. 2007; Samarra and Miller 2015). Thus, during “non-
feeding” activities (i.e. presence events with calls and/
or whistles but no underwater tail slaps) killer whales 
were most likely to be socialising, but without any acous-
tic marker we cannot confirm any behaviour. Only high-
frequency whistles produced at night appeared to be pos-
sibly specific to the “non-feeding” activity. However, this 
has to be interpreted with caution since it is likely that our 
sample of high-frequency whistles is not representative of 
the entire repertoire produced due to sampling frequency 
constraints.

Acoustic markers of feeding behaviour (such as echolo-
cation or buzz production) allow for the monitoring of diel 
foraging behaviours. Many studies have revealed increases 
in foraging activity at night for odontocetes, based upon 
passive acoustic monitoring (e.g. harbour porpoises: Todd 
et al. 2009; Yangtze finless porpoises: Wang et al. 2014; 
beaked whales: McDonald et al. 2009; deep diving odon-
tocetes in Hawaii: Au et al. 2013). Indeed, for species that 
produce feeding-specific sounds, passive acoustic monitor-
ing can be an extremely useful tool to understand habitat 
use, diel and seasonal behavioural patterns. Here, we show 
that acoustic markers of feeding activity produced by her-
ring-eating killer whales can be reliably used for passive 
acoustic monitoring.

In conclusion, we have revealed that night-time foraging 
occurs in herring-eating killer whales and likely represents a 
substantial amount of killer whale food intake during winter 
in Iceland. This contrasts with reports for other fish-eating 
killer whales that appear to forage mostly during the day, 
with reduced activity levels at night (Baird et al. 2005). Our 
study brings new evidence of the importance of night-time 
foraging, suggesting that detailed research into this behav-
iour is essential to fully understand predator–prey relation-
ships, and that passive acoustic monitoring is a powerful 
tool to more fully assess these interactions. Our results 
indicate that Icelandic killer whales have adapted their diel 
feeding activity to optimise their foraging success.
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