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Abstract We investigate the problem of equilibrium computation for “large” n-
player games. Large games have a Lipschitz-type property that no single player’s
utility is greatly affected by any other individual player’s actions. In this paper, we
mostly focus on the case where any change of strategy by a player causes other play-
ers’ payoffs to change by at most 1

n
. We study algorithms having query access to the

game’s payoff function, aiming to find ε-Nash equilibria. We seek algorithms that
obtain ε as small as possible, in time polynomial in n. Our main result is a randomised
algorithm that achieves ε approaching 1

8 for 2-strategy games in a completely uncou-
pled setting, where each player observes her own payoff to a query, and adjusts her
behaviour independently of other players’ payoffs/actions. O(log n) rounds/queries
are required. We also show how to obtain a slight improvement over 1

8 , by introduc-
ing a small amount of communication between the players. Finally, we give extension
of our results to large games with more than two strategies per player, and alternative
largeness parameters.
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1 Introduction

In studying the computation of solutions of multi-player games, we encounter the
well-known problem that a game’s payoff function has description length exponential
in the number of players. One approach is to assume that the game comes from
a concisely-represented class (for example, graphical games, anonymous games, or
congestion games), and another one is to consider algorithms that have query access
to the game’s payoff function.

In this paper, we study the computation of approximate Nash equilibria of multi-
player games having the feature that if a player changes her behaviour, she only has
a small effect on the payoffs that result to any other player. These games, sometimes
called large games, or Lipschitz games, have recently been studied in the literature,
since they model various real-world economic interactions; for example, an individ-
ual’s choice of what items to buy may have a small effect on prices, where other
individuals are not strongly affected. Note that these games do not have concisely-
represented payoff functions, which makes them a natural class of games to consider
from the query-complexity perspective. It is already known how to compute approx-
imate correlated equilibria for unrestricted n-player games. Here we study the more
demanding solution concept of approximate Nash equilibrium.

Large games (equivalently, small-influence games) are studied in Kalai [16] and
Azrieli and Shmaya [1]. In these papers, the existence of pure ε-Nash equilibria for
ε = γ

√
8n log(2kn) is established, where γ is the largeness/Lipschitz parameter of

the game, and k is the number of pure strategies for each player. In particular, since
we assume that γ = 1

n
and k = 2 we notice that ε = O(n−1/2) so that there exist

arbitrarily accurate pure Nash equilibria in large games as the number of players
increases. Kearns et al. [17] study this class of games from the mechanism design
perspective of mediators who aim to achieve a good outcome to such a game via
recommending actions to players.

Babichenko [2] studies large binary-action anonymous games. Anonymity is
exploited to create a randomised dynamic on pure strategy profiles that with high
probability converges to a pure approximate equilibrium in O(n log n) steps.

Payoff query complexity has been recently studied as a measure of the difficulty of
computing game-theoretic solutions, for various classes of games. Upper and lower
bounds on query complexity have been obtained for bimatrix games [6, 7], conges-
tion games [7], and anonymous games [11]. For general n-player games (where the
payoff function is exponential in n), the query complexity is exponential in n for exact
Nash, also exact correlated equilibria [15]; likewise for approximate equilibria with
deterministic algorithms (see also [4]). For randomised algorithms, query complexity
is exponential for well-supported approximate equilibria [3], which has since been
strengthened to any ε-Nash equilibria [5]. With randomised algorithms, the query
complexity of approximate correlated equilibrium is �(log n) for any positive ε [10].
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Our main result applies in the setting of completely uncoupled dynamics in equilib-
ria computation. These dynamics have been studied extensively: Hart and Mas-Colell
[13] show that there exist finite-memory uncoupled strategies that lead to pure Nash
equilibria in every game where they exist. Also, there exist finite memory uncou-
pled strategies that lead to ε-NE in every game. Young’s interactive trial and error
[18] outlines completely uncoupled strategies that lead to pure Nash equilibria with
high probability when they exist. Regret testing from Foster and Young [8] and its
n-player extension by Germano and Lugosi in [9] show that there exist completely
uncoupled strategies that lead to an ε-Nash equilibrium with high probability. Ran-
domisation is essential in all of these approaches, as Hart and Mas-Colell [14] show
that it is impossible to achieve convergence to Nash equilibria for all games if one
is restricted to deterministic uncoupled strategies. This prior work is not concerned
with rate of convergence; by contrast here we obtain efficient bounds on runtime.
Convergence in adaptive dynamics for exact Nash equilibria is also studied by Hart
and Mansour in [12] where they provide exponential lower bounds via communica-
tion complexity results. Babichenko [3] also proves an exponential lower bound on
the rate of convergence of adaptive dynamics to an approximate Nash equilibrium
for general binary games. Specifically, he proves that there is no k-queries dynamic

that converges to an ε-WSNE in 2�(n)

k
steps with probability of at least 2−�(n) in all

n-player binary games. Both of these results motivate the study of specific subclasses
of these games, such as the “large” games studied here.

2 Preliminaries

We consider games with n players where each player has k actions A = {0, 1, ..., k−
1}. Let a = (ai, a−i ) denote an action profile in which player i plays action ai and
the remaining players play action profile a−i . We also consider mixed strategies,
which are defined by the probability distributions over the action set A. We write
p = (pi, p−i ) to denote a mixed-strategy profile where pi is a distribution over A
corresponding to the i-th player’s mixed strategy. To be more precise, pi is a vector
(pij )

k−1
j=1 such that

∑k−1
j=1 pij ≤ 1 where pij denotes the i-th player’s probability

mass on her j -th strategy. Furthermore, we denote pi0 = 1 − ∑k−1
j=1 pij to be the

implicit probability mass the i-th player places on her 0-th pure strategy.
Each player i has a payoff function ui : An → [0, 1] mapping an action profile to

some value in [0, 1]. We will sometimes write ui(p) = Ea∼p [ui(a)] to denote the
expected payoff of player i under mixed strategy p. An action a is player i’s best
response to mixed strategy profile p if a ∈ argmaxj∈Aui(j, p−i ).

We assume our algorithms or the players have no other prior knowledge of the
game but can access payoff information through querying a payoff oracle Q. For
each payoff query specified by an action profile a ∈ An, the query oracle will return
(ui(a))ni=1, the n-dimensional vector of payoffs to each player. Our goal is to compute
an approximate Nash equilibrium with a small number of queries. In the completely
uncoupled setting, a query works as follows: each player i chooses her own action
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ai independently of the other players, and learns her own payoff ui(a) but no other
payoffs.

Definition 1 (Regret; (approximate) Nash equilibrium) Let p be a mixed strategy
profile, the regret for player i at p is

reg(p, i) = max
j∈A

Ea−i∼p−i

[
ui(j, a−i )

] − Ea∼p [ui(a)] .

A mixed strategy profile p is an ε-approximate Nash equilibrium (ε-NE) if for
each player i, the regret satisfies reg(p, i) ≤ ε.

In Section 6.1 we will address the stronger notion of a well-supported approximate
Nash equilibrium. In essence, such an equilibrium is a mixed-strategy profile where
players only place positive probability on actions that are approximately optimal. In
order to precisely define this, we introduce supp(pi) = {j ∈ A | pij > 0} to be the
set of actions that are played with positive probability in player i’s mixed strategy pi .

Definition 2 (Well-supported approximate Nash equilibrium) A mixed-strategy pro-
file p = (pi)

n
i=1 is an ε well-supported Nash Equilibrium (ε -WSNE) if and only if

the following holds for all players i ∈ [n]:
j ∈ supp(pi) ⇒ max

�∈A
Ea−i∼p−i

[
ui(�, a−i )

] − ui(j) < ε

An ε-WSNE is always an ε-NE, but the converse is not necessarily true as a player
may place probability mass on strategies that are more than ε from optimal yet still
maintain a low regret in the latter.

Observation 1 To find an exact Nash (or even, correlated) equilibrium of a large
game, in the worst case it is necessary to query the game exhaustively, even with ran-
domised algorithms. This uses a similar negative result for general games due to [15],
and noting that we can obtain a strategically equivalent γ -large game (Definition 3),
by scaling down the payoffs into the interval [0, γ ].

We will assume the following largeness condition in our games. Informally, such
largeness condition implies that no single player has a large influence on any other
player’s utility function.

Definition 3 (Large Games) A game is γ -large if for any two distinct players i �= j ,
any two distinct actions aj and a′

j for player j , and any tuple of actions a−j for
everyone else:

|ui(aj , a−j ) − ui(a
′
j , a−j )| ≤ γ ∈ [0, 1].

We will call γ the largeness parameter of the game; in [1] this quantity is
called the Lipschitz value of the game. One immediate implication of the largeness
assumption is the following Lipschitz property of the utility functions.
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Lemma 1 For any player i ∈ [n], and any action j ∈ A, the fixed utility func-
tion ui(j, p−i ) : [0, 1](n−1)×(k−1) → [0, 1] is a γ -Lipschitz function of the second
argument p−i ∈ [0, 1](n−1)×(k−1) w.r.t. the �1 norm.

Proof Without loss of generality consider i = 1 and j = 0. Let q = p−1 and q ′ =
p′−1 be two mixed strategy profiles for the other players. For i ≥ 2 and j ∈ A \ {0},
let δij = q ′

ij − qij . Note that ‖q − q ′‖1 = ∑
ij |δij |.

Let eij be the unit vector that has a 1 in the (ij)-th entry and 0 elsewhere. We first
show that there exists an ordering of the discrete set {(ij) | 2 ≤ i ≤ n, 1 ≤ j ≤ k}
denoted by {α1, α2, ..., α(n−1)(k−1)} such that for all � = 1, ..., (n − 1)(k − 1), the
vector q� = q + ∑�

i=1 δαi
eαi

represents valid mixed strategy profiles for players
i ≥ 2.

Suppose that we fix i, and consider qi and q ′
i as the mixed strategies of player i

arising in q and q ′. We recall that these are vectors in [0, 1]k−1 whose components
sum is less than 1. We consider two cases. In the first, suppose that there exists a j

such that δij < 0 by definition, δij < qij , hence qi + δij ej is a valid mixed strategy
for player i.

In the second, suppose that δij > 0 for all j . Now suppose that δij > qi0 =
1 − ∑k−1

j=1 qij for all j . If such is the case then q ′
i cannot possibly be a valid mixed

strategy for player i, hence it must be the case that for some j , δij < qi0, hence once
again qi + δij ej is a valid mixed strategy for player i.

Since such a choice of valid updates by δij can always be found for valid qi and
q ′
i , we can recursively find valid shifts by δij in a specific coordinate to reach q ′

i from
qi . If this is applied in order for all players i ≥ 2, the aforementioned claim holds
and indeed q� = q + ∑�

i=1 δαi
eαi

for some ordering {α1, ..., α(n−1)(k−1)}.
With this in hand, we can use telescoping sums and the largeness condition to

prove our lemma. For simplicity of notation, in what follows we assume that q0 = q,
and we recall that by definition q(n−1)(k−1) = q ′.

|ui(j, q
′) − ui(j, q)| =

∣∣∣∣∣∣

(n−1)(k−1)∑

�=1

ui(j, q�) − ui(j, q�−1)

∣∣∣∣∣∣

(Triangle Inequality) ≤
(n−1)(k−1)∑

�=1

|ui(j, q�) − ui(j, q�−1)|

(Definition of Largeness) ≤
(n−1)(k−1)∑

�=1

γ |δα�
| = γ ‖q ′ − q‖1

which proves our claim.

From now on until Section 6 we will focus on 1
n

-large binary action games where
A = {0, 1} and γ = 1

n
. The reason for this is that the techniques we introduce can be

more conveniently conveyed in the special case of γ = 1
n

, and subsequently extended
to general γ .
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Recall that pi denotes a mixed strategy of player i. In the special case of binary-
action games, we slightly abuse the notation to let pi denote the probability that
player i plays 1 (as opposed to 0), since in the binary-action case, this single
probability describes i’s mixed strategy.

The following notion of discrepancy will be useful.

Definition 4 (Discrepancy) Letting p be a mixed strategy profile, the discrepancy
for player i at p is

disc(p, i) = ∣∣Ea−i∼p−i

[
ui(0, a−i )

] − Ea−i∼p−i

[
ui(1, a−i )

]∣∣ .

Estimating Payoffs for Mixed Profiles We can approximate the expected payoffs
for any mixed strategy profile by repeated calls to the oracle Q. In particular, for
any target accuracy parameter β and confidence parameter δ, consider the following
procedure to implement an oracle Qβ,δ:

• For any input mixed strategy profile p, compute a new mixed strategy profile
p′ = (1 − β

2 )p + (
β
2 )1 such that each player i is playing uniform distribution

with probability β
2 and playing distribution pi with probability 1 − β

2 .
• Let N = 64

β3 log (8n/δ), and sample N payoff queries randomly from p′, and call
the oracle Q with each query as input to obtain a payoff vector.

• Let ûi,j be the average sampled payoff to player i for playing action j .1 Output
the payoff vector (̂uij )i∈[n],j∈{0,1}.

Lemma 2 For any β, δ ∈ (0, 1) and any mixed strategy profile p, the oracle Qβ,δ

with probability at least 1 − δ outputs a payoff vector (̂ui,j )i∈[n],j∈{0,1} that has an
additive error of at most β, that is for each player i, and each action j ∈ {0, 1},

|ui(j, p−i ) − ûi,j | ≤ β.

The lemma follows from Proposition 1 of [10] and the largeness property.

Extension to Stochastic Utilities We consider a generalisation where the utility to
player i of any pure profile a may consist of a probability distribution Da,i over [0, 1],
and if a is played, i receives a sample from Da,i . The player wants to maximise her
expected utility with respect to sampling from a (possibly mixed) profile, together
with sampling from any Da,i that results from a being chosen. If we extend the
definition of Q to output samples of the Da,i for any queried profile a, then Qβ,δ can
be defined in a similar way as before, and simulated as above using samples from Q.
Our algorithmic results extend to this setting.

1If the player i never plays an action j in any query, set ûi,j = 0.
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3 Warm-up: 0·25-Approximate Equilibrium

In this section, we exhibit some simple procedures whose general approach is to
query a constant number of mixed strategies (for which additive approximations to
the payoffs can be obtained by sampling). Observation 2 notes that a 1

2 -approximate
Nash equilibrium can be found without using any payoff queries:

Observation 2 Consider the following “uniform” mixed strategy profile. Each
player puts 1

2 probability mass on each action: for all i, pi = 1
2 . Such a mixed

strategy profile is a 1
2 -approximate Nash equilibrium.

We present two algorithms that build on Observation 2 to obtain better approxi-
mations than 1

2 . For simplicity of presentation, we assume that we have access to a
mixed strategy query oracle QM that returns exact expected payoff values for any
input mixed strategy p. Our results continue to hold if we replace QM by Qβ,δ . 2

Obtaining ε = 0·272 First, we show that having each player making small adjust-
ment from the “uniform” strategy can improve ε from 1

2 to around 0·27. We simply let
players with large regret shift more probability weight towards their best responses.
More formally, consider the following algorithm OneStep with two parameters
α, 
 ∈ [0, 1]:
• Let the players play the “uniform” mixed strategy. Call the oracle QM to obtain

the payoff values of ui(0, p−i ) and ui(1, p−i ) for each player i.
• For each player i, if ui(0, p−i ) − ui(1, p−i ) > α, then set pi = 1

2 − 
; if
ui(1, p−i ) − ui(0, p−i ) > α, set pi = 1

2 + 
; otherwise keep playing pi = 1
2 .

Theorem 1 If we use algorithm OneStep with parameters α = 2 −
√

11
3 and


 =
√

11
48 − 1

4 , then the resulting mixed strategy profile is an ε-approximate Nash
equilibrium with ε ≤ 0·272.

Proof Let p denote the “uniform” mixed strategy, and p′ denote the output strategy
by OneStep. We know that ‖p − p′‖1 ≤ n
. By Lemma 1, we know that for any
player i and action j , |ui(j, p−i ) − ui(j, p

′−j )| ≤ 
.
Consider a player i whose discrepancy in p satisfies disc(p, i) ≤ α. Then such

player’s discrepancy in p′ is at most disc(p′, i) ≤ α + 2
, so her regret in p′ is
bounded by

reg(p′, i) = p′
i disc(p′, i) = disc(p′, i)/2 ≤ α/2 + 
. (1)

2In particular, if we use Qβ,δ for our query access, then with probability at least 1 − δ we will get (ε +
O(β))-approximate equilibrium, where ε is the approximation performance obtainable via access to QM .
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Consider a player i such that disc(p, i) > α. Then we consider two different
cases. In the first case, the best response of player i remains the same in both profiles
p and p′. Since disc(p′, i) ≤ 1, we can bound the regret by

reg(p′, i) = p′
i disc(p′, i) =

(
1

2
− 


)
. (2)

In the second case, the best response of player i changes when the profile p

changes to p′. In this case, the discrepancy is at most 2
 − α, and so the regret is
bounded by

reg(p′, i) = p′
i disc(p′, i) =

(
1

2
+ 


)
(2
 − α). (3)

By combining all cases from (1) to (3), we know the regret is upper-bounded by

reg(p′, i) ≤ max

(
α

2
+ 
,

1

2
− 
,

1

2
(1 + 2
)(2
 − α)

)
(4)

By choosing values

(α∗, 
∗) =
(

2 −
√

11

3
,

√
11

48
− 1

4

)

≈ (0·085, 0·229)

The right hand side of (4) is bounded by 0·272. Thus if we use the optimal α∗ and

∗ in our algorithm, we can attain an ε = 0·272 approximate Nash equilibrium.

Obtaining ε = 0·25 We now give a slightly more sophisticated algorithm than the
previous one. We will again have the players starting with the “uniform” mixed strat-
egy, then let players shift more weights towards their best responses, and finally let
some of the players switch back to the uniform strategy if their best responses change
in the adjustment. Formally, the algorithm TwoStep proceeds as:

• Start with the “uniform” mixed strategy profile, and query the oracle QM for the
payoff values. Let bi be player i’s best response.

• For each player i, set the probability of playing their best response bi to be 3
4 .

Call QM to obtain payoff values for this mixed strategy profile, and let b′
i be each

player i’s best response in the new profile.
• For each player i, if bi �= b′

i , then resume playing pi = 1
2 . Otherwise maintain

the same mixed strategy from the previous step.

Theorem 2 The mixed strategy profile output by TwoStep is an ε-approximate Nash
equilibrium with ε ≤ 0·25.

Proof Let p denote the “uniform” strategy profile, p′ denote the strategy profile after
the first adjustment, and p′′ denote the output strategy profile by TwoStep.

For any player i, there are three cases regarding the discrepancy disc(p, i).

1. The discrepancy disc(p, i) > 1
2 ;
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2. The discrepancy disc(p, i) ≤ 1
2 and player i returns to the uniform mixed

strategy at the end;
3. The discrepancy disc(p, i) ≤ 1

2 and player i does not return to the uniform
mixed strategy in the end.

Before we go through all the cases, the following facts are useful. Observe that
‖p − p′‖, ‖p − p′′‖, ‖p′ − p′′‖ ≤ n/4, so for any action j ,

max{|ui(j, p
′−i ) − ui(j, p

′′−i )|, |ui(j, p−i ) − ui(j, p
′−i ), |ui(j, p−i ) − ui(j, p

′′−i )|} ≤ 1

4
(5)

It follows that

max{|disc(p′, i) − disc(p′′, i)|, |disc(p, i) − disc(p′, i)|, |disc(p, i) − disc(p′′, i)|} ≤ 1

2

We will now bound the regret of player i in the first case. Since in the mixed strategy
profile p, the best response of player i is better than the other action by more than 1

2 .
This means the best response action will remain the same in p′ and p′′ for this player,
and she will play this action with probability 3

4 in the end, so her regret is bounded
by 1

4 .
Let us now focus on the second case where discrepancy disc(p, i) ≤ 1

2 and player
i returns to the uniform strategy of part 1. It is sufficient to show that the discrepancy
at the end satisfies disc(p′′, i) ≤ 1

2 . Without loss generality, assume that the player
best response in the “uniform” strategy profile is action bi = 1, and the best response
after the first adjustment is action bi = 0. This means

ui(1, p−i ) − ui(0, p−i ) ≥ 0 and, ui(0, p′−i ) − ui(1, p′−i ) ≥ 0.

By combining with (5), we have

ui(1, p′′−i ) − ui(0, p′′−i ) ≤ ui(1, p′−i ) − ui(0, p′−i ) + 1

2
≤ 1

2

ui(0, p′′−i ) − ui(1, p′′−i ) ≤ ui(0, p−i ) − ui(1, p−i ) + 1

2
≤ 1

2
.

Therefore, we know disc(p′′, i) ≤ 1
2 , and hence the regret reg(p′′, i) ≤ 1

4 .
Finally, we consider the third case where disc(p, i) ≤ 1

2 and player i does not
return to a uniform strategy. Without loss generality, assume that action 1 is best
response for player i in both p and p′, and so ui(1, p′−i ) ≥ ui(0, p′−i ). By (5), we
also have

ui(0, p′′−i ) − ui(1, p′′−i ) ≤ 1

2
.

If in the end her best response changes to 0, then the regret is bounded by
reg(p′′, i) ≤ 1

8 . Otherwise if the best response remains to be 1, then the regret is
again bounded by reg(p′′, i) ≤ 1

4
Hence, in all of the cases above we could bound the player’s regret by 1

4 .
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4 1
8-Approximate Equilibrium via Uncoupled Dynamics

In this section, we present our main algorithm that achieves approximate equilibria
with ε ≈ 1

8 in a completely uncoupled setting. In order to arrive at this we first
model game dynamics as an uncoupled continuous-time dynamical system where a
player’s strategy profile updates depend only on her own mixed strategy and payoffs.
Afterwards we present a discrete-time approximation to these continuous dynamics
to arrive at a query-based algorithm for computing ( 1

8 + α)-Nash equilibrium with
query complexity logarithmic in the number of players. Here, α > 0 is a parameter
that can be chosen, and the number of mixed-strategy profiles that need to be tested
is inversely proportional to α. Finally, as mentioned in Section 2, we recall that these
algorithms carry over to games with stochastic utilities, for which we can show that
our algorithm uses an essentially optimal number of queries.

Throughout the section, we will rely on the following notion of a strategy/payoff
state, capturing the information available to a player at any moment of time.

Definition 5 (Strategy-payoff state) For any player i, the strategy/payoff state for
player i is defined as the ordered triple si = (vi1, vi0, pi) ∈ [0, 1]3, where vi1 and vi0
are the player’s utilities for playing pure actions 1 and 0 respectively, and pi denotes
the player’s probability of playing action 1. Furthermore, we denote the player’s dis-
crepancy by Di = |vi1 − vi0| and we let p∗

i denote the probability mass on the best
response, that is if vi1 ≥ vi0, p∗

i = pi , otherwise p∗
i = 1 − pi .

4.1 Continuous-Time Dynamics

First, we will model game dynamics in continuous time, and assume that a player’s
strategy/payoff state (and thus all variables it contains) is a differentiable time-valued
function. When we specify these values at a specific time t , we will write si(t) =
(vi1(t), vi0(t), pi(t)). Furthermore, for any time-differentiable function g, we denote
its time derivative by ġ = d

dt
g. We will consider continuous game dynamics formally

defined as follows.

Definition 6 (Continuous game dynamic) A continuous game dynamic consists of
an update function f that specifies a player’s strategy update at time t . Furthermore,
f depends only on si(t) and ṡi (t). In other words, ṗi(t) = f (si(t), ṡi (t)) for all t .

Observation 3 We note that in this framework, a specific player’s updates do not
depend on other players’ strategy/payoff states nor their history of play. This will
eventually lead us to uncoupled Nash equilibria computation in Section 4.2.

A central object of interest in our continuous dynamic is a linear sub-space P ⊂
[0, 1]3 such that all strategy/payoff states in it incur a bounded regret. Formally, we
will define P via its normal vector �n = (− 1

2 , 1
2 , 1) so that P = {si | si · �n = 1

2 }.
Equivalently, we could also write P = {si | p∗

i = 1
2 (1 + Di)}. (See Fig. 1 for a
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Fig. 1 Visualisation of P; on the red line, vi0 = vi1 so the player is indifferent and mixes with equal
probabilities; at the red points the player has payoffs of 0 and 1, and makes a pure best response

visualisation.) With this observation, it is straightforward to see that any player with
strategy/payoff state in P has regret at most 1

8 .

Lemma 3 If player i’s strategy/payoff state satisfies si ∈ P , then her regret is at most 1
8 .

Proof This follows from the fact that a player’s regret can be expressed as Di(1−p∗
i )

and the fact that all points on P also satisfy p∗
i = 1

2 (1 + Di). In particular, the
maximal regret of 1

8 is achieved when Di = 1
2 and p∗

i = 3
4 .

Next, we want to show there exists a dynamic that allows all players to eventually
reach P and remain on it over time. We notice that for a specific player, v̇i1, v̇i0 and
subsequently Ḋi measure the cumulative effect of other players shifting their strate-
gies. However, if we limit how much any individual player can change their mixed
strategy over time by imposing |ṗi | ≤ 1 for all i, Lemma 1 guarantees |v̇ij | ≤ 1 for
j = 0, 1 and consequently |Ḋi | ≤ 2. With these quantities bounded, we can consider
an adversarial framework where we construct game dynamics by solely assuming
that |ṗi(t)| ≤ 1, |v̇ij (t)| ≤ 1 for j = 0, 1 and |Ḋi(t)| ≤ 2 for all times t ≥ 0.

Now assume an adversary controls v̇i0, v̇i1 and hence Ḋi , one can show that if a
player sets ṗi(t) = 1

2 (v̇i1(t)− v̇i0(t)), then she could stay on P whenever she reaches
the subspace.

Lemma 4 If si(0) ∈ P , and ṗi(t) = 1
2 (v̇i1(t) − v̇i0(t)), then si(t) ∈ P ∀ t ≥ 0.

Theorem 3 Under the initial conditions pi(0) = 1
2 for all i, the following continuous

dynamic, Uncoupled Continuous Nash (UCN), has all players reach P in at most 1
2

time units. Furthermore, upon reaching P a player never leaves.

ṗi(t) = f (si(t), ṡi (t)) =
⎧
⎨

⎩

1 if si /∈ P and vi1 ≥ vi0
−1 if si /∈ P and vi1 < vi0

1
2 (v̇i1(t) − v̇i0(t)) if si ∈ P
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Proof From Lemma 4 it is clear that once a player reaches P they never leave the
plane. It remains to show that it takes at most 1

2 time units to reach P .
Since pi(0) = p∗

i (0) = 1
2 , it follows that if si(0) /∈ P then p∗

i (0) < 1
2 (1+Di(0)).

On the other hand, if we assume that ṗ∗
i (t) = 1 for t ∈ [0, 1

2 ], and that player
preferences do not change, then it follows that p∗

i (
1
2 ) = 1 and p∗

i (
1
2 ) ≥ 1

2 (1+Di(
1
2 )),

where equality holds only if Di(
1
2 ) = 1. By continuity of p∗

i (t) and Di(t) it follows
that for some k ≤ 1

2 , si(k) ∈ P . It is simple to see that the same holds in the case
where preferences change.

4.2 Discrete Time-Step Approximation

The continuous-time dynamics of the previous section hinge on obtaining expected
payoffs in mixed strategy profiles, thus we will approximate expected payoffs via
Qβ,δ . Our algorithm will have each player adjusting their mixed strategy over rounds,
and in each round query Qβ,δ to obtain the payoff values.

Since we are considering discrete approximations to UCN, the dynamics will no
longer guarantee that strategy/payoff states stay on the plane P . For this reason we
define the following region around P:

Definition 7 Let Pλ = {si | si · �n ∈ [ 1
2 − λ, 1

2 + λ]}, with normal vector �n =
(− 1

2 , 1
2 , 1). Equivalently, Pλ = {si | p∗

i = 1
2 (1 + Di) + c, c ∈ [−λ, λ]}.

Just as in the proof of Lemma 3, we can use the fact that a player’s regret is
Di(1 − p∗

i ) to bound regret on Pλ.

Lemma 5 The worst case regret of any strategy/payoff state in Pλ is 1
8 (1 + 2λ)2.

This is attained on the boundary: ∂Pλ = {si | si · �n = 1
2 ± λ}.

Corollary 1 For a fixed α > 0, if λ =
√

1+8α−1
2 , then Pλ attains a maximal regret

of 1
8 + α.

We present an algorithm in the completely uncoupled setting, UN(α, η), that for
any parameters α, η ∈ (0, 1] computes a ( 1

8 + α)-Nash equilibrium with probability
at least 1 − η.

Since pi(t) ∈ [0, 1] is the mixed strategy of the i-th player at round t we let
p(t) = (pi(t))

n
i=1 be the resulting mixed strategy profile of all players at round t .

Furthermore, we use the mixed strategy oracle Qβ,δ from Lemma 2 that for a given
mixed strategy profile p returns the vector of expected payoffs for all players with an
additive error of β and a correctness probability of 1 − δ.

The following lemma is used to prove the correctness of UN(α, η):

Lemma 6 Suppose that w ∈ R
3 with ‖w‖∞ ≤ λ and let function h(x) = x · �n,

where �n is the normal vector of P . Then h(x +w)−h(x) ∈ [−2λ, 2λ]. Furthermore,
if w3 = 0, then h(x + w) − h(x) ∈ [−λ, λ].

Theory Comput Syst (2019) 63:26–53 37



Proof The statement follows from the following expression:

h(x + w) − h(x) = w · �n = 1

2
(w2 − w1) + w3

Theorem 4 With probability 1−η,UN(α, η) correctly returns a ( 1
8 +α)-approximate

Nash equilibrium by using O( 1
α4 log

(
n
αη

)
) queries.

Proof By Lemma 2 and union bound, we can guarantee that with probability at
least 1 − η all sample approximations to mixed payoff queries have an additive error
of at most 
 = λ

4 . We will condition on this accuracy guarantee in the remainder
of our argument. Now we can show that for each player there will be some round
k ≤ N , such that at the beginning of the round their strategy/payoff state lies in Pλ/2.
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Furthermore, at the beginning of all subsequent rounds t ≥ k, it will also be the case
that their strategy/payoff state lies in Pλ/2.

The reason any player generally reaches Pλ/2 follows from the fact that in the
worst case, after increasing p∗ by 
 for N rounds, p∗ = 1, in which case a player is
certainly in Pλ/2. Furthermore, Lemma 6 guarantees that each time p∗ is increased
by 
, the value of ŝi · �n changes by at most λ

2 which is why ŝi are always steered
towards Pλ/4. Due to inherent noise in sampling, players may at times find that ŝi
slightly exit Pλ/4 but since additive errors are at most λ

4 . We are still guaranteed that
true si lie in Pλ/2.

The second half of step 4 forces a player to remain in Pλ/2 at the beginning of any
subsequent round t ≥ k. The argumentation for this is identical to that of Lemma 4
in the continuous case.

Finally, the reason that individual probability movements are restricted to 
 = λ
4

is that at the end of the final round, players will move their probabilities and will
not be able to respond to subsequent changes in their strategy/payoff states. From
the second part of Lemma 6, we can see that in the worst case this can cause a

strategy/payoff state to move from the boundary of Pλ/2 to the boundary of P 3λ
4 ⊂

Pλ. However, λ is chosen in such a way so that the worst-case regret within Pλ is
at most 1

8 + α, therefore it follows that UN(α, η) returns a 1
8 + α approximate Nash

equilibrium. Furthermore, the number of queries is

(N + 1)

(
1024

λ3
log

(
8nN

η

))
=

(
1

λ
+ 1

)(
1024

λ3
log

(
8n

λη

))
.

It is not difficult to see that 1
λ

= O( 1
α
) which implies that the number of queries

made is O
(

1
α4 log

(
n
αη

))
in the limit.

4.3 Logarithmic Lower Bound

As mentioned in the preliminaries section, all of our previous results extend to
stochastic utilities. In particular, if we assume that G is a game with stochastic utili-
ties where expected payoffs are large with parameter 1

n
, then we can apply UN(α, η)

with O(log(n)) queries to obtain a mixed strategy profile where no player has more
than 1

8 + α incentive to deviate. Most importantly, for � > 2, we can use the same
methods as [10] to lower bound the query complexity of computing a mixed strategy
profile where no player has more than ( 1

2 − 1
�
) incentive to deviate.

Theorem 5 If � > 2, the query complexity of computing a mixed strategy profile
where no player has more than ( 1

2 − 1
�
) incentive to deviate for stochastic utility

games is �(log�(�−1)(n)). Alongside Theorem 4 this implies the query complexity

of computing mixed strategy profiles where no player has more than 1
8 incentive to

deviate in stochastic utility games is �(log(n)).

Proof Suppose that we have n players and that � > 2. For every b ∈ {0, 1}n we
can construct a stochastic utility game Gb as follows: For each player i, the utility
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of strategy bi is bernoulli with bias �
�−1 and the utility of strategy 1 − bi is bernoulli

with bias 1
�
. Note that this game is trivially

(
1
n

)
-Lipschitz, as each player’s payoff

distributions are completely independent of other players’ strategies.

Suppose that G is the uniform distribution on the set of all Gb, then using the same
argumentation as Theorem 3 of [10], we get the following:

Theorem 6 Let A be a deterministic payoff-query algorithm that uses at most
log�(�−1)(n) queries and outputs a mixed strategy p. If A performs on G, then with

probability more than 1
2 , there will exist a player with a regret greater than 1

2 − 1
�
in

p.

We can immediately apply Yao’s minimax principle to this result to complete the
proof.

5 Achieving ε < 1
8 with Communication

We return to continuous dynamics to show that we can obtain a worst-case regret of
slightly less than 1

8 by using limited communication between players, thus breaking
the uncoupled setting we have been studying until now.

First of all, let us suppose that initially pi(0) = 1
2 for each player i and that

UCN is run for 1
2 time units so that strategy/payoff states for each player lie on

P = {si | p∗
i = 1

2 (1 + Di)}. We recall from Lemma 3 that the worst case regret of 1
8

on this plane is achieved when p∗
i = 3

4 and Di = 1
2 . We say a player is bad if they

achieve a regret of at least 0·12, which on P corresponds to having p∗
i ∈ [0·7, 0·8].

Similarly, all other players are good. We denote θ ∈ [0, 1] as the proportion of players
that are bad. Furthermore, as the following lemma shows, we can in a certain sense
assume that θ ≤ 1

2 .

Lemma 7 If θ > 1
2 , then for a period of 0·15 time units, we can allow each bad

player to shift to their best response with unit speed, and have all good players update
according to UCN to stay on P . After this movement, at most 1 − θ players are bad.

Proof If i is a bad player, in the worst case scenario, Ḋi = 2, which keeps their
strategy/payoff state, si , on the plane P . However, at the end of 0·15 time units, they
will have p∗

i > 0·85, hence they will no longer be bad. On the other hand, since the
good players follow the dynamic, they stay on P , and at worst, all of them become
bad.

Observation 4 After this movement, players who were bad are the only players pos-
sibly away fromP and they have a discrepancy that is greater than 0·1. Furthermore,
all players who become bad lie on P .
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We can now outline a continuous-time dynamic that utilises Lemma 7 to obtain a
( 1

8 − 1
220 ) maximal regret.

1. Have all players begin with pi(0) = 1
2

2. Run UCN for 1
2 time units.

3. Measure, θ , the proportion of bad players. If θ > 1
2 apply the dynamics of

Lemma 7.
4. Let all bad players use ṗ∗

i = 1 for 
 = 1
220 time units.

Theorem 7 If all players follow the aforementioned dynamic, no single player will
have a regret greater than 1

8 − 1
220 .

In essence one shows that if 
 is a small enough time interval (less than 0·1 to be
exact), then all bad players will unilaterally decrease their regret by at least 0·1
 and
good players won’t increase their regret by more than 
. The time step 
 = 1

220 is
thus chosen optimally.

Proof We have seen via Lemma 7 that after step 3 the proportion of bad players is at
most θ ≤ 1

2 , we wish to show that step 4 reduces maximal regret by at least 1
220 for

every bad player whilst maintaining a low regret for good players.
Since after step 3 all bad players remain on P , we can consider an arbitrary bad

player on the plane P with regret r = D(1−p∗). Let us suppose that we allow all bad
players to unilaterally shift their probabilities to their best response for a time period
of 
 < 0·4 ≤ D units (the bound implies bad player preferences do not change). This
means that the worst case scenario for their regret is when their discrepancy increases
to D + 2θ
. If we let r ′ be their new regret after this move, we get the following:

r ′ = (D + 2θ
)(1 − p∗ − 
) = D(1 − p∗) + 2θ
(1 − p∗) − D
 − 2θ
2

= r − 2θ
2 + (
2θ(1 − p∗) − D

)



However, we can use our initial constraints on D and p∗ from the fact that the players
were bad, along with the fact that θ ≤ 1

2 to obtain the following:

2θ(1 − p∗) ≤ (1 − p∗) ≤ 0·3 < 0·4 ≤ D

Hence as long as 
 < 0·4, r ′ < r hence we can better the new bad players, without
hurting the good players by choosing a suitably small value of 
.

To see that we don’t hurt good players to much, suppose that we have a good player
with discrepancy D and best-response mass, p∗. By definition, their initial regret is
r = D(1 − p∗) < 0·12. There are two extreme cases to what can happen to their
regret after the bad players shift their strategies in step 4. Either their discrepancies
increase by 2θ
, in which case preferences are maintained, or either discrepancies
decrease by 2θ
 and preferences change (which can only occur when 2θ
 > D).
For the first case we can calculate the new regret r ′ as follows:

r ′ = (D + 2θ
)(1 − p∗) = r + 2θ(1 − p∗)
 ≤ r + (1 − p∗)
 ≤ r + 


This means that the total change in regret is at most 
. Note that if a player was
originally bad and then shifted according to Lemma 7 then their discrepancy is at
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least 0·1. For this reason if we limit ourselves to values of 
 < 0·1, then all such
players will always fall in this case since their preferences cannot change.

Now we analyse the second case where preferences switch. Since we are only
considering 
 < 0·1, then we can assume that all such profiles must lie on P . In this
case we get the following new regret:

r ′ = (2θ
 − D)(p) = r + 2θp∗
 − D ≤ r + p∗
 − D ≤ r + 


Consequently, in the scenario that preferences change, the change of regret is
bounded by 
 as well. This means that for 
 < 0·1, the decrease in regret for bad
players is at least:

2θ
2 + (D − 2θ(1 − p∗))
 > 0·1


And for such time-steps 
, the regret for good players increases by at most 
. Thus
under these bounds, the optimal value is 
 = 1

220 which gives rise to a maximal
regret of 1

8 − 1
220 = 137

1100 .

As a final note, we see that this process requires one round of communication in
being able to perform the operations in Lemma 7, that is we need to know if θ > 1

2
or not to balance player profiles so that there are at most the same number of bad
players to good players. Furthermore, in exactly the same fashion as UN(α, η), we
can discretise the above process to obtain a query-based algorithm that obtains a
regret of 1

8 − 1
220 + α < 1

8 for arbitrary α.

6 Extensions

In this section we address two extensions to our previous results:

• (Section 6.1) We extend the algorithm UCN to large games with a more general
largeness parameter γ = c

n
∈ [0, 1], where c is a constant.

• (Section 6.2) We consider large games with k actions and largeness parameter c
n

(previously we focused on k = 2). Our algorithm used a new uncoupled approach
that is substantially different from the previous ones we have presented.

6.1 Continuous Dynamics for Binary-action Games with Arbitrary γ

We recall that for large games, the largeness parameter γ denotes the extent to which
players can affect each others’ utilities. Instead of assuming that γ = 1

n
we now

let γ = c
n

∈ [0, 1] for some constant c. We show that we can extend UCN and
still ensure a better than 1

2 -equilibrium. We recall that for the original UCN, players
converge to a linear subspace of strategy/payoff states and achieve a bounded regret.
For arbitrary γ = c

n
, we can extend this subspace of strategy/payoff states as follows:

Pγ =
{
(p∗, D) | p∗ = min

(
1

2
+ D

2c
, 1

)}

where D and p∗ represent respectively a player’s discrepancy and probability allo-
cated to the best response. For c = 1 we recover the subspace P as in UCN.
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Furthermore, if |ṗ∗| ≤ 1 for each player, then |Ḋ| ≤ 2c, which means that we can
implement an update as follows:

ṗ∗ = Ḋ

2c

This leads us to the following natural extension to Theorem 3:

Theorem 8 Under the initial conditions pi(0) = 1
2 for all i, the following continuous

dynamic, UCN-γ , has all players reach Pγ in at most 1
2 time units. Furthermore,

upon reaching Pγ a player never leaves.

ṗ∗
i (t) = f (Di(t), Ḋi(t)) =

⎧
⎪⎨

⎪⎩

1 if si /∈ Pγ

0 if si ∈ Pγ and p∗
i > 1

2 + Di

2c
Ḋi

2c
otherwise

Notice that unlike UCN, this dynamic is no longer necessarily a continuously
differentiable function with respect to time when c > 1. However, it is still
continuous.

Once again, we note that for all strategy/payoff states, regret can be expressed as

R = (1 − p∗)D,

from which we can prove the following:

Theorem 9 Suppose that γ = c
n
and that a player’s strategy/payoff state lies on Pγ ,

then her regret is at most c
8 for c ≤ 2 and her regret is at most 1

2 − 1
2c

for c > 2.
Furthermore, the equilibria obtained are also c-WSNE.

Proof If c ≤ 2, then regret is maximised when D = c
2 and consequently when

p∗ = 3
4 . This results in a regret of c

8 . On the other hand, if c > 2, then regret is
maximised when D = 1 and consequently p∗ = 1

2 + 1
2c

. This results in a regret of
1
2 − 1

2c
.

As for the second part of the theorem, from the definition of Pγ and from the
definition of ε-WSNE in Section 2 it is straightforward to see that when D ≥ c,
p∗ = 1 which means that no weight is put on the strategy whose utility is at most c

from that of the best response.

Thus we obtain a regret that is better than simply randomising between both strate-
gies, although as should be expected, the advantage goes to zero as the largeness
parameter increases.

6.1.1 Discretisation and Query Complexity

In the same way as UN-(α, η), where we discretised UN, Theorem 7 can be
discretised to yield the following result.
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Theorem 10 For a given accuracy parameter α and correctness probability η, we
can implement a query-based discretisation of UCN-γ that with probability 1 − η

correctly computes an ε-approximate Nash equilibrium for

ε =
{

c
8 + α if c ≤ 2

1
2 − 1

2c
+ α if c > 2

Furthermore the discretisation uses O
(

1
α4

(
n
αη

))
queries.

6.2 Equilibrium Computation for k-action Games

When the number of pure strategies per player is k > 2, the initial “strawman” idea
corresponding to Observation 2 is to have all n players randomise uniformly over
their k strategies. Notice that the resulting regret may in general be as high as 1− 1

k
. In

this section we give a new uncoupled-dynamics approach for computing approximate
equilibria in k-action games where (for largeness parameter γ = 1

n
) the worst-case

regret approaches 3
4 as k increases, hence improving over uniform randomisation over

all strategies. Recall that in general we are considering γ = c
n

for fixed c ∈ [0, n].
The following is just a simple extension of the payoff oracle Qβ,δ to the setting with
k actions: for any input mixed strategy profile p, the oracle will with probability at
least 1 − δ, output payoff estimates for p with error at most β for all n players.

Estimating Payoffs for Mixed Profiles in k-action Games Given a payoff oracle
Q and any target accuracy parameter β and confidence parameter δ, consider the
following procedure to implement an oracle Qβ,δ:

• For any input mixed strategy profile p, compute a new mixed strategy profile
p′ = (1 − β

2 )p + (
β
2k

)1 such that each player i is playing uniform distribution

with probability β
2 and playing distribution pi with probability 1 − β

2 .

• Let m = 64k2

β3 log (8n/δ), and sample m payoff queries randomly from p′, and
call the oracle Q with each query as input to obtain a payoff vector.

• Let ûi,j be the average sampled payoff to player i for playing action j .3 Output
the payoff vector (̂uij )i∈[n],j∈{0,1}.

As in previous sections, we begin by assuming that our algorithm has access to
QM , the more powerful query oracle that returns exact expected payoffs with regards
to mixed strategies. We will eventually show in Section 6.2.1 that this does not result
in a loss of generality, as when utilising Qβ,δ we incur a bounded additive loss with
regards to the approximate equilibria we obtain.

The general idea of Algorithm 2 is as follows. For a parameter N ∈ N, every player
uses a mixed strategy consisting of a discretised distribution in which a player’s prob-
ability is divided into N quanta of probability 1

N
, each of which is allocated to a

single pure strategy. We refer to these quanta as “blocks” and label them B1, . . . , BN .
Initially, blocks may be allocated arbitrarily to pure strategies. Then in time step t , for

3If the player i never plays an action j in any query, set ûi,j = 0.
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t = 1, . . . , N , block t is reallocated to the player’s best response to the other players’
current mixed strategies.

The general idea of the analysis of Algorithm 2 is the following. In each time
step, a player’s utilities change by at most nγ/N = c/N . Hence, at the comple-
tion of Algorithm 2, block N is allocated to a nearly-optimal strategy, and generally,
block N − r is allocated to a strategy whose closeness to optimality goes down as r

increases, but enables us to derive the improved overall performance of each player’s
mixed strategy.

Theorem 11 BU returns a mixed strategy profile ( �pi)i∈[n] that is an ε-NE when:

ε =
{

c
(

1 + 1
N

)
if c ≤ 1

2

1 − 1
4c

+ 1
2N

if c > 1
2

Notice for example that for γ = 1
n

(i.e. putting c = 1), each player’s regret is at
most 3

4 + 1
2N

, so we can make this arbitrarily close to 3
4 since N is a parameter of the

algorithm.

Proof For an arbitrary player i ∈ [n], in each step t = 1, ..., N , probability block Bt

is re-assigned to i’s current best response.
Since every player is doing the same transfer of probability, by the largeness con-

dition of the game, one can see that every block’s assigned strategy incurs a regret that
increases by at most 2c

N
at every time step. This means that at the end of N rounds,

the j -th block will at worst be assigned to a strategy that has min{1,(2c)j}
N

regret. This
means we can bound a player’s total regret as follows:

R ≤
N∑

i=1

min{1, (2c)i}
N

· 1

N
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There are two important cases for this sum: when 2c ≤ 1 and when 2c > 1. In the
first case:

R ≤
N∑

i=1

2ci

N2
= nγ

(
1 + 1

N

)

And in the second:

R ≤
⎛

⎝
N/2c∑

i=1

2ci

N2

⎞

⎠ +
(

N − N

2c

)
· 1

N
= 1 − 1

4c
+ 1

2N

In fact, we can slightly improve the bounds in Theorem 9 via introducing a
dependence on k. In order to do so, we need to introduce some definitions first.

Definition 8 We denote Ab,h as the truncated triangle in the cartesian plane under
the line y = hx for x ∈ [0, b] and height capped at y = 1. Note that if bh ≤ 1 the
truncated triangle is the entire triangle, unlike the case where bh > 1. See Fig. 2 for
a visualisation.

Definition 9 For a given truncated triangle Ab,h and a partition of the base, P =
{x1, ..., xr} where 0 ≤ x1 ≤ . . . ≤ xr ≤ b, we denote the left sum of Ab,h under P
by LS(Ab,h,P) (for reference see Fig. 3) and define it as follows:

LS(Ab,h,P) =
|P |∑

i=1

(hxi)(xi+1 − xi)

With these definitions in hand, we can set up a correspondence between the worst

case regret of BU and left sums of A(1+ 1
N

),2c. Suppose in the process of BU a player

Fig. 2 Visualisation of Ab,h when bh ≤ 1 (Left) and bh > 1 (Right)
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Fig. 3 Example of left sum of
five-element partition of base in
the case where bh > 1

has blocks B1, ..., BN in the queue. Furthermore, without loss of generality, suppose
that her k strategies are sorted in ascending order of utility so that u1, ..., uk where
uj is the expected utility of the j -th strategy at the end of the process. Furthermore,
let Rj = u1 − uj (i.e. the regret of strategy j ), so that we also have 0 = R1 ≤ R2 ≤
... ≤ Rk ≤ 1. If N is much larger than k, then by the pigeon-hole principle, many
blocks will be assigned to the same strategy, and hence will incur the same regret.
However, as in the analysis of the previous bounds, each block has restrictions as to
how much regret their assigned strategy can incur due to the largeness condition of
the game. In particular, the assigned strategy of block Bb can only be assigned to a
strategy j such that Rj ≤ min{1, (2c)} ·( b

N

)
. For such an assignment, since the block

has probability mass 1
N

, it contributes a value of Rj ·
(

j
N

) (
1
N

)
to the overall regret

of a player. Hence for fixed regret values (R1, .., Rk), we can pick a valid assignment
of these values to blocks and get an expression for total regret that can be visualised
geometrically in Fig. 4.

The next important question is what valid assignment of blocks to regret val-
ues results in the maximal amount of total regret for a player. In Fig. 4, Block 1 is
assigned to strategy 1, Blocks 2,3, and 7 are assigned to strategy 2, blocks 4 and 5
are assigned to strategy 3, block 5 is assigned to strategy 4 and finally blocks 8 and 9
are assigned to strategy 5.

One can see that this does not result in maximal regret. Rather it is simple to see
that a greedy allotment of blocks to regret values results in maximal total regret. Such
a greedy allotment can be described as follows: assign as many possible (their regret
constraints permitting) blocks at the end of the queue to Rk , then repeat this process
one-by-one for Ri earlier in the queue. This is visualised in Fig. 5, and naturally leads
to the following result:

Theorem 12 For any fixed R1, ..., Rk , the worst case assignment of probability

blocks Bb to strategies corresponds to a left sum of A(1+ 1
N

),2c for some partition of
[0, 1 + 1

N
] with cardinality at most k − 1.

This previous theorem reduces the problem of computing worst case regret to that
of computing maximal left sums under arbitrary partitions. To that end, we define the
precise worst-case partition value we will be interested in.

Theory Comput Syst (2019) 63:26–53 47



Fig. 4 For N = 9 and k = 5, and c > 1
2 , this shows a visualisation of a feasible allotments of regret

values to blocks after BU. Note that this does not exhibit worst case regret

Definition 10 For a given Ab,h, let us denote the maximal left sum under partitions
of cardinality k by Ab,h

k . Mathematically, the value is defined as follows:

Ab,h
k = sup

|P |=k

LS(Ab,h,P)

We can explicity compute these values which in turn will bound a player’s
maximal regret.

Lemma 8 A1,1
k =

(
1
2

) (
k

k+1

)
which is obtained on the partition P =

{ 1
k+1 , 2

k+1 , ..., k
k+1 }

Fig. 5 For N = 9 and k = 5, and c > 1
2 , this shows a visualisation of a feasible allotments of regret

values to blocks after BU. Unlike Fig. 4, this does exhibit worst-case regret
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Proof This result follows from induction and self-similarity of the original triangle.
For k = 1, our partitions consist of a single point x ∈ [0, 1] hence the area under
the triangle will be A1,1

1 (x) = (1 − x)x which as a quadratic function of x has a

maximum at x = 1
2 . At this point we get A1,1

1 (x) = 1
2 · 1

2 as desired.
Now let us assume that the lemma holds for k = n, we wish to show that it holds

for k = n + 1. Any k = n + 1 element partition must have a left-most element, x1.
We let A′(x) be the maximal truncated area for an n+ 1 element partition, given that
x1 = x. By fixing x we add an area of x(1−x) under the triangle and we are left with
n points to partition [x, 1]. We notice however that we are thus maximising truncated
area under a similar triangle to the original that has been scaled by a factor of (1−x).
We can therefore use the inductive assumption and get the following expression:

A′(x) = (1 − x)x + (1 − x)2A1,1
n = (1 − x)x + 1

2
(1 − x)2

(
n

n + 1

)

It is straightforward to see that A′(x) is maximised when x = 1
k+2 . Consequently

the maximal truncated area arises from the partition where xi = i
n+2 which in turn

proves our claim.

Via linear scaling, one can extend the above result to arbitrary base and height
values b, h.

Corollary 2 For bh ≤ 1, Ab,h
k = (

bh
2

) (
k

k+1

)
which is obtained on the partition

P = { b
k+1 , 2b

k+1 , ..., kb
k+1 }

Corollary 3 For bh > 1, we obtain the following expressions for Ab,h
k :

Ab,h
k =

{ (
bh
2

) (
k

k+1

)
if k

k+1 ≤ b
h

b(1 − 1
h

− 1
2hk

) otherwise

Proof For the first case (when k
k+1 ≤ b

h
), let us consider Bb,h to be the the triangle

with base b and height h that unlike Ab,h is not truncated at unit height. From scaling
our previous result from Corollary 2, the largest k-element left sum for Bb,h occurs
for the partition P = { b

k+1 , 2b
k+1 , ..., bk

k+1 }. However, from the fact that Ab,h ⊂ Bb,h,
at precisely these values the left sums of P for both geometric figures coincide. It
follows that this partition also gives a maximal k-element partition for left sums of
Ab,h and thus the claim holds.

On the other hand, let us know consider the case where k
k+1 > b

h
. In a similar

spirit to previous proofs, let us define A(x) : [0, b] → R to be the maximal left-sum
under Ab,h for a given partition P whose right-most element is x. From Figs. 4 and 5,
it should be clear that we should only consider x ∈ [0, b

h
], because if ever we have a

x ≥ b
h

, that would correspond to some block being assigned a regret value of Rj = 1
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for some strategy j . However with the existence of such a maximal regret strategy,
the greedy allotment of blocks to strategies would assign the most blocks possible to
strategy j (or some other maximal regret strategy), which would correspond again to
the final element in our partition being b

h
.

Now that we have restricted our focus to x ∈ [0, b
h
], we wish to consider the

triangle B�, k+1
k of base length � = (k+1)b

kh
, and height k+1

k
which is not truncated

at height 1. Let us define B(x) to be a similar function that computes the maximal

k-element left sum under B�, k+1
k given that the right-most partition element is x ∈

[0, cbh]. Geometrically, one can see that we get the following identity:

A(x) = B(x) + hx

b

(
b − b

h

)

However, from Corollary 2, the optimal k-element partition on B�, k+1
k has a right-

most element of �k
k+1 = b

h
, it follows that B(x) is maximised at x = b

h
. Furthermore,

the second part of the above sum is also maximised at this value, therefore A(x)

is maximised at b
h

. Concretely, this means that the maximal k-element partition for

Ab,h is P = { b
hk

, 2b
hk

, ...,
(k−1)b

hk
, b

h
}. This partition results in a maximal left sum of

A
b
h
,1

k−1 + (
b − b

h

)
which after simplification gives us the value b(1 − 1

h
− 1

2hk
) as

desired.

Finally, we can combine everything above to obtain:

Theorem 13 With access to a query oracle that computes exact expected utilities for
mixed strategy profiles, BU returns an ε-approximate Nash equilibrium for

ε =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
(

k−1
k

) (
1 + 1

N

)
if c ≤ 1

2

c
(

k−1
k

) (
1 + 1

N

)
if c > 1

2 and k−1
k

≤ 1
2c(

1 − 1
4c

− 1
4c(k−1)

) (
1 + 1

N

)
if c > 1

2 and k−1
k

> 1
2c

Proof This just a straightforward application of Theorem 10 and Corollaries 2 and 3.

6.2.1 Query Complexity of Block Method

In the above analysis we assumed access to a mixed strategy oracle as we computed
expected payoffs at each time-step for all players. When using Qβ,δ however, there
is an additive error and a bounded correctness probability to take into account.

In terms of the additive error, if we assume that there is an additive error of β on each
of the N queries in BU, then at any time step, the b-th block will be assigned to a strat-

egy that incurs at most
(

min{1,(2c)b}
N

+ β
)

regret, which can visualised geometrically

in Fig. 6, and which leads to the following extension of Theorem 10.
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Fig. 6 Example of α additive error in utility sampling. For this 7 element partition, regret bounds are
increased by α and we get an augmented truncated triangle

Theorem 14 In BU, if queries incorporate an additive error of α on expected util-
ities, for any fixed choice of R1, ..., Rk , the worst case assignment of probability

blocks Bb to strategies corresponds to a left sum of A(1+ 1
N

+ β
2c

),2c for some partition
of [0, 1 + 1

N
] with cardinality at most k − 1.

Finally, since our approximate query oracle is correct with a bounded probability,
in order to assure that the same additive error of β holds on all N queries of BU, we
need to impose a correctness probability of δ

N
in order to achieve the former with a

union bound. This leads to the following query complexity result for BU.

Theorem 15 For any α, η > 0, if we implement BU using Qβ,δ with β = α and
δ = η

N
, with probability 1−η, we will obtain an ε-approximate Nash equilibrium for

ε =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c
(

k−1
k

) (
1 + 1

N
+ α

2c

)
if c ≤ 1

2

c
(

k−1
k

) (
1 + 1

N
+ α

2c

)
if c > 1

2 and k−1
k

≤ 1
2c(

1 − 1
4c

− 1
4c(k−1)

) (
1 + 1

N
+ α

2c

)
if c > 1

2 and k−1
k

> 1
2c

The total number of queries used is 64k2

α3 log
(

8nN
δ

)

Once again, it is interesting to note that the first regret bounds we derived do not
depend on k. It is also important to note the regret has an extra term of the form
O( 1

N
) in the number of probability blocks. Although this can be minimised in the

limit, there is a price to be paid in query complexity, as this would involve a larger
number of rounds in the computation of approximate equilibria.
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6.3 Comparison Between Both Methods

We can compare the guarantees from our methods from Sections 6.1 and 6.2 when
we let the number of strategies k = 2 and we consider largeness parameters γ = c

n
∈

[0, 1]. Furthermore, we consider how both methods compare when N → ∞.

c ≤ 1 1 ≤ c ≤ 2 c ≥ 2

UNC c
8

c
8

1
2 − 1

2c

BU c
2 1 − 1

2c
1 − 1

2c

One can see that UNC does better by a multiplicative factor of 1
4 in the case of

small c and better by an additive factor of 1
2 for large c.

7 Conclusion and Further Research

The obvious question raised by our results is the possible improvement in the addi-
tive approximation obtainable. Since pure approximate equilibria are known to exist
for these games, the search for such equilibria is of interest. A slightly weaker
objective (but still stronger than the solutions we obtain here) is the search for well-
supported approximate equilibria in cases where c > 1 and for better well-supported
approximate equilibria in general.

There is also the question of lower bounds, especially in the completely uncoupled
setting. Our algorithms are randomised (estimating the payoffs that result from a
mixed strategy profile via random sampling) and one might also ask what can be
achieved using deterministic algorithms.
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International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
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