
 

 

 

Investigation of a Simulated Annealing Cooling Schedule used to 

Optimize the Estimation of the Fiber Diameter Distribution in a 

Peripheral Nerve Trunk  

 
 

 

 

 

A Thesis 

presented to  

the Faculty of California Polytechnic State University, 

San Luis Obispo 

 

 

 

 

In Partial Fulfillment  

of the Requirements for the Degree 

Master of Science in Engineering, 

Specialization in Biomedical Engineering 

 

  

 

 

by 

 

Arya Vigeh 

 

 May 2011 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19143225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011 
Arya Vigeh 

ALL RIGHTS RESERVED 



 

 

iii 

 

 

 

COMMITTEE MEMBERSHIP 
 
 
TITLE: Investigation of a Simulated Annealing Cooling Schedule 

used to Optimize the Estimation of the Fiber Diameter 
Distribution in a Peripheral Nerve Trunk  

 
 
AUTHOR:    Arya Vigeh 
 
 
DATE SUBMITTED:  May 2011 
 
 
 
 
COMMITTEE CHAIR:  Dr. Robert Szlavik,  

Associate Professor, Biomedical and General Engineering 
 
 
COMMITTEE MEMBER: Dr. David Clague,  

Associate Professor, Biomedical and General Engineering 
     
 
COMMITTEE MEMBER:  Dr. Scott Hazelwood,  

Associate Professor, Biomedical and General Engineering 
 

 

 

 

 

 

 

 



 

 

iv 

ABSTRACT 

Investigation of a Simulated Annealing Cooling Schedule used to Optimize the Estimation 

of the Fiber Diameter Distribution in a Peripheral Nerve Trunk  

Arya Vigeh 

 

In previous studies it was determined that the fiber diameter distribution in a peripheral 

nerve could be estimated by a simulation technique known as group delay. These results could be 

further improved using a combinatorial optimization algorithm called simulated annealing. This 

paper explores the structure and behavior of simulated annealing for the application of 

optimizing the group delay estimated fiber diameter distribution. Specifically, a set of parameters 

known as the cooling schedule is investigated to determine its effectiveness in the optimization 

process.  

Simulated annealing is a technique for finding the global minimum (or maximum) of a 

cost function which may have many local minima. The set of parameters which comprise the 

cooling schedule dictate the rate at which simulated annealing reaches its final solution. 

Converging too quickly can result in sub-optimal solutions while taking too long to determine a 

solution can result in an unnecessarily large computational effort that would be impractical in a 

real-world setting.  

The goal of this study is to minimize the computational effort of simulated annealing 

without sacrificing its effectiveness at minimizing the cost function. The cost function for this 

application is an error value computed as the difference in the maximum compound evoked 

potentials between an empirically-determined template distribution of fiber diameters and an 

optimized set of fiber diameters. The resulting information will be useful when developing the 

group delay estimation and subsequent simulated annealing optimization in an experimental 

laboratory setting. 

 

Keywords: simulated annealing, group delay, fiber diameter distribution, cooling schedule, 

optimization algorithm 



 

 

v 

Acknowledgments  

 

 
First and foremost I would like to thank my advisor Dr. Robert Szlavik for the countless 

hours spent helping me throughout the duration of this project. His guidance and enthusiasm for 

this project were an important motivating factor for me to complete this work. Thanks also to my 

committee members Dr. David Clague and Dr. Scott Hazelwood for taking the time out of their 

busy schedules to review my work and participate in my thesis defense. 

To all the friends I have made during my time in San Luis Obispo, thank you for the 

amazing memories that I will never forget. I can‘t wait to see what lies ahead for all of us.  

Being fortunate enough to come from such a large family, I must also acknowledge all 

my cousins, aunts, uncles, grandparents, my brother-in-law and all our close family friends who 

have always been there for me no matter what the situation may be. Each and every one of you 

has had a positive impact on my life that has shaped me into the person I am today and for that I 

am forever grateful. 

To my sister for always looking out for me whenever I asked for help but more 

importantly, whenever I didn‘t. There is no way I could have made it this far without your 

guidance. Also, thank you for bringing my beautiful niece into this world. She has become a new 

light in my life.      

Last and certainly not least, thank you to my parents for their unconditional love and 

support throughout my life and for helping me understand all the things that matter most in this 

world.  

 
  



 

 

vi 

Table of Contents 

 

List of Tables ................................................................................................................................. ix 

List of Figures ................................................................................................................................. x 

1 Introduction .................................................................................................................................. 1 

1.1 The Nervous System ............................................................................................................. 1 

1.1.1 Structure of a Neuron ..................................................................................................... 2 

1.2 Communication between Neurons: The Action Potential ..................................................... 4 

1.2.1 Resting Membrane Potential .......................................................................................... 4 

1.2.2 Action Potential Propagation .......................................................................................... 5 

1.3 Peripheral Nerve Disease ...................................................................................................... 7 

1.4 Group Delay ........................................................................................................................ 10 

1.4.1 Group Delay Method .................................................................................................... 10 

1.4.2 Initial Group Delay Results .......................................................................................... 11 

1.4.3 Modification to the Group Delay Technique ................................................................ 12 

1.5 Optimization of Group Delay Data ..................................................................................... 13 

1.5.1 Combinatorial Optimization ......................................................................................... 13 

1.5.2 Local optimization ........................................................................................................ 14 

1.5.3 Simulated Annealing .................................................................................................... 15 

1.6 Project Scope ....................................................................................................................... 22 

2 Methods...................................................................................................................................... 23 

2.1 MATLAB ............................................................................................................................ 23 

2.2 Group Delay Simulation...................................................................................................... 24 

2.3 Simulated Annealing Optimization ..................................................................................... 31 



 

 

vii 

2.4 Effect of Temperature on Simulated Annealing Cost Function .......................................... 35 

2.5 Using Chi-Squared to Test the Fit of Distributions............................................................. 37 

2.5.1 Measuring the Chi-Squared Difference After Simulated Annealing ............................ 40 

2.6 Cooling Schedule Simulations ............................................................................................ 41 

2.6.1 Starting Temperature (temp_start) ........................................................................ 43 

2.6.2 Stopping Temperature (temp_bound) ....................................................................... 46 

2.6.3 Number of Trials per Temperature Step (max_step) ................................................ 48 

2.6.4 Cooling Ratio (temp_factor) .................................................................................. 49 

3 Results ........................................................................................................................................ 58 

3.1 Starting Temperature ........................................................................................................... 58 

3.2 Stopping Temperature ......................................................................................................... 60 

3.3 Number of Transitions per Temperature Step ..................................................................... 62 

3.4 Cooling Strategy .................................................................................................................. 64 

3.4.1 Exponential Cooling Schedule ..................................................................................... 64 

3.4.2 Logarithmic Cooling Schedule ..................................................................................... 66 

3.4.3 Linear Cooling Schedule .............................................................................................. 67 

3.4.4 Linear-Exponential and Adaptive Cooling Schedule ................................................... 70 

4 Analysis...................................................................................................................................... 72 

4.1 Starting Temperature ........................................................................................................... 72 

4.2 Stopping Temperature ......................................................................................................... 74 

4.3 Number of Transitions per Temperature Step ..................................................................... 74 

4.4 Cooling Strategy .................................................................................................................. 76 

4.5 Dynamic Cooling Schedules ............................................................................................... 80 

4.6 Summary of Select Annealing Schedules ........................................................................... 80 



 

 

viii 

5 Discussion .................................................................................................................................. 83 

5.1 Conclusions ......................................................................................................................... 83 

5.2 Chi-Squared Difference Problem ........................................................................................ 84 

5.3 Future Work ........................................................................................................................ 85 

References ..................................................................................................................................... 87 

Appendix A – Supplemental Figures ............................................................................................ 89 

Appendix B – MATLAB Source Code ......................................................................................... 90 



 

 

ix 

List of Tables 

 

Table 1 Nerve Fiber Sizes and Function [7] ................................................................................... 8 

Table 2 Annealing Analogy to Optimization Problem ................................................................. 16 

Table 3 Summary of Tested Log Functions .................................................................................. 52 

Table 4 Summary of Linear Cooling Schedules ........................................................................... 53 

Table 5 Summary of Adaptive Cooling Schedule ........................................................................ 57 

Table 6 Summary of Adaptive Temperature Ranges .................................................................... 70 

Table 7 Reduction in Temperature Steps between Starting Temperature of 10 and 1 ................. 73 

Table 8 Final Error Summary for the Number of Transitions per Temperature Step Simulation 75 

Table 9 Summary of 0.7 and 0.9 Exponential Cooling Ratios ..................................................... 77 

Table 10 TNFDC Calculation for Each Simulated Cooling Ratio ............................................... 78 

Table 11 Summary of the Best Performing Schedules in Each Category .................................... 81 

 



 

 

x 

List of Figures 

 

Figure 1 Structure of a single neuron (nerve cell) [3] ..................................................................... 2 

Figure 2 Measuring Cell Membrane Potential ................................................................................ 4 

Figure 3 Action Potential Waveform .............................................................................................. 7 

Figure 4 Cross-section of a Peripheral Nerve [8] ........................................................................... 9 

Figure 5 Group Delay Setup [12] .................................................................................................. 10 

Figure 6 Simulated Annealing Pseudocode [18] .......................................................................... 17 

Figure 7 MATLAB Console Screenshot....................................................................................... 23 

Figure 8 Example Population of Fiber Diameters ........................................................................ 25 

Figure 9 Compound Action Potentials at first (left) and second (right) recording sites. .............. 27 

Figure 10 Single fiber evoked potentials at first (left) and second (right) recording sites. .......... 28 

Figure 11 Control Theory Relating Input and Output .................................................................. 28 

Figure 12 Relation between Group Delay Recording Sites .......................................................... 29 

Figure 13 Number of Temperature Steps at Various Step Factors ............................................... 34 

Figure 14 a) Maximum CEPs at High Temperature b) Maximum CEPs at Medium                

Temperature c) Maximum CEPs at Low Temperature ................................................................. 36 

Figure 15 Example Fiber Distributions Compared using the Chi-Squared Test .......................... 40 

Figure 16 Plot of Acceptance Criterion as a function of Starting Temperature ........................... 45 

Figure 17 Determining When Boltzmann Acceptance Criterion Reaches Zero ........................... 47 

Figure 18 Various Log Decay Schedules Simulated .................................................................... 51 

Figure 19 Scenario 1 Linear Cooling Schedules with Different Decrement Factors ................... 54 

Figure 20 Scenario 2 Linear Cooling Schedules with Different Starting Temperatures .............. 54 

Figure 21 Linear-Exponential Decay Schedule ............................................................................ 56 

Figure 22 Final Error Computation for Different Starting Temperatures. .................................... 59 



 

 

xi 

Figure 23 Chi-Squared Difference for Different Starting Temperatures. ..................................... 60 

Figure 24 Final Error Calculations at Different Stopping Temperatures. .................................... 61 

Figure 25 Chi-Squared Calculation for Different Stopping Temperatures ................................... 62 

Figure 26 Final Error Calculations for Two Different Datasets (D1 and D2) at Various     

Numbers of Transitions per Temperature Step ............................................................................. 63 

Figure 27 Chi-Squared Difference Versus Number of Transitions per Temperature Step. .......... 63 

Figure 28 Final Error Calculations for Exponential Cooling Schedule ........................................ 65 

Figure 29 Chi-Squared Calculation for Exponential Cooling Schedule. ...................................... 65 

Figure 30 Final Error Calculation for Natural Log Cooling Schedule at Various C Values ........ 66 

Figure 31 Chi-Squared Difference for Various C Values of the Natural Log Cooling Schedule 67 

Figure 32 Final Error Calculation for Scenario 1 of Linear Decay Cooling Schedule ................. 68 

Figure 33 Chi-Squared Difference for Scenario 1 of Linear Decay Cooling Schedule................ 68 

Figure 34 Final Error Calculation for Scenario 2 of Linear Decay Cooling Schedule ................. 69 

Figure 35 Chi-Squared Diff Calculation for Scenario 2 of Linear Decay Cooling Schedule ....... 69 

Figure 36 Final Error Calculations for Dynamic Cooling Schedules ........................................... 71 

Figure 37 Chi-Squared Difference Calculation for Dynamic Cooling Schedule ......................... 71 

Figure 38 Summary of the Best Performing Schedules in Each Category ................................... 81 



 

 

1 

1 Introduction 

 

1.1 The Nervous System 

 

 The nervous system is known as the communication and control system of the body. Its 

three primary functions are to receive sensory input, interpret the information received (known as 

integration) and finally perform some action in response to that signal. Possible responses 

include storing the signal for later processing, ignoring the signal or generating a motor response. 

An example of a simple reflex circuit is revealed when a person touches something that is 

extremely hot. Receptors on the skin respond to the heat by sending a signal to interneurons in 

the spinal cord where it is interpreted as pain. These interneurons project further into motor 

neurons that control muscle fibers in the arm which can cause an involuntary contraction that 

moves the hand away from the source of heat. More sophisticated examples of neural circuits 

involve processing the sensory input in the brain where a response can be sent back out to motor 

neurons innervating muscle fibers [1]. A description of what these signals look like and how they 

travel across the body will be provided in a later section. 

 The nervous system is divided into two parts: the central nervous system (CNS) and 

peripheral nervous system (PNS). The CNS consists of the brain and spinal cord and is 

essentially the control center of the entire nervous system. Signals transmitted from the CNS are 

transferred to other parts of the body through the PNS which consists of branches of nerve fibers 

extending out from the spinal cord. These fibers are also known as axons and are a part of the 

fundamental unit of the nervous system, the neuron.  

 



 

 

2 

1.1.1 Structure of a Neuron 

 Neurons, or nerve cells, are the primary structural unit of the nervous system. The 

structure of a neuron can be seen in Figure 1. A key property of this type of cell is its ability to 

be electrically excited. Neurons can communicate with one another using electrochemical 

signaling in the synapse which is the region between the terminal branch of one neuron (pre-

synaptic cell) and the dendrites of a nearby neuron (post-synaptic cell) [1]. The signals travelling 

along neural pathways during excitation can be represented as electrical changes in the 

transmembrane potential (or just membrane potential). This membrane potential is defined as the 

voltage difference between the inside and outside of the nerve cell [2]. More information on this 

potential will be presented later. 

 

Figure 1 Structure of a single neuron (nerve cell) [3] 

 

1.1.1.1 Dendrites 

An important structure of nerve cells is the dendrites. These are branch-like structures 

that extend out from the cell body and receive input passed on from nearby neurons. A typical 



 

 

3 

neuron may contain hundreds of these projections providing a greater surface area for receiving 

signals from other neurons. The dendrites role in signaling is to forward the received signal to 

the cell body [1]. 

 

1.1.1.2 Cell Body 

 The cell body, or soma, houses the nucleus of the neuron as well as other organelles 

necessary for proper function. The size of the soma ranges from 5 to 140 µm [1]. An important 

feature of the soma is the axon hillock where action potentials are generated. Action potentials 

refer to the rapid change in the transmembrane potential along a neuron during excitation. When 

the voltage at the axon hillock relative to the extracellular region reaches a particular threshold, 

an action potential is generated which travels along the length of the axon. This transient change 

in membrane potential is the basis for cell signaling in the nervous system [2].  

 

1.1.1.3 Axon 

 The axon‘s primary role is to transmit action potentials over long distances [2]. Axons 

can be very short or as long as several feet. A long axon is also referred to as a nerve fiber [1]. A 

typical nerve fiber is surrounded with a whitish, fatty covering called a myelin sheath. These 

coverings are produced by Schwann cells in the peripheral nervous system and help insulate the 

axon from surrounding tissue as well as allowing for faster signal conduction [1]. 

 

 



 

 

4 

1.2 Communication between Neurons: The Action Potential 

 

 The propagation of an action potential along networks of nerve fibers is seen through 

changes in cell membrane potential of the contributing neurons. As previously stated, the 

membrane potential is defined as the voltage inside the cell relative to the voltage outside the 

cell. This value can be found experimentally by placing a voltage-sensing microelectrode inside 

a cell and a reference electrode somewhere in the nearby extracellular fluid. If the cell is not 

being activated by a propagating action potential, the resting membrane potential can be 

measured using a voltmeter [2].  

 

Figure 2 Measuring Cell Membrane Potential 

 

1.2.1 Resting Membrane Potential 

 There are two primary factors that determine the value of the resting membrane potential. 

The first is the concentration of specific ions inside and outside the cell membrane (sodium, 

potassium and chloride being the most important). The resting membrane potential lies 

somewhere between the Nernst equilibrium potential for sodium (about 58 mV) and the Nernst 

equilibrium potential for potassium and chloride (about -80 mV). The second factor which 



 

 

5 

determines the resting membrane potential is the relative ionic permeability for these three ions. 

In other words, the ease with which sodium, potassium, or chloride can cross through the 

membrane can sway the value of the resting membrane potential for a given cell. The 

permeability of a membrane to a specific ion is a function of the number of channels that allow 

the ion to cross and the ease with which the ion can pass through a single channel [2].  

A formula for calculating the resting membrane potential for a given cell is known as the 

Goldman equation and can be simplified into the following: 

 

 

 
(1) 

 

 where [K
+
]o is the extracellular concentration of potassium, 

  [K
+
]i is the intracellular concentration of potassium, 

  [Na
+
]o is the extracellular concentration of sodium, 

  [Na
+
]i is the intracellular concentration of sodium 

  and b is the ratio of sodium to potassium permeability 

 

The resting transmembrane potential for a neuron is approximately -70 mV when [K
+
]o = 5 mM, 

[K
+
]i = 125 mM, [Na

+
]o = 120 mM, [Na

+
]i = 12 mM, and b = 0.02 [2]. 

 

1.2.2 Action Potential Propagation 

 The permeability of ions such as sodium and potassium across the cell membrane of a 

neuron are not static quantities. Instead, they are functions of both the transmembrane potential 

and time. Action potentials are initiated by a stimulus which causes a reduction in the membrane 



 

 

6 

potential. In other words, the value of the membrane potential becomes more positive. This is 

known as depolarization and can be caused either by a pre-synaptic neuron releasing 

neurotransmitters at the synapse or through artificial current injection [2].  

 A small depolarization is usually not sufficient for generating an action potential. Instead, 

a depolarization of about 10-20 mV is required to initiate the action potential response. For a 

typically neuron (with resting membrane potential of -70 mV), this threshold is around -60 to -50 

mV. This threshold is especially important at the axon hillock of the neuron because it is at this 

location of the neuron where action potentials are initiated [2].  

 When a neuron has reached the depolarization threshold, voltage-gated sodium channels 

open which results in an influx of sodium ions across the cell membrane. Sodium ions travel 

inside the cell because of the concentration gradient that exists across the membrane. This causes 

further depolarization due to the increase of positive ions entering the cell. Soon after, when the 

membrane potential reaches approximately +30 mV, sodium channels close and voltage-gated 

potassium channels open. Because potassium is at a higher concentration inside the cell, the 

opening of these channels causes and efflux of ions from the cell which returns the membrane 

potential back to its original resting value (after a brief hyperpolarization period). Initial ion 

concentrations are restored after the action potential cycle is completed by the Na-K pump which 

requires ATP. The opening and closing of voltage-gated sodium and potassium channels occurs 

along the length of the axon which is how the signal is propagated. When depolarization reaches 

the end of a neuron (at the terminal branches), the neuron releases neurotransmitters into the 

synapse which depolarize the post-synaptic cell and the action potential continues along the new 

neuron [2]. 

 



 

 

7 

 

Figure 3 Action Potential Waveform 

 

There are several key characteristics of action potentials in nerve fibers. First, in a 

typically mammalian nerve fiber, an action potential travels between 10-20 m/s. The amplitude 

of the action potential is independent of the strength of the stimulus. A strong stimulus will 

produce the same wave shape as a weak stimulus (assuming they are both sufficient enough to 

initiate an action potential). The only difference here is that the stronger stimulus will generate a 

larger frequency of action potentials along the axon. An upper bound limit exists for the state 

where they can be activated again [1]. This is known as the refractory period and typically lasts 

about 1 millisecond. During this time another action potential cannot be initiated [2]. 

 

 

1.3 Peripheral Nerve Disease 

 

 Peripheral nerve disease, also known as peripheral neuropathy, is estimated to affect 

nearly 20 million Americans [4]. It is commonly diagnosed near the hands and feet but can also 

affect autonomic nerves which innervate internal organs. Symptoms include but are not limited 

to tingling, pain, weakness, or numbness in the affected areas [5]. Approximately 30 percent of 



 

 

8 

neuropathies are due to unknown causes while another 30 percent are caused by symptoms of 

diabetes. Autoimmune diseases, infections, heredity (e.g. Charcot-Marie-Tooth disease) and 

nutrition imbalance such as vitamin B12 deficiency are among the other etiologies [5]. 

 A common tool for diagnosing peripheral neuropathies is the nerve conduction velocity 

(NCV) test. The idea behind NCV studies is to measure the speed at which electrical impulses 

travel along the tested nerve. A stimulating electrode that can either be placed on the surface of 

the skin or under the skin using a needle activates the nerve fibers while recording electrodes are 

placed further along the nerve path. The distance between the electrodes and the time it takes for 

electrical signals to travel between the electrodes are used to calculate the conduction velocity. 

Slower than normal transmission can be attributed to axonal loss or damage to the myelin sheath 

which are symptoms of certain neuropathies [6].  

 Peripheral nerve diseases can be further classified by the size and type of nerve fibers 

they affect. Nerve trunks are composed of large myelinated axons, small myelinated axons, and 

small unmyelinated axons. Table 1 describes some differences between the three. 

 

 Table 1 Nerve Fiber Sizes and Function [7] 

Fiber Diameter Size Axon Type Function 

Large, Myelinated Motor and Sensory Motor functions, vibration 

sense, proprioception, light 

touch 

Small, Myelinated Autonomic and Sensory Light touch, pain, temperature 

Small, Unmyelinated Sensory Pain and temperature 



 

 

9 

 

Figure 4 Cross-section of a Peripheral Nerve [8] 

 

 

One of the more common neuropathies targeting large nerve fibers is Chronic 

Inflammatory Demyelinating Polyneuropathy (CIDP) which is an autoimmune disease that 

destroys the myelin sheaths within peripheral nerves. The prevalence of CIDP is underestimated 

due to the limitations of electrophysiological techniques to diagnose the disease. The 

heterogeneity of this particular neuropathy prevents the standard conduction velocity test from 

providing an accurate diagnosis. As a result, there have been a growing number of patients left 

undiagnosed despite the progression of their symptoms [9].   

In contrast to CIDP which primarily impacts large nerve fibers, certain diseases have 

been reported to impact smaller diameter fibers. For example, neuropathies related to diabetes 

have been found to affect small fibers as a result of high blood glucose levels (hyperglycemia) 

[10]. It is estimated that over half of patients suffering from diabetes will develop a related 

neuropathy within 25 years after diagnosis [11].  

 While the nerve conduction velocity test is useful for determining the functionality of a 

nerve trunk, it does not provide any additional information about the individually affected fibers 



 

 

10 

which together contribute to conducting the compound evoked potential in the nerve. A method 

that determines the fiber diameter distribution of activated fibers in a nerve trunk could give 

clinicians a better diagnostic tool against neuropathies [12].  

 

 

1.4 Group Delay 

 

A minimally invasive electrodiagnostic tool for determining the nerve fiber (axon) 

diameter distribution in a peripheral nerve was proposed by R.B. Szlavik in 2008 using a 

technique called group delay. This method is based on the decomposition of the maximal 

compound evoked potential using a setup similar to the standard nerve conduction velocity test.  

 

Figure 5 Group Delay Setup [12] 

 

1.4.1 Group Delay Method 

The setup for the group delay method is shown in Figure 5. A stimulating electrode is 

placed over a subcutaneous nerve trunk with two additional electrodes placed distally along the 

median nerve used for recording the evoked potentials. The distances shown in the figure are 



 

 

11 

merely for simulation purposes and are not intended to be to scale. Starting with a very small 

current that gradually increases at the stimulus site, evoked potentials are recorded at both sites. 

Assuming the increase in current at each step is small enough, each successively recorded 

compound evoked potential is broken down into single fiber action potentials based on the 

previously recorded compound evoked potential. Once all possible fibers are stimulated at a 

sufficiently high stimulus current, the estimated group delay between the two recording sites at 

each current step where a new fiber was recruited are used to obtain an estimation of the 

diameters of each activated fiber within the nerve trunk [12]. The size distribution of nerve fibers 

is linearly related to the conduction velocity distribution [13]. 

 The theoretical effectiveness of this proposed technique was determined by R.B. Szlavik 

using a population of randomly generated fiber diameters described by the following 

distribution: 

 








 



2

24

1 2

)(
exp

2
)(

h

hk

h h

h

kk

d
dp








 (2) 

 

The values for each variable are provided in [12] and the distribution formed the template fiber 

population. A flowchart of the group delay algorithm can be seen in Appendix A.  

  

1.4.2 Initial Group Delay Results 

 The template fiber diameter distribution was compared to the distribution determined by 

the group delay estimation and it was determined that the technique could retrieve the fiber size 

distribution with reasonable accuracy even in the presence of noise. Results were quantified 

using two different methods. The first compared the maximum compound evoked potential 



 

 

12 

generated by the template distribution of nerve fiber diameters with the maximum compound 

evoked potential generated by the fiber diameter distribution estimated by group delay. This 

value will be further referred to as the final error and its calculation will be covered in a later 

section. The second method for quantifying results compares the actual fiber diameter 

distributions between the template and the group delay estimation and is called the chi-squared 

test [12, 14].  

 

1.4.3 Modification to the Group Delay Technique 

 An improvement was made to the original results of the group delay technique by R.B. 

Szlavik and G.E. Turner using an optimization algorithm known as simulated annealing. 

Optimization algorithms such as simulated annealing are typically used to solve problems where 

the computational effort grows exponentially with the size of the problem. A detailed 

explanation of simulated annealing is provided in the next section.  This particular algorithm is 

used to randomly vary the diameters found using group delay which as a result changes the 

associated single fiber evoked waveform for the purposes of obtaining a better fit between the 

template maximum compound evoked potential and the maximum compound evoked potential 

determined through group delay [14].  

 

 



 

 

13 

1.5 Optimization of Group Delay Data 

 

1.5.1 Combinatorial Optimization 

 Combinatorial Optimization problems are characterized as having a finite set of solutions 

where one (sometimes multiple) solution is considered the best or optimal. Although the set of 

solutions is finite, it is typically large enough to be unable to explore exhaustively [15]. 

Optimality is determined by a cost function for which every solution in the set can be assigned a 

value. The goal therefore of an optimization problem is to determine the minimum cost and its 

corresponding solution [16]. Possibly the most commonly discussed example of a combinatorial 

optimization problem is the Traveling Salesman Problem (TSP). In this problem, a salesman 

starts from his home city and visits N number of cities on a prescribed list one time before 

returning home. The idea then is to determine a solution which describes the shortest path he can 

take.  

 The fundamental problem when attempting to find the optimal path to the Traveling 

Salesman Problem is that the computational effort increases exponentially with the number of 

cities on the tour. Consequently, accurate solutions can only be found when N is in the range of 

several hundred cities or less [17]. The TSP falls into a specific class of problems known as NP-

complete (non-deterministic polynomial time complete). An NP-complete problem has two 

important characteristics. The first is that an optimal solution cannot be found in a reasonable 

amount of computational time. The second feature is that an algorithm for solving one NP-

complete problem can be used to solve any other problem that is also NP-complete [17].  

 One of two methods is typically employed for solving large NP-complete problems 

though they do not have to be mutually exclusive. One option is to find the most optimal solution 



 

 

14 

at the risk of large computational time. Optimization algorithms typically fall into this category. 

The second option is to find a reasonable solution as quickly as possible at the risk of sub-

optimality. This particular technique is done by approximation algorithms. Furthermore, 

combinatorial optimization algorithms can be either general or tailored. General algorithms can 

be applied to a wide range of problems which makes them problem independent. Tailored 

algorithms on the other hand use problem-specific details which restrict the set of problems to 

which they can be applied. An example of a low quality general approximation algorithm is local 

optimization (or local search) which is briefly discussed in the next section. Simulated annealing 

is also a general algorithm but considered to be of much higher quality. Its performance is 

asymptotically viewed as an optimization algorithm but in practical implementations, it can 

behave as an approximation algorithm [15].  

 

1.5.2 Local optimization 

 Local optimization is one technique used to solve combinatorial optimization problems, 

albeit not very well. It begins with an arbitrary determined solution to the given problem and a 

neighborhood structure consisting of solutions that are similar to the initial one. As mentioned 

before, solutions can be evaluated according to a cost function related to the problem being 

optimized. The algorithm then makes a small change to the solution (also referred to as exploring 

a neighboring solution) and determines what the new cost is. If the new value is an improvement 

from the original, the change is accepted and the procedure repeats from the new location in the 

solution set. This is known as a downhill movement because the algorithm is moving towards a 

lower value of the cost function. If the new value is larger than the previous, the change is 

ignored and the original solution is maintained. The algorithm terminates when no more 



 

 

15 

improvements can be made to the cost function. This technique is sufficient for finding the local 

minimum of a problem but not for determining the global minimum. The reason why is because 

once the algorithm reaches a local minimum, it is essentially trapped in a neighborhood of 

solutions unless it accepts a change which increases the cost function. This type of movement is 

referred to as an uphill change and is not allowed by the local optimization algorithm. Simulated 

annealing, by contrast, performs similarly in that it will accept all changes to the system that 

reduce its cost function but also accepts some changes which increase the cost function. The 

decision on whether or not an increasing cost change is accepted will be discussed later. 

Simulated annealing‘s ability to make uphill changes to the system‘s cost function drastically 

improves the performance of the algorithm and makes finding the global minimum of a solution 

set possible [15]. 

 

1.5.3 Simulated Annealing 

 The simulated annealing algorithm was first derived by Scott Kirkpatrick, C. Daniel 

Gelatt and Mario P. Vecchi in 1983 however it is based off of the Monte Carlo method first 

described by N. Metropolis in 1953.  

The name of this algorithm comes from the analogous process of a liquid freezing and 

crystallizing or a metal cooling and annealing. At high temperatures, a liquid consists of 

randomly dispersed molecules resulting in a high energy state. When carefully decreasing the 

temperature from this point, the particles slowly arrange themselves into a highly structured 

lattice (solid phase). It is crucial throughout this process that the system reaches a steady state 

before decreasing the temperature to the next level. When the temperature is sufficiently low 

enough, the system reaches its ground state or the point at which the energy of the solid is 



 

 

16 

minimized. If cooling is not performed slowly enough, the system is no longer at its minimal 

energy state, analogous to the process of quenching [16].  

It is important before moving forward to bridge the gap between the physical analogy and 

the simulated annealing optimization algorithm. Table 2 compares the physical annealing process 

with the associated terminology used in simulated annealing. 

 

Table 2 Annealing Analogy to Optimization Problem 

Physical Annealing Simulated Annealing Equivalent 

Arrangement of particles in a system Solution to optimization problem 

Changes in the system (i.e. a new 

configuration of particles) 

Neighboring solution (i.e. making a small 

change to current solution) 

Energy of the system at current 

configuration 

Cost Function of current solution 

Temperature of the system Control Parameter or Annealing schedule 

 

Thus the key idea behind simulated annealing is to minimize the cost function using an 

appropriately defined annealing schedule that ―cools‖ the system slow enough to find the optimal 

solution. 

 

1.5.3.1 Simulated Annealing Algorithm 

 The pseudocode in Figure 6 summarizes the general simulated annealing procedure. 

  



 

 

17 

 

Figure 6 Simulated Annealing Pseudocode [18] 

 

 

Note that the algorithm proceeds until the temperature reaches a lower bound set by the 

programmer. This value is typically set orders of magnitude lower than the starting temperature 

allowing a significant number of cycles to run through the algorithm before returning the optimal 

solution. 

 Simulated annealing acts similarly to local optimization in that it always accepts changes 

which reduce the cost. Where it improves upon local optimization is how it accepts increased 

cost function changes with a certain probability described by a Boltzmann distribution. That is, a 

system changes its configuration from E1 to E2 with probability p defined by: 

 








 


T

EE
p 12exp  (3) 

 

This acceptance rule is also known as the Metropolis criterion [19]. The formula can be verified 

because when E2 < E1, the value of p is greater than 1 and changes are always accepted. If E2 > 



 

 

18 

E1, a randomly generated number between 0 and 1 is compared to p. If the random number is less 

than or equal to p, the change is accepted even though the cost function has increased. One last 

thing to note about this distribution is its dependence on the temperature T. Because the 

temperature is decremented as the algorithm progresses, the likelihood of accepting an ―uphill‖ 

change also decreases [16]. 

 

1.5.3.2 Annealing Schedule 

 While the majority of parameters which comprise the simulated annealing algorithm are 

fixed values that cannot be adjusted, there does exist an important set of parameters that govern 

the convergence of the simulated annealing algorithm which can be grouped together and 

referred to as the annealing schedule (or cooling schedule). Because these parameters are not 

fixed in the implementation of simulated annealing, they are considered to be the most important 

feature in the design of the algorithm [20]. In a paper published in 1991, Romeo and 

Sangiovanni-Vincentelli explained that an effective cooling schedule is crucial to reducing the 

execution time before finding an optimal solution [21].   

The parameters of the cooling schedule include the starting temperature, cooling factor, 

stopping temperature, and the number of transitions (or moves) at each temperature [15]. Of 

these variables, the cooling factor is arguably the biggest determinant of the algorithm‘s ability 

to reach an optimal solution. The cooling factor is described as the method for which simulated 

annealing reduces the temperature to its next value. Numerous strategies have been investigated 

in prior studies which examine various implementations of the cooling factor. While an 

exponential (or geometric) reduction is arguably the most common cooling technique, many 



 

 

19 

studies have used variations of logarithmic, linear and adaptive cooling methods with positive 

results [20].  

A study by Strenski and Kirkpatrick in 1991 on finite length cooling schedules found that 

geometric and linear cooling rates yielded a better result than logarithmic designs. Further, they 

determined that there was not a significant difference in performance between the linear and 

exponential implementations. With regards to the starting temperature, they concluded that 

excessively high initial temperatures do not greatly improve the optimization of the algorithm 

when a geometric cooling factor is used [22]. 

Another paper on simulated annealing published in 1995 by Brooks and Morgan made 

some important observations about the cooling schedule. They determined that doubling the 

number of transitions at each temperature step also doubles the execution time of the algorithm. 

Also, in a geometric rate of cooling, a larger scaling factor increases the reliability of the 

optimization process towards finding the global minimum solution set [19]. 

The design of a cooling schedule can be categorized one of two ways. Either all 

parameters are permanently set prior to the beginning of the algorithm (a static approach) or 

information is extracted while the algorithm is running which can alter the rate of convergence 

(adaptive) [23]. The aforementioned cooling strategies belong to the static category of schedules. 

A study published in 2007 by Ortner et al. described an adaptive simulated annealing cooling 

schedule for the application of object detection in imaging. The idea behind this strategy is to 

identify critical temperatures where the objective function is most vulnerable to optimization and 

decelerate the annealing schedule at these points. For all periods outside of these critical 

temperatures, the rate of annealing can be accelerated with little effect on the optimization 

process. The results of this study found that the adaptive schedule performed better than the 



 

 

20 

compared geometric approach. A noticeable advantage in the adaptive cooling schedule was that 

increasing the value of the initial temperature did not drastically increase computational time (as 

it would in a geometric schedule). A disadvantage in using an adaptive schedule is that the 

algorithm becomes problem-dependent and cannot be used effectively in other combinatorial 

optimization problems [24].  

 

1.5.3.3 More Simulated Annealing Applications 

 Since the development of the simulated annealing algorithm to solve combinatorial 

optimization problems several decades ago, numerous papers have been published which 

investigate the effectiveness of the algorithm to determine a minimum cost solution to various 

NP-complete problems. Kirkpatrick first introduced the algorithm not only as a solution to the 

common Travelling Salesman Problem but also as a technique for computer design. This process 

can be simplified into three stages: partitioning, component placement and wiring. Simulated 

annealing can be used to determine the partitioning of a design into groups small enough to fit an 

available package such as a single chip. Partitioning must be done in such a way that the number 

of circuits in a particular package and the number of signals that cross partition boundaries is 

minimized. The next step would be to assign the circuits a particular location on the chip (called 

placement). Optimization algorithms here attempt to minimize the length of connections in order 

to reduce the propagation time of a signal and increase speed. The last step is to use 

photolithography to assign specific routes to connect circuits together. The objective in wiring is 

to minimize wire lengths and any possible sources of noise such as the placement of two adjacent 

wires. All of these components of computer design can be assisted using simulated annealing 

optimization [17].  



 

 

21 

 

1.5.3.4 Simulated Annealing for Group Delay Data 

 Now that the foundation of the simulated annealing algorithm has been presented, 

specifics related to the optimization of group delay data can now be discussed. The input to this 

algorithm is the group delay estimated set of fiber diameters. The first step of the simulated 

annealing optimization here is to calculate the error function (previously referred to as the cost 

function). This is the objective function for which the algorithm attempts to minimize. It is 

derived in terms of the two-norm difference between the template maximum compound evoked 

potential and the group delay estimated compound evoked potential of all contributing fibers 

[14]. 

 

 
(4) 

 

The next step of the procedure determines whether ∆ < ∆MIN or T < TMIN. These flags will cue 

the program to exit if either inequality is true. If both are false, a randomly chosen fiber from the 

group delay estimated set is selected and randomly assigned a new diameter. A new single fiber 

evoked potential is then calculated for the new diameter as well as a new compound evoked 

potential as a result of the change. The error function from above is then re-calculated and 

assigned to the variable ∆NEW. If ∆NEW < ∆ or a uniformly distributed random variable between 0 

and 1 is less than or equal to Boltzmann probability (defined below), the fiber diameter change is 

accepted. If neither inequality is true, the changed fiber is discarded and replaced with its 

original value. 



 

 

22 

 








 


T

NEW ||
exp , (5) 

where Y is the uniformly distributed random number between 0 and 1 

 

This process repeats for the number of trials per temperature step assigned by the programmer. 

After this limit is reached, the temperature is reduced and the procedure starts again. The 

algorithm exits when either ∆ < ∆MIN or T < TMIN. The choice of these boundary conditions is 

also up to the programmer. The output is the optimized set of fiber diameters which can be 

compared to the original input set before simulated annealing [14]. 

 

1.6 Project Scope 

 

 The work of R.B. Szlavik et al. have paved the way for further investigation regarding the 

efficiency of the simulated annealing algorithm for optimization of the group delay data. This 

thesis project will focus directly on the annealing (or cooling) schedule portion of the algorithm 

and attempt to determine an optimal parameter set of annealing variables which not only 

improves performance but also reduces the computational effort currently required to run the 

algorithm. Optimality will be quantified using two formulas. One compares the maximum 

compound evoked potentials between the estimated dataset and a template dataset while another 

computes a chi-squared valued to compare the fiber diameter distributions directly between the 

estimated and template sets.  



 

 

23 

2 Methods 

 

2.1 MATLAB 

 

 The simulations performed in this study were executed using MathWorks‘ MATLAB 

version R2008a computing environment. MATLAB is a programming language commonly used 

in a variety of disciplines in industry. Some of the capabilities that can be used include 

implementing algorithms, plotting functions and data, calculating complex expressions and 

performing domain transforms. Figure 7 shows a typical console screen used to run the 

simulations. 

 

Figure 7 MATLAB Console Screenshot 

 

 



 

 

24 

 The original source code used to simulate the group delay technique and subsequent 

simulated annealing optimization was written by R.B. Szlavik and consists of the following files: 

 Test_Annealing.m 

 Annealing.m 

 Chi_Square.m 

 Compound_Action_Potential.m 

 Exponential_Activation_Function.m 

 Fiber_Distribution.m 

 Fiber_Evoked_Potential.m 

 Function_Centroid.m 

 Group_Delay.m 

 

The Test_Annealing source file is the main function of the simulation as it calls upon the other 

eight files to perform the specific computations necessary to compute the group delay estimation 

and simulated annealing optimization. Thus the simulation begins by making a call to this 

function first from the MATLAB console. For the scope of this project, only the Test_Annealing 

and Annealing source code was modified to observe changes in the simulated annealing 

performance. The remaining code was left unmodified in order to keep a consistent simulation 

environment and this code is provided in the Appendices.  

 

 

2.2 Group Delay Simulation 

 

 As mentioned before, the first step of the simulation is to generate a population of nerve 

fiber diameters which will be referred to as the template distribution. The formula is 

implemented in MATLAB by calling the Fiber_Distribution function which returns the 

probability distribution function, the cumulative distribution function, and the vector of fiber 

diameters that are populated. Because fiber diameters less than 5 µm are removed, the number of 



 

 

25 

generated fibers fluctuates around approximately 80 fibers. A histogram is also plotted by the 

function for a visual representation of the fiber diameter distribution. 

 

Figure 8 Example Population of Fiber Diameters 

  

Once the template distribution is generated, the population of diameters is subjected to a series of 

increasing virtual current stimulus pulses to determine if a potential is evoked on the individual 

fibers. The stimulus current starts at 0 amperes (A) and increases in steps of 500 nA until it 

reaches a final current of 1.0 mA. This results in 2000 steps of an increasing stimulus current. 

The Exponential_Activation_Function file is called from the Compound_Evoked_Potential 

function to determine if the magnitude of the stimulus current is sufficient to excite any of the 

fibers in the vector based on its diameter. The expression in MATLAB is as follows: 

 

act_function = psi_m*exp(-psi_d*d); 

 



 

 

26 

where d is the diameter of the fiber and psi_m and psi_d are 10 mA and 3.5 x 10
5
 m

-1
, 

respectively. If the stimulus current is greater than or equal to the value of the activation 

function, it is assumed that the action potential threshold was reached and the signal which 

results contributes to the compound evoked potential. This is illustrated with the following 

MATLAB code fragment: 

        for j = 1:length(fiber_pop) 

         
            if stim_val >= Exponential_Activation_Function(psi_m, psi_d, 

      fiber_pop(j)) 
                Step = 1.0; 
                act(j,i) = 1; 
            elseif stim_val < Exponential_Activation_Function(psi_m, psi_d, 

      fiber_pop(j)) 
                Step = 0.0; 
            end 

             
            fiber_potential = Step*Fiber_Evoked_Potential(mode, c, step, 

     span, delta_fiber(j), r, radius(j), s_scale, I, 

     sigma_e, alpha); 
            cap(:,i) = cap(:,i) + fiber_potential(:,2); 

             
        end 

 

At each recording site, the compound evoked potential is computed by summing all single fiber 

evoked potentials after all steps of the stimulus current have been exhausted. A comparison of 

the compound evoked potentials at each stimulus step (2000 traces) for both recording sites is 

shown below. Note the shift in time of the waveforms between the first and second recording 

sites.



 

 

27 

 

Figure 9 Compound Action Potentials at first (left) and second (right) recording sites. 

 

 

Once the compound evoked potentials have been computed at each stimulus step, they are ready 

to be decomposed into a series of waveforms that make up the single fiber potentials at each 

stimulus step. This is accomplished by subtracting the compound evoked potential at each 

stimulus current step from the compound evoked potential at the step directly before it. 

Assuming the steps are small enough, the resulting waveforms after each subtraction will 

represent either the single fiber potentials that contribute to the new compound evoked potential 

or no waveform if the increase in stimulus does not recruit any addition fibers. A third scenario 

also exists where a current stimulus step may have recruited more than a single fiber (most 

common at lower current levels). The subtraction will then incorrectly combine multiple fiber 

potentials as a single fiber evoked potential. This behavior could also be expected in a real 

experiment and is included as an inherent part of the simulation study. Ideally, the subtraction 

process will produce the same number of non-zero waveforms (a vector of single fiber potential 

waveforms) as there were fibers generated in the template distribution. A comparison of the 

single fiber potential waveforms at both recording sites is shown below. 



 

 

28 

 

Figure 10 Single fiber evoked potentials at first (left) and second (right) recording sites. 

 

The group delay estimation begins when the decomposition of the single fiber potentials at both 

recording sites is complete. The general idea behind this technique is based on control theory 

where a system consists of an input function (call it x(t)), an output function (y(t)), and an 

impulse function describing the system (h(t)). Figure 11 illustrates what the system looks like. 

 

Figure 11 Control Theory Relating Input and Output 

 

In the time domain, the impulse response h(t) is the relationship between the system output to its 

input. The equation for the output y(t) is: 

  (6) 



 

 

29 

In other words, the output of the system is the convolution of the system‘s input with the 

system‘s impulse response. In the frequency domain, the frequency response H(f) is also the 

relationship between the system output to its input. The difference is that the output response 

Y(f) is now given as the product of the input‘s frequency response with the transfer function 

H(f). 

  (7) 

This equation can also be re-written to describe the transfer function simply as 

 

 
(8) 

The conversion from time domain to frequency domain is accomplished using a Fourier 

transformation [25].  

 If the group delay technique was now applied to the same theory discussed above, the 

single fiber evoked potentials at the first and second recording sites could be described as the 

inputs and outputs to the system, respectively.  

 

Figure 12 Relation between Group Delay Recording Sites 

 



 

 

30 

Using the same technique from before, we can re-write the above system after applying a Fourier 

Transform to describe the transfer function (or frequency response) Hi-1(f) as: 

 

 

(9) 

The frequency response of the system is described as the Fourier Transform of the second 

recording site‘s single fiber evoked potential divided by the Fourier Transform of the first 

recording site‘s single fiber evoked potential. Because this response consists of both a magnitude 

and phase, the group delay expressed as τi-1 for each fiber‘s evoked potential is calculated as: 

 

 
(10) 

Many previous studies have shown that there exists a linear relationship between the axon 

diameter and velocity of conduction in a nerve fiber [26]. Thus once the time (delay) of a single 

fiber evoked potential traversing between the two recording electrodes of a known distance is 

found, the diameter of the fiber can also be computed using the following formula: 

 

 
(11) 

In this equation, l represents the length (in meters) between the recording electrodes and c is 

equal to 3.0 x 10
6
 s

-1
 [12]. The final product of the group delay algorithm becomes the vector of 

estimated fiber diameters which can be compared to the original template distribution using a 

chi-squared test. 

 



 

 

31 

 

2.3 Simulated Annealing Optimization 

 

 The arguments passed to the simulated annealing function (called annealing.m) include 

the vector of estimated fiber diameters and their respective time delays, the compound and 

single-fiber evoked potentials at the second recording site as well as other important variables 

which dictate how quickly the simulated annealing algorithm will converge to a solution. Some 

of these variables describe what is known as the simulated annealing cooling schedule and 

consist of the starting temperature, cooling factor, stopping temperature and the number of trials 

per temperature step.  

 The first step of the algorithm is to randomly select a fiber diameter from the group delay 

estimated vector passed to the function. This is accomplished in MATLAB using a random 

number generated between one and the length of the vector which represents the index of the 

vector of the chosen fiber.  

 

selection_vector = randperm(length(fiber_pop)); 

 

 

Once the fiber is selected, a new fiber diameter is computed again using the random number 

generator.  

 

new_fiber_diam = min_fib_diam + rand(1)*(max_fib_diam - min_fib_diam);  

 



 

 

32 

where min_fib_diam and max_fib_diam represent the smallest and largest group delay 

estimated fiber diameter, respectively. The formula computes a new diameter that lies 

somewhere between the minimum and maximum values in the vector of fiber diameters. Once a 

new diameter is computed, the associated time delay is also determined as before. Using the new 

parameter values, the single fiber evoked potential is re-calculated as well as the compound 

evoked potential which will also change as a result of the new fiber diameter.  

 In order to quantify the effectiveness of simulated annealing for optimizing the estimated 

fiber diameter distribution, a numeric value must be used to determine whether the change to one 

fiber results in a positive ‗downhill‘ change or a negative ‗uphill‘ change. The expression which 

determines this value is known as the cost function and, as previously mentioned, is calculated as 

the two-norm difference between the maximum compound evoked potential from the template 

distribution and the maximum compound evoked potential from the estimated fiber set. In other 

words, at every time point that is plotted, the template waveform is subtracted from the estimated 

waveform and those values are squared. Next these values are summed together and the square 

root is taken to obtain the error value. In MATLAB, the relevant code is shown below. 

 

        %Calculating Two-Norm Error Value  
  error_value = 0; 

         
        for i = 1:count 
            error_value = error_value + (template(i) - compound(i))^2; 
        end 

 

        error_value = sqrt(error_value); 

 

 



 

 

33 

The loop terminates after the 2000
th 

iteration (variable count) as that is the number of time 

points used to plot the functions in the simulation. This error value (cost function) is calculated 

after every diameter change to the estimated set and is compared to the previously calculated 

error value. Diameter changes which decrease the cost function from its previous value are 

always kept while changes which increase the cost function are accepted with a certain 

probability given by the Boltzmann distribution. In MATLAB, we simulated this as:  

 

 change = res_error - error_value; 
 oracle_value = rand(1); 

         
       if((oracle_value <= exp(-abs(change)/temp)) || (change >= 0)) 
    

 ...             

   

            %Change accepted, set new error value 
res_error = error_value; 

             
       else 

          
            %Change not accepted, so restore original values 
            fiber_pop(chosen_fiber) = original_fiber_diam; 
            delay_vect(chosen_fiber) = original_fiber_delay; 

 

The final step of the simulated annealing loop is to decrement the temperature variable. 

Referring back to the analogy of annealing a metal, it is crucial for the rate of cooling to be 

sufficiently slow for the solid to reach a ground state at each temperature interval. Likewise in 

this simulation, the temperature variable must not decrease too quickly or else a sub-optimal 

solution may result. After the number of iterations at each temperature step has been exhausted, 

the following expression decrements the temperature: 

 

temp = temp * temp_factor; 

 



 

 

34 

 

Where temp_factor is the ratio of ―cooling‖ set by the programmer and varies between—but 

not including—0 and 1. This is an example of exponential temperature decay and is the default 

variation of the cooling schedule used in this optimization. The figure below illustrates exactly 

how many temperature steps are required at specific decrement factors between 0 and 1 given the 

default starting and stopping temperatures (10 and 1E-5, respectively).  

 

Figure 13 Number of Temperature Steps at Various Step Factors 

 

Other variations of cooling rates have also been proposed in previous studies. Logarithmic, linear 

and adaptive cooling models will be tested in this study against the default exponential decay to 

determine if there is a significant difference in optimization performance. 

 

 



 

 

35 

2.4 Effect of Temperature on Simulated Annealing Cost Function 

 

 As mentioned before, the cost function is evaluated after every change to the estimated 

fiber diameter distribution. It is the ultimate goal of the simulated annealing optimization to 

minimize the difference between the template and estimated compound evoked potential when 

stimulated by the maximum current pulse. This difference fluctuates significantly during the 

early phases of the annealing algorithm when the temperature is high due to nearly all diameter 

changes being accepted. As the algorithm progresses and temperature decreases, less fiber 

changes are allowed which force the cost function towards an optimal solution. The following 

figures depict this behavior. 

 

 



 

 

36 

 

 

 

Figure 14 a) Maximum CEPs at High Temperature b) Maximum CEPs at Medium Temperature 

c) Maximum CEPs at Low Temperature 

 



 

 

37 

 At the early stages of optimization when the temperature is high, the estimated compound 

evoked potential is a poor fit to the template waveform. It becomes apparent that as the 

temperature decreases, the maximum compound evoked potential from the optimized fiber 

diameter set improves the fit to the template maximum compound evoked potential.  

 

 

2.5 Using Chi-Squared to Test the Fit of Distributions 

 

 There is another way of quantifying the performance of simulated annealing at improving 

the fiber diameter distribution estimation after group delay. The chi-squared test (χ
2
) is used in 

statistics to determine if there is an association between two sets of a particular category of data. 

It compares observed results with those that are expected and assigns a value between 0 and 1 to 

denote how well the datasets ―fit‖ with one another. In the case of this study, our observed 

results are the fiber diameter distribution estimated by group delay and optimized by simulated 

annealing while our expected results are the fiber diameter distribution generated by the 

probability density function which we call the template distribution. A chi-square value of 0 

means there is no association between the sets while a value of 1 means the sets are a match. In 

this study, our aim is to increase the chi-squared value using the simulated annealing approach. 

One of the final steps of the simulation is to compare the group delay estimated fiber size 

distribution to the template distribution and calculate the chi-squared value. Similarly, after the 

simulated annealing algorithm finishes, the optimized fiber size distribution is also compared to 

the template in order to determine if the algorithm improved the initial group delay estimation. 



 

 

38 

This calculation is explained in greater detail in the next section.  

 To illustrate the comparison of two different fiber diameter distributions, the following 

figures show an example template distribution, an estimated distribution optimized by simulated 

annealing and a comparison of the two. 

 



 

 

39 

 



 

 

40 

 

Figure 15 Example Fiber Distributions Compared using the Chi-Squared Test 

 

2.5.1 Measuring the Chi-Squared Difference After Simulated Annealing 

 For this project, a value hereafter referred to as the chi-squared difference will be used to 

quantify the performance of simulated annealing towards optimizing the size distribution of fiber 

diameters to the template distribution. Let GDchi be the chi-squared value of the group delay 

estimated fiber distribution compared to the original template distribution calculated in (2). Let 

SAchi be the chi-squared value of the simulated annealing optimized distribution of fiber 

diameters averaged over the number of trials in the simulation compared to the original template 

distribution calculated in (2). The chi-squared difference is then calculated from the following 

equation. 



 

 

41 

  (12) 

 

From equation 12, we can see that a positive chi-squared difference indicates that the simulated 

annealing optimization improved upon the original group delay estimated fiber diameter 

distribution when compared to the template distribution (SAchi > GDchi). Furthermore, a negative 

chi-squared value indicates that the optimized fiber diameter distribution became a worse fit than 

the group delay estimated fit when compared to the template distribution (SAchi < GDchi). In 

other words, the simulated annealing optimization made the original estimation worse.  

 

 

2.6 Cooling Schedule Simulations 

 

 The task of determining how manipulating the parameters of the cooling schedule affects 

the performance of optimizing the group delay estimate was accomplished by initially isolating 

several key parameters from the cooling schedule and varying their values around a pre-

determined range. By only changing one parameter‘s value in a particular simulation, its impact 

can be directly assessed based on the output of the annealing algorithm. For some test cases, after 

the range of values for one parameter was exhausted, the procedure was repeated after changing 

a second parameter. The details of these types of test cases are explained in subsequent sections. 

 More sophisticated variables such as the cooling ratio require more in-depth test 

coverage. Not only was the default exponential decay explored, but other cooling options that 



 

 

42 

have been described in previous studies were also applied to our group delay scenario. 

Logarithmic, linear, adaptive and a unique linear-exponential hybrid cooling methods were 

individually simulated and then compared to one another to determine which cooling strategy 

performs the best optimization.   

Quantification of the simulated annealing algorithm was achieved by running each type 

of simulation a pre-determined number of times in order to calculate an acceptable average final 

error and chi-squared value. Because simulated annealing belongs to the class of Monte Carlo 

optimization algorithms (that is, improvements are made by making random changes to the 

dataset), the result from one trial may differ significantly from the next even in the exact same 

test environment. Therefore, a significant number of trials need to be simulated in order to obtain 

a proper average. The fewer number of trials that are simulated will mean a higher probability of 

observing random data and inconclusive results. 

Another important characteristic that must be considered when assessing the performance 

of a particular annealing schedule is the computational effort required to achieve that result. A 

balance must be established between the optimization of the final error and chi-squared values 

versus the amount of time or computing power it takes to get to that point. For example, a 

simulation that runs for a week and finds an extremely low value of the cost function is less 

valuable to our study than a simulation that runs for half an hour and reaches a fairly acceptable 

approximation of the minimum value of the cost function. The best solution will be one that 

produces near-optimal results but more importantly can be implemented in a practical, real-world 

setting. The metric used for this analysis will be the number of temperature steps explored before 

reaching the lower temperature bound (stopping temperature). Time is not used to measure 



 

 

43 

computational effort because the simulations in this study were occasionally run on different 

computing environments with unequal processor speeds which impact the speed of execution.  

 In order to maintain a consistent simulation environment, the generation of the template 

fiber distribution was only performed at the beginning of each type of simulation. Likewise, the 

group delay technique was executed only one time in order to produce the initial diameter 

estimation. From there, the simulated annealing optimization was performed on the same group 

delay estimation so that each simulated annealing trial was receiving the same input to the 

algorithm. Due to the already random nature of the algorithm, this technique provided some 

degree of uniformity in order to obtain an appropriate average from the results.  

 The cooling schedule variable declarations are located in the beginning of the driver 

function Test_Annealing.m. The original default values which produced the results published in 

[14] are shown below. 

 

temp_start = 10;        %Starting Temperature 
temp_factor = 0.9;      %Cooling Ratio (Exponential Decay) 
temp_bound = 1.0E-5;    %Stopping Temperature 
max_step = 1000;        %Number of Trials per Temperature Step 

 

 

For the other cooling strategies such as the logarithmic or linear decay method, the temp_factor 

variable is obsolete and ignored. The implementation of these techniques will be described in the 

appropriate sections. 

 

2.6.1 Starting Temperature (temp_start) 

 It is generally agreed upon from previous simulated annealing studies that the starting 

temperature value should be sufficiently high to allow virtually all transitions to be accepted at 

the beginning of the algorithm regardless of whether or not they increase the error (cost) function 



 

 

44 

[27]. In other words, the Boltzmann distribution acceptance criterion should be approximately 

equal to 1 at the starting temperature [15]. 

 








 


T

NEW ||
exp1  (13) 

This is an important period during the simulated annealing process because it allows the 

algorithm to explore the entire solution space before settling into a region where nominally the 

global minimum of the function is located.  

In order to solve for the starting temperature T in the above equation, an expected value 

for the change in the error function (∆ - ∆NEW) must be determined. This value was calculated 

empirically by running the simulated annealing optimization enough times to obtain a confident 

average value for the change in error after each individual fiber diameter change. After 1000 

changes to the fiber diameter distribution vector, this value was approximated at -0.0087.  

 Substituting the empirically determined average change in error function into the 

equation, the acceptance criterion can be plotted as a function of the starting temperature to 

determine approximately what temperature produces an acceptance rate of nearly 100 percent. 

This graph is shown below. 



 

 

45 

 

Figure 16 Plot of Acceptance Criterion as a function of Starting Temperature 

 

 From Figure 16, we can expect to find the ideal starting temperature to be approximately 

in the range of 14-35 although even around a temperature of about 1, the acceptance rate will still 

be over 99 percent. Although this is simply an approximation and actual results may vary, the 

difference between starting at a value of 35 versus 1 is significant especially in an exponential 

decay because of the additional computation required to reduce the temperature from 35 to 1.  

To test the hypothesized ideal starting temperature, the simulated annealing optimization 

was executed 25 times at the following starting temperatures: 0.1, 1.0, 10 and 50. For the other 

cooling schedule parameters, the following values were used: 1E-5 for stopping temperature and 

500 transitions at each temperature step. The default exponential decay strategy was used to cool 

the system. The final error and chi-squared values were averaged for 25 trial runs and compared 



 

 

46 

with results from the other starting temperatures. Lastly, the procedure was repeated after 

changing the exponential cooling rate from 0.9 to 0.5 and finally 0.1.  

The lowest possible starting temperature that does not drastically reduce the performance 

of the optimization algorithm is said to be the best value so as to minimize redundant 

computations at the beginning of the optimization which provide no added benefit to the 

annealing process. 

 

2.6.2 Stopping Temperature (temp_bound) 

 In contrast to the starting temperature, the stopping temperature must be sufficiently low 

for an extended period of time in order for the algorithm to make its way towards the local 

minimum and ideally the global minimum of the cost function. Recall that at decreasing 

temperatures, the Boltzmann probability distribution will gradually make it more difficult to 

accept changes which increase the cost function until the temperature is low enough where 

virtually no changes are accepted. For this reason, the algorithm needs enough time to only 

transition ―downhill‖ to finish at what is expected to be the lowest possible value of the cost 

function.  

 Using the same technique as with the starting temperature, we can use our previously 

calculated average value for the change in error function after a new fiber diameter is generated 

to plot the acceptance criterion as a function of temperature to determine at what point it 

approaches approximately zero percent. 



 

 

47 

 

Figure 17 Determining When Boltzmann Acceptance Criterion Reaches Zero 

 

From the graph, we expect the acceptance criterion to be close to zero at a temperature of 

about 0.004. To verify, plugging this temperature into the Boltzmann equation yields a value of 

0.000207 (or .0207% acceptance probability). Again it is important re-iterate that the algorithm 

needs sufficient time at this ―no-acceptance‖ period to only make downhill transitions in order to 

nominally find the global minimum of the cost function. Therefore, we hypothesize that an 

appropriate stopping temperature must exceed 4E-3. To test this assumption, the stopping 

temperature was varied between 1E-1 to 1E-9 (in steps of 1E2) and the simulation was run 25 

times for each value. The procedure was then repeated for exponential decay ratios of 0.5 and 0.1 

and compared to the default value of 0.9. The same statistical analysis was performed on the 



 

 

48 

resulting output and a plot of the average error value and chi-squared value was computed for 

comparison of the varying final temperature values. 

 

2.6.3 Number of Trials per Temperature Step (max_step) 

 Possibly the second most important factor that determines the computational effort 

required to run a particular cooling schedule for simulated annealing is the number of transitions 

at one temperature step. This value sets the limit for the number of fiber diameter changes that 

will be made before decrementing the temperature. Other implementations of this variable in the 

literature only count the number of ―accepted‖ transitions (those which reduce the error 

function). In our study, this variable includes both uphill and downhill changes. According to the 

theory behind the algorithm, you must allow enough transitions to take place in order to reach a 

state of equilibrium before decreasing the temperature. By default, this value is set to 1000.  The 

list of values that were tested for this parameter includes 10, 100, 500, 1000, 2500 and 5000.  For 

each value, 25 simulations were run and the average final error and chi-squared values were 

recorded and compared to one another and plotted. These trials were performed at exponential 

decay factors of 0.5 and 0.1.  

 To broaden the scope of this test scenario, the above procedure was repeated for a second 

group delay estimated dataset. This study allows us to see what effect (if any) a good initial 

group delay estimate has on the annealing process versus a poorer estimated dataset. We expect 

to find that a worse estimate of the fiber diameter distribution will yield a larger chi-squared 

improvement after the simulated annealing optimization is executed. 

 



 

 

49 

2.6.4 Cooling Ratio (temp_factor) 

2.6.4.1 Exponential Decay 

 Arguably the most important variable in the entire simulated annealing algorithm is the 

method for which the temperature parameter is reduced. It determines how soon we reach our 

final answer and how much computational effort is required to get there. There are many 

variations for implementing this parameter but the default technique implemented by Szlavik et 

al. is an exponentially decaying cooling schedule [14]. The temp_factor variable in MATLAB 

represents the ratio (between 0 and 1) for which the temperature variable will be reduced in its 

next step. For example, if the current temperature in the algorithm is 10 and the temp_factor 

variable is set to 0.9, the next step of the annealing process will reduce the temperature to 9, then 

8.1, and so forth. The higher this variable is set, the greater the number of temperatures that will 

be explored and as a result, the longer the simulation will run.   

Previous implementations of the simulated annealing algorithm for solving optimization 

problems have also determined that the best results are found when the cooling ratio is between 

0.8 and 0.99 [15]. In this study, the cooling ratio was varied from the default value of 0.9 down 

to 0.1 in intervals of 0.2. The other cooling schedule parameters were set as followed: starting 

temperature set to 10, stopping temperature set to 1E-5 and number of trials per temperature step 

set to 500. The simulations were run on the same group delay estimated dataset 25 times and an 

average final error and chi-squared value was found for each value of the cooling ratio. The five 

different ratios were plotted together to compare the results. 

 



 

 

50 

2.6.4.2 Logarithmic Decay 

 Another method for implementing the cooling strategy is to use a logarithmic decay. The 

formula used to model this type of schedule was described by Geman et al. and is as follows: 

 

 
(14) 

where d is usually set to one and c is greater than or equal to the largest energy barrier in the 

problem [28]. Studies have proven this method effective in finding the global minimum of a cost 

function but in the limit of infinite time [20]. 

We encounter an interesting situation in the design of this cooling strategy. Because of 

the asymptotically slow temperature decrease, a logarithmic approach in our current simulation 

environment is impractical because the stopping temperature bound (default 1E-5) will only be 

reached in an extraordinarily large amount of time. Running this simulation in MATLAB will 

continue indefinitely until the user forces a stoppage. To counteract this issue, a new variable is 

created in the simulation that acts as a time index which can limit the number of temperature 

steps in the simulation so that we only simulate the active portion of the decay and not the period 

where the algorithm is essentially ―frozen.‖ This variable imitates the value of the time vector t 

in the above equation. We restrict our simulation to compute 150 steps of this logarithmic 

schedule at different values of the variable c to investigate its effectiveness as a cooling scheme. 

The MATLAB code below shows this implementation. 

    %Logarithmic Decay 
    index = index + 1; 
    if (index < 151) 
        temp = c/(log(index) + 1);  
    else 
        temp = 0; 
    end 
    % End Log Decay 

 



 

 

51 

 

Figure 18 below illustrates the range of c values tested and their associated logarithmic 

decay.  

 

 

Figure 18 Various Log Decay Schedules Simulated 

 

 

Note that the value of c chosen also sets the starting temperature for the simulation because at 

step t = 1, the function T(1) evaluates to c. An associated table is provided which describes the 

initial and final values of each log function plotted above. 

 



 

 

52 

Table 3 Summary of Tested Log Functions 

c =  0.001 0.01 0.1 0.25 0.5 1 2.5 

t = 1 0.001 0.01 0.1 0.25 0.5 1 2.5 

t = 2 0.000591 0.0059 0.0591 0.1477 0.2953 0.5906 1.4765 

… … … … … … … … 

t = 149 0.000167 0.0017 0.0167 0.0416 0.0833 0.1666 0.4164 

t = 150 0.000166 0.0017 0.0166 0.0416 0.0832 0.1664 0.4159 

 

Note the small change in temperature between steps t = 149 and t = 150 due to the asymptotic 

behavior of the log function.  

 For each of the six logarithmic cooling schedules tested, the simulation was executed 25 

times using the same group delay estimated set as in the exponential decay above. All other 

parameters including the number of moves per temperature step (500) were also kept the same.  

 

2.6.4.3 Linear Decay 

A third commonly implemented strategy for reducing the temperature in simulated 

annealing is the linear approach. In contrast to exponential and logarithmic decay, a linear 

cooling schedule reduces the temperature by the same amount throughout the annealing process. 

In MATLAB, the previous exponential decay code used to decrement the temperature was 

modified to the following: 

 

temp = temp - linear_factor; 

 

 

 



 

 

53 

where linear_factor is a constant which describes the amount the temperature is reduced after 

each iteration of the annealing. For this study, the test set was divided into two scenarios. The 

first scenario compares three linear cooling methods with the same initial temperature but 

different decrement values. The second scenario compares four schedules which start at different 

starting temperatures and have different decrement values but all run for 200 temperature steps 

before reaching the lower limit temperature boundary (temperature actually reaches zero). These 

two scenarios are summarized in the table below and are illustrated in the following figures. 

 

 

 

Table 4 Summary of Linear Cooling Schedules 

  Scenario 1 Scenario 2 

Schedule Number   1 2 3 4 5 6 7 

Starting Temperature 10 10 10 10 1 0.1 0.01 

Linear Decrement 

Factor 

  0.25 0.1 0.05 0.05 0.005 0.0005 0.00005 

Number of 

Temperature Steps 

  40 100 200 200 200 200 200 

Final Temperature   0 0 0 0 0 0 0 

  

 

 



 

 

54 

 

Figure 19 Scenario 1 Linear Cooling Schedules with Different Decrement Factors 

 

 

Figure 20 Scenario 2 Linear Cooling Schedules with Different Starting Temperatures 

 



 

 

55 

 

Each linear schedule above was simulated 25 times using the same group delay estimated dataset 

as in the exponential and logarithmic techniques. The number of fiber diameter changes at each 

temperature step was set to 500 and as before, the average final error and chi-squared value was 

computed for each schedule and compared to one another.  

 

2.6.4.4 Linear-Exponential (LinEx) Hybrid Schedule 

 In an effort to minimize the computational effort while maintaining a thorough annealing 

approach, a linear-exponential technique is proposed which combines the sharp temperature 

decrease of a linear schedule with the broad temperature range of an exponential decay. The 

schedule starts at temperature 10 and finishes at 1E-5 but cools more than twice as quickly as the 

default exponential schedule (given a 0.9 cooling ratio). The equations below and Figure 21 

illustrate this hybrid schedule. 

 

 

(15) 

 

 This hybrid approach scales the linear decrement factor at specific ranges throughout the 

annealing process. When the temperature is between 10 and 1, the decrement factor (as in the 

linear model) is 1. Between temperatures of 0.9 and 0.1, the decrement factor is scaled by a 



 

 

56 

factor of 10 to 0.1. This process continues until the default stopping temperature of 1E-5 is 

reached after 55 temperature steps.  

 Using this linear-exponential schedule, the simulated annealing optimization is executed 

25 times while making 500 fiber diameter transitions at each temperature step. The average final 

error and chi-square values will be compared to all other cooling strategies to determine if a 

reduction in computation effort does not drastically affect the performance of the optimization. 

 

 

Figure 21 Linear-Exponential Decay Schedule 

 

  

2.6.4.5 Adaptive Cooling Schedule 

 Expanding on the relatively simple linear-exponential implementation, an effort was 

made to identify critical temperatures similar to that in [24] where simulated annealing seems to 

make the largest improvements in the final error computation. The algorithm uses an exponential 



 

 

57 

decay model but with a slight twist. The cooling ratio value increases throughout as the 

annealing progresses. To accomplish this adaptive feature, the range of temperatures in the 

schedule are broken down into three specific categories and assigned an associated cooling ratio. 

These ranges are to be determined by inspection after running a standard exponential decay 

schedule as described in section 2.6.4.1.  

Table 5 Summary of Adaptive Cooling Schedule 

 Exponential Cooling 

Ratio 

High 

Temperatures 

0.1 

Medium 

Temperatures 

0.5 

Low Temperatures 0.9 

 

This adaptive schedule is simulated 25 times with the same group delay estimated dataset. 

Results were then compared to all previously discussed schedules. 

 

 



 

 

58 

3 Results 

 

3.1 Starting Temperature 

 

 Recall from earlier that we hypothesized that an ideal starting temperature would be at a 

point where the system behaves as if in a ―molten‖ state and also not set too high in order to 

reduce any unnecessary computations which can increase execution time. The ―molten‖ state is 

described as the period where all or most fiber diameter changes are accepted and the algorithm 

is free to explore a broad solution space. The following figures compare results of the final error 

averages and chi-squared differences for each starting temperature tested. The number of 

transitions at each temperature step was set to 500 and the stopping temperature was equal to 1E-

5 for all simulations in this test case. The final error graph is a measure of the difference between 

the template maximum compound evoked potential and the optimized maximum compound 

evoked potential as calculated in section 2.3. Chi-squared values are computed as the difference 

between the simulated annealing chi-squared value and the group delay estimated chi-squared 

value (both of which are tested against the original template distribution). The initial group delay 

estimated dataset yielded a chi-squared value of 0.2854.  



 

 

59 

 

Figure 22 Final Error Computation for Different Starting Temperatures. Simulation Tested at 

Exponential Cooling Factors of 0.1, 0.5 and 0.9. 

 



 

 

60 

 

Figure 23 Chi-Squared Difference for Different Starting Temperatures. Simulation Tested at 

Exponential Cooling Factors of 0.1, 0.5 and 0.9. Initial Chi-Squared value from group delay 

equal to 0.2854.Recall a positive chi-squared difference indicates an improved fit after simulated 

annealing.  

 

 

3.2 Stopping Temperature 

 

 The following figures show the averaged results of the 25 simulations executed for each 

of the different stopping temperatures. Recall from our earlier analysis that we expect an ideal 

stopping temperature to be lower than 4E-3 because that is the estimated point where the 

acceptance criterion rejects all fiber diameter changes which would increase the cost function. 

The final error graph is a measure of the difference between the template maximum compound 

evoked potential and the optimized maximum compound evoked potential using the two-norm 



 

 

61 

equation as shown in section 2.3 and equation (4). The chi-squared difference graph is a measure 

of the difference between the group delay estimated fiber diameter distribution (when compared 

to the template distribution) and the simulated annealing optimized fiber diameter distribution 

(also when compared to the template distribution). Recall that a negative value indicates that the 

annealing process reduced the chi-squared value from the original group delay estimation. For 

each scenario in this test case, the starting temperature was set to 10 and the number of 

transitions per temperature step was equal to 500. The input to the simulated annealing algorithm 

for this test case was a group delay estimated fiber diameter dataset which yielded an initial chi-

squared result of 0.4708 therefore Figure 25 compares the difference from this value after 

annealing. 

 

Final Error Calculation

0

0.2

0.4

0.6

0.8

1

1.2

1E-01 1E-03 1E-05 1E-07 1E-09

Stopping Temperature

Fi
n

al
 E

rr
o

r

.1 Step Factor

.5 Step Factor

.9 Step Factor

 

Figure 24 Final Error Calculations at Different Stopping Temperatures. Simulations repeated 

for Exponential Step Factors of 0.5 and 0.1. 

 



 

 

62 

Chi-Squared Difference

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1E-01 1E-03 1E-05 1E-07 1E-09

Stopping Temperature

C
h

i-
Sq

u
ar

e
d

 D
if

fe
re

n
ce

.1 Step Factor

.5 Step Factor

.9 Step Factor

 

Figure 25 Chi-Squared Calculation for Different Stopping Temperatures. Simulation was 

Repeated for Step Factors of 0.5 and 0.1. 

 

 

3.3 Number of Transitions per Temperature Step 

 

 The following figures compare the average final error values and chi-squared differences 

for the 25 trials executed at each number of transitions per temperature step. Simulations were 

run using an exponentially decaying cooling schedule with cooling ratios of 0.1 and 0.5. 

Parameters such as the starting and stopping temperatures were kept at their default values (10 

and 1E-5, respectively). Further, two different group delay estimated datasets were used in the 

simulated annealing algorithm. The first dataset yielded an initial chi-squared value of 0.3057 

while the second dataset yielded a value of 0.1073. Both datasets are plotted together to 

determine if there is an effect on the optimization process given two different group delay 

estimated results. 



 

 

63 

Final Error Calculation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 100 500 1000 2500 5000

Number of Iterations per Temperature Step

Fi
n

al
 E

rr
o

r

D1_.1 Factor

D1_.5 Factor

D2_.1 Factor

D2_.5 Factor

 

Figure 26 Final Error Calculations for Two Different Datasets (D1 and D2) at Various Numbers 

of Transitions per Temperature Step. Simulation was run at Exponential Cooling Ratios of 0.1 

and 0.5. 

 

SA Chi Square Difference

0

0.05

0.1

0.15

0.2

0.25

0.3

10 100 500 1000 2500 5000

Number of Iterations per Temperature Step

C
h

i S
q

u
ar

e
d

 D
if

fe
re

n
ce

 (
SA

 

to
 G

D

D1_.1 Factor

D1_.5 Factor

D2_.1 Factor

D2_.5 Factor

 

Figure 27 Chi-Squared Difference Versus Number of Transitions per Temperature Step. 

Simulation Executed using Exponential Cooling Ratios of 0.1 and 0.5. 

 



 

 

64 

3.4 Cooling Strategy 

 

 The following sections compare the various cooling strategies that can be implemented in 

simulated annealing and their respective results for the optimization of both the maximum 

compound evoked potential (final error) and the fiber diameter distribution (chi-squared 

difference).  

 

3.4.1 Exponential Cooling Schedule 

 The final error and chi-squared results averaged for 25 trials are depicted in Figures 27 

and 28, respectively.  For the chi-squared difference calculation, the original group delay 

estimated dataset yielded a result of 0.2854. The following values were used for the controlled 

parameters of the schedule: starting temperature equal to 10, final temperature equal to 1E-5 and 

number of transitions per temperature step equal to 500.  



 

 

65 

 

Figure 28 Final Error Calculations for Exponential Cooling Schedule 

 

 

 

 

Figure 29 Chi-Squared Calculation for Exponential Cooling Schedule. Original Group Delay 

Chi-Squared Value was 0.2854. 

 

 



 

 

66 

3.4.2 Logarithmic Cooling Schedule 

 The following figures show the average results of the 25 simulation trials for each of the 

tested logarithmic schedules. The final error calculations in Figure 30 compare the estimated 

compound evoked potential with the template compound evoked potential using the two-norm 

calculation previously mentioned. The chi-squared results in Figure 31 represent the difference 

from the initial group delay estimated chi-squared result. For this particular simulation, the initial 

chi-squared value after the group delay estimation was 0.2854.  

 

 

Figure 30 Final Error Calculation for Natural Logarithmic Cooling Schedule at Various C 

Values 

 



 

 

67 

 

Figure 31 Chi-Squared Difference for Various C Values of the Natural Logarithmic Cooling 

Schedule 

 

3.4.3 Linear Cooling Schedule 

 The two linear schedule scenarios discussed in section 2.6.4.3 and their respective final 

error and chi-squared results are presented in the next couple sections. Results are averaged from 

25 trials for each schedule. Unless otherwise mentioned, starting temperatures, stopping 

temperature and the number of transitions per temperature step were fixed at 10, 1E-5 and 500, 

respectively.  



 

 

68 

 

3.4.3.1 Scenario 1 

 

Figure 32 Final Error Calculation for Scenario 1 of Linear Decay Cooling Schedule. Starting 

Temperature for all Groups was 10. 

 

 

Figure 33 Chi-Squared Difference for Scenario 1 of Linear Decay Cooling Schedule. Starting 

Temperature for all Groups was 10. Original Group Delay Chi-Squared Value was 0.2854. 

 



 

 

69 

3.4.3.2 Scenario 2 

 

Figure 34 Final Error Calculation for Scenario 2 of Linear Decay Cooling Schedule. The final 

error at 0.001 could not be computed. 

 

 

Figure 35 Chi-Squared Difference Calculation for Scenario 2 of Linear Decay Cooling 

Schedule. Original Group Delay Chi-Squared Value equal to 0.2854. The values at 0.01 and 

0.001 could not be computed. 

 



 

 

70 

3.4.4 Linear-Exponential and Adaptive Cooling Schedule 

 The linear-exponential hybrid schedule and the simple adaptive cooling schedule were 

simulated 25 times each and the average final error and chi-squared results were plotted together 

in Figures 36 and 37. The linear-exponential schedule follows the model described in 2.6.4.4. 

 In order to implement the adaptive cooling schedule, the limits described in section 

2.6.4.5 needed to be set. These limits were found by visual inspection of the simulation output 

log during several test iterations.  

 

Table 6 Summary of Adaptive Temperature Ranges 

Temperature Category Range 

High    Start Temp  0.5 

Medium                 0.5  0.05 

Low               0.05  Stop Temp 

 

 

The MATLAB code for implementing this schedule is shown below: 

    %Adaptive Temperature Decay 
    if(temp < 0.05) 
        temp = temp * 0.9; 
    elseif(temp < 0.5) 
        temp = temp * 0.5; 
    else 
        temp = temp * 0.1; 
    end 

 

 

 



 

 

71 

 

Figure 36 Final Error Calculations for Dynamic Cooling Schedules 

 

 

Figure 37 Chi-Squared Difference Calculation for Dynamic Cooling Schedule. Original Group 

Delay Estimated Chi-Squared Value equal to 0.2854. 

 

 



 

 

72 

4 Analysis  

 

4.1 Starting Temperature 

 

 The results from the starting temperature simulations reinforce the original hypothesis 

that an ideal temperature to begin annealing would be at the lowest point where all or nearly all 

fiber diameter transitions are accepted or in other words, the acceptance criterion described in 

section 2.6.1 is approximately equal to one. We calculated, through an empirically-derived 

formula, that this temperature would be around 1. Our final error graph in Figure 21 confirms 

that for each set of exponential cooling ratios tested, the optimization performs nearly the same 

up until the point where the starting temperature becomes too low. Between the starting 

temperatures of 1 and 0.1, we see a dramatic increase in the final error value for all three cooling 

ratios. In contrast, moving the starting temperature to higher values such as 10 or 50 did little if 

anything to improve the performance of the optimization. This result is also expected behavior 

because this range of temperatures allows frequent movement through the solution space while 

not necessarily improving the cost function. We can conclude then that lowering the starting 

temperature from the original default value of 10 down to 1 will not affect the final error but will 

reduce the overall computational effort in the algorithm. Table 7 summarizes the reduced number 

of temperature steps explored given a 0.9 exponential cooling ratio after changing the starting 

temperature from 10 to 1.  

 

 



 

 

73 

 

Table 7 Reduction in Temperature Steps between Starting Temperature of 10 and 1 

Starting Temperature 10 1 

Cooling Ratio 0.9 0.9 

Stopping 
Temperature  

1.00E-05 1.00E-05 

Number Of 
Temperature Steps 

133 111 

 

 

 While Figure 21 is able to provide some useful information regarding the starting 

temperature, the results of the Chi-Squared calculations in Figure 22 do not yield much 

information that allow any reasonable conclusions to be drawn. We do observe a noticeable 

decrease in the distribution fit (a negative chi-squared difference value) for most cooling 

schedule environments simulated minus a few cases using the 0.1 exponential cooling ratio. This 

is not only a contrast to the original hypothesis but also to the results of the final error 

calculations. We expected to see a similar trend as the final error results from Figure 21.  

We may be able to predict the results of the forthcoming exponential cooling schedule 

simulations from this simulation alone. Comparing these ratios for a particular starting 

temperature, we see from Figure 21 that the 0.9 cooling ratio yielded the lowest final error, 

followed by 0.5 and 0.1. This was true for all four groups of starting temperatures tested. On the 

other hand, we do not see a convincing trend from the chi-squared data of Figure 22. The 0.9 

cooling ratio group seemed to perform the worst in this particular test while 0.1 was able to 

produce some improvement to the distributions in certain instances. This issue will be discussed 

in a later section. 



 

 

74 

 

 

4.2 Stopping Temperature 

 

Figures 23 and 24 summarize the final error and chi-squared results from the stopping 

temperature simulation, respectively. From Figure 23, we observe a substantial drop in the error 

value after reducing the stopping temperature from 1E-1 to 1E-3 and a smaller drop in error from 

1E-3 to 1E-5. These results are expected from the hypothesis that an appropriate stopping 

temperature would be after a period of ―zero acceptance‖ of fiber diameter changes. There does 

not appear to be a substantial difference between reducing the stopping temperature past 1E-5. 

We can conclude that the algorithm cannot improve the final solution much more from this lower 

bound therefore any additional computations are redundant and unnecessary.  

In Figure 24, we observe a general trend of improving chi-squared values when the 

stopping temperature is at least 1E-3. This however was not true using the 0.9 exponential 

cooling ratio where a significant reduction in the chi-squared value was recorded. Overall, there 

does not appear to be a correlation between the stopping temperature and the improvement of the 

chi-squared values from this particular simulation. 

  

 

4.3 Number of Transitions per Temperature Step 

 

 Figure 25 shows the results of the final error computations when the number of 

transitions per temperature step variable was simulated at 10, 100, 500, 1000, 2500 and 5000. 



 

 

75 

The simulation was expanded for this parameter to include a second group delay estimated 

dataset to determine if there is a noticeable difference in the optimization process when a poorly 

estimated group delay set is compared to a substantially better estimation. From the final error 

data, we observed a significant improvement in minimizing the final error between 10 and 100 

transitions per temperature step. Further improvement is seen between 100 and 500 transitions 

and slight improvements are recorded after that point. Table 8 below summarizes the final error 

data. 

 

Table 8 Final Error Summary for the Number of Transitions per Temperature Step Simulation 

Note: 0.1 and 0.5 refer to the exponential cooling ratio used for each simulation .  

  Dataset 1 Dataset 2 

  0.1 0.5 0.1 0.5 

# of 
Transitions 
per Temp 
Step 

10 0.7196 0.496 0.8104 0.5792 

100 0.302 0.2316 0.3716 0.3012 

500 0.2124 0.1836 0.2828 0.2416 

1000 0.2072 0.1736 0.2592 0.228 

2500 0.192 0.1688 0.2352 0.2164 

5000 0.1688 0.1708 0.2284 0.2152 

 

 From the chi-squared data in Figure 26, we observe an improvement from the group 

delay estimation after simulated annealing is performed in all test cases. Unfortunately, no 

definitive trend can be drawn between chi-squared improvement and increasing the number of 

transitions at each temperature step.  

Regarding the two datasets, a noticeable trend can be observed from Figures 25 and 26. 

Recall that the original group delay estimated chi-squared values for datasets 1 and 2 were 

0.3057 and 0.1073, respectively (dataset 2 is a poorer original estimation). In the final error 

calculations from Figure 25, dataset 1 was able to achieve a lower error value than dataset 2 in 

all groups for both the 0.1 and 0.5 exponential cooling ratios. From the chi-squared data in 



 

 

76 

Figure 26, in all cases except at 5000 transitions, dataset 2 yielded a larger improvement than 

dataset 1. We can conclude that a poorer initial estimate from group delay will allow for a larger 

gain in chi-squared improvement after the simulated annealing optimization is applied. On the 

contrary, a poorer group delay estimate will restrict the minimization of the final error value as 

can be seen from Figure 25. Lower final error values are observed when the initial group delay 

estimate is more accurate (dataset 1 in this case).  

 

 

4.4 Cooling Strategy 

 

The aim of the cooling strategy simulations were to explore several commonly used 

techniques from previous studies in order to compare which cooling schedule maximizes the 

performance of the simulated annealing optimization for the group delay application. After 

analyzing each method individually, an overview of the best schedules will be presented. 

The exponential cooling schedules simulated in this project created interesting results as 

can be seen from Figures 27 and 28. For the final error calculations in Figure 27, we see a nice 

downward trend indicating the improvement in minimizing the error value as we increase the 

cooling ratio from 0.1 to 0.9. This behavior is somewhat expected and has been commonly 

observed in other studies as well. It‘s worth mentioning again that increasing the cooling ratio 

can drastically increase the execution time of the simulation due to the increase in the number of 

temperature steps in the cooling schedule. For example, a 0.7 ratio correlates to 40 steps while a 



 

 

77 

0.9 ratio will make 133 steps (given default starting and stopping temperatures of 10 and 1E-5, 

Figure 10). Table 9 below summarizes these two exponential step factors. 

 

Table 9 Summary of 0.7 and 0.9 Exponential Cooling Ratios 

NTTS = Number of Transitions per Temperature Step 

 Cooling Ratio 

 0.7 0.9 

Starting Temp 10 10 

NTTS 500 500 

# Temp Steps 40 133 

Stopping Temp 1.00E-05 1.00E-05 

Final Error 0.2204 0.2104 

 

A design choice must be made to determine if the 4.8 percent reduction in final error is worth the 

significant increase in computational effort due to the additional temperature steps. 

 While the final error is gradually reduced at larger cooling ratios, we see the opposite 

effect in the chi-squared difference data from Figure 28. The largest improvement in the 

distribution after simulated annealing is recorded at the lowest cooling ratio of 0.1. For each 

increasing ratio after that, a steady decline in the chi-squared value is observed. It appears that 

the more modifications applied to the original dataset during simulated annealing, the worse the 

outputted fiber diameter distribution after annealing is completed. To further investigate this 

issue, a new metric is introduced which will quantify the total number of fiber diameter changes 

(whether they are accepted or not, abbreviated TNFDC) for each exponential cooling schedule. 

The Schedule_Calc.m code provided in the appendices explains how the computation is 

performed.  Table 10 below compares the TNFDC for each exponential cooling ratio tested.  

 



 

 

78 

Table 10 TNFDC Calculation for Each Simulated Cooling Ratio 

  0.1 0.3 0.5 0.7 0.9 

TNFDC 3500 6000 10000 19500 66000 

 

For now, we will accept that an increase in the TNFDC results in a decrease in the chi-squared 

value after simulated annealing even though a reduced final error may be observed.  

 In the logarithmic cooling schedule simulations, we see from Figure 29 that a lower value 

of the ―C‖ parameter in our formula (and equivalently a lower starting temperature) results in a 

lower final error. In fact, only when using a ―C‖ value of 0.01 or 0.001 are the results 

comparable to the exponential schedule. The limitation of the logarithmic cooling strategy being 

too slow is exposed from these results. Since we restrict the schedule to 150 temperature steps, 

the high and low temperature values (t = 1 and t = 150) do not encompass a very broad range as 

in the exponential implementation. We see the best results at the lower ―C‖ values because the 

algorithm operates at critical temperatures where the annealing does the most ―downhill‖ work. 

For the higher ―C‖ values, the temperature never gets low enough to make consistent 

improvements to the cost function. Instead, the acceptance probability is still high enough to 

allow many fiber diameter changes which increase the final error cost function.  

 In Figure 30, we observe the chi-squared value is only improved at c = 0.1 although not 

by much. For all other schedules, the fiber distribution after annealing became a worse fit 

compared to the template distribution.  

 In the analysis of linear cooling schedules, the results of the final error calculations for 

scenario 1 in Figure 31 were not promising. While the 0.05 decrement factor yielded the lowest 

final error (0.8348), it was still much higher than the best logarithmic and exponential schedules. 

In addition, it takes 200 temperature steps to reach that value. The reason for such a high final 



 

 

79 

error is because the lowest temperature reached before the algorithm terminates is 0.05, much 

higher than the default lower bound of 1E-5. The cooling schedules in scenario 1 are impractical 

because they never reach the required ―frozen‖ state where the real optimizing occurs. For the 

chi-squared results of scenario 1, the 0.05 decrement factor also produced the best result but in 

all three schedules the distribution underwent negative changes in the chi-squared value.  

 In scenario 2, we carry over the best performing schedule from scenario 1 (0.05 

decrement factor) and compare it to other schedules which also run for 200 temperature steps. 

Figure 33 shows that starting the annealing at lower temperatures will also lower the final error 

after optimization up until the point where the starting temperature is too low. We record a final 

error of 0.2236 when starting at a temperature of 0.1. While this is a good result from a 

numerical standpoint, starting at a temperature this low transforms our algorithm from simulated 

annealing to a local search strategy described earlier because very few ―uphill‖ transitions take 

place. Starting even lower at 0.01 yielded a final error of 1.792 because the algorithm is unable 

to explore the solution space and find the global minimum cost since the temperature variable 

blocks most (if not all) ―uphill‖ changes. For the same reason, starting at 0.001 also did not 

produce useful results.  

 For the chi-squared data in Figure 34, no trend can be confirmed using the schedules in 

scenario 2. For starting temperatures of 0.01 and 0.001, no change was made to the fiber 

diameter distribution in any of the 25 simulation trials which is why the chi-squared difference 

was 0.  

 



 

 

80 

4.5 Dynamic Cooling Schedules 

 

 The final error and chi-squared results for the two dynamic schedules explored in this 

project are presented in Figures 35 and 36, respectively. We see that the linear-exponential and 

adaptive cooling schedules both performed well and are comparable to the best results of the 

exponential and logarithmic schedules. The LinEx schedule produced a final error of 0.2200 and 

the adaptive schedule yielded a result of 0.2180. From a computational metric, the LinEx 

schedule explores 56 different temperatures (far lower than any other successful schedule) while 

the adaptive schedule makes 80 temperature steps. In both scenarios, 500 transitions were 

performed at each step. 

From the chi-squared data, we see that both schedules did not experience an improvement 

in the distribution fit. The linear-exponential schedule had a better chi-squared result than the 

adaptive schedule (likely due to a lower TNFDC).  

 

 

4.6 Summary of Select Annealing Schedules 

 

 A summary of the best performing (those which yielded the lowest final error average) 

cooling schedules are listed in Table 11 with a full description of their respective simulation 

conditions.  



 

 

81 

Table 11 Summary of the Best Performing Schedules in Each Category 

  Exponential  Logarithmic Linear LinEx Adaptive 

Starting Temp 10 0.001 0.1 10 10 

Number of 
Transitions per 
Temperature Step 

500 500 500 500 500 

Number of 
Temperature Steps 

133 150 200 56 80 

Cooling Ratio 0.9 N/A N/A Variable Variable 

Decrement Factor N/A N/A 0.0005 Variable N/A 

C Value (if 
applicable) 

N/A 0.001 N/A N/A N/A 

Stopping 
Temperature 

1.00E-05 1.66E-04 0 1.00E-05 1.00E-05 

            
Final Error 0.2104 0.2216 0.2236 0.22 0.218 

 

 

 

Figure 38 Summary of the Best Performing Schedules in Each Category 

 

 



 

 

82 

 While we see that the exponential cooling strategy simulated with a cooling ratio of 0.9 

resulted in the lowest final error value, it does not necessarily prove to be the best schedule in 

this study. Comparing the number of temperature steps we see that the adaptive schedule takes 

approximately 66% fewer steps than the exponential schedule and only increases the final error 

by about 3.5%. We can further improve the exponential schedule however by utilizing our results 

from the starting temperature analysis. If we start the simulation at a temperature of 1, we reduce 

the number of steps to 111 which is a significant improvement though still greater than the 

adaptive schedule.  

 



 

 

83 

5 Discussion 

 

5.1 Conclusions 

 

 This study aimed to investigate an improvement of the optimization process for the 

estimation of the fiber diameter distribution and associated maximum compound evoked 

potential acquired by a novel technique known as group delay developed by R.B. Szlavik et al. 

[12]. A combinatorial optimization algorithm known as simulated annealing was used in [13] to 

achieve the first set of promising results.  

 Simulated annealing—whose fundamental methodology can be traced back nearly 60 

years but was officially introduced by Kirkpatrick in 1983—has been used extensively in many 

fields of science and industry for a wide range of applications [17]. Consequently, numerous 

studies have investigated a particular segment of the algorithm known as the cooling or 

annealing schedule in an attempt to maximize the performance of the optimization process. 

While some rules for implementing this set of parameters are widely adopted, most would agree 

that the design of the cooling schedule is largely problem-independent [20, 27]. 

 The cooling schedule in this particular application was broken down into the individual 

parameters which guided the convergence of simulated annealing towards a final solution. The 

starting temperature, stopping temperature, number of transitions at each temperature step as 

well as the type of cooling strategy were examined and simulated under various environments to 

determine their effect on optimizing the estimated compound evoked potential when compared to 

an empirically-generated template compound evoked potential. When appropriate, simulation 

environments were compared to one another to determine if a specific cooling schedule works 



 

 

84 

best to optimize the group delay estimation. Several schedules composed of various cooling 

strategies were found to produce comparable results but in fairly different ways. A second metric 

which quantifies the computational effort required to reach the final solution was introduced to 

compare schedules which yielded nearly the same final solution but at different convergence 

rates. It was determined that an adaptive schedule which can vary its cooling rate during different 

points of the algorithm can perform similarly to the default exponential decay implementation 

but at a significantly faster rate.  

 

 

5.2 Chi-Squared Difference Problem 

 

 While the final error cost function was able to provide consistent and accurate results for 

quantifying the performance of the simulations executed in this project, the chi-squared test did 

not prove to be very useful. After careful study of the simulated annealing algorithm and 

extensive review of the cooling schedule results, it is determined that it is misleading to assume 

that the optimization of one function would translate into the optimization of a related function.  

 In the case of this study, our cost function was the two-norm difference between the 

template maximum compound evoked potential and the simulated annealing optimized 

maximum compound evoked potential. It was incorrectly predetermined that minimizing the 

final error cost function by applying the simulated annealing algorithm would also increase the 

fit of the fiber diameter distributions (optimized versus template) compared by the chi-squared 

test. This is not the case because fiber diameter changes which decrease the cost function are 



 

 

85 

always accepted but they may also decrease the chi-squared value. This is also true for changes 

near the ―frozen‖ state of the system. Even though the final error is improving (being lowered), 

there is no guarantee that the same is true for the chi-squared value. The algorithm has no 

knowledge of this secondary test used in our study therefore it does not make any transition 

decisions based on this value.   

 Simulated annealing only has one cost function therefore a design choice must be made 

based on which function is more important: the maximum compound evoked potential or the 

fiber diameter distribution. In this project, we continued our analysis using the consistency of the 

final error calculation as the primary metric.  

 

 

5.3 Future Work 

 

The first and arguably most important study that could be investigated in future works 

could involve re-writing the annealing.m code to change the cost function to the calculation of 

the chi-squared value. Again since simulated annealing only has one cost function, the trade-off 

here is that no guarantee can be made that the maximum compound evoked potential estimation 

will also be optimized.  

To expand on this subject, it may be possible to incorporate two cost functions into the 

algorithm though no documentation on this topic was found during the research of this project. 

This would add significant complexity to the acceptance criterion equation and would make fiber 

diameter changes much more restricted during the simulation.  



 

 

86 

While this project covered a large number of permutations of cooling schedules, the 

design of a simulated annealing algorithm has endless possibilities. For example, the number of 

transitions per temperature step does not have to be a constant. Other cooling schedule 

implementations will proceed to reduce the temperature after a certain number of accepted or 

rejected transitions occur. In our implementation, we could allow for a certain number of fiber 

diameter changes which are accepted due to a lower resulting cost function (not counting those 

which are accepted by the Boltzmann criterion). Another suggestion could be to not use the 

Boltzmann criterion at all but implement another technique for accepting uphill transitions.  

The original purpose of the group delay and simulated annealing experiment is to develop 

a non-invasive way to determine the fiber diameter distribution in a nerve segment for those 

suffering from a neuropathy. While standard nerve conduction velocity tests are useful, they 

cannot diagnose the specific type of nerve fibers which may be damaged. As a result, many types 

of neuropathies may be left undiagnosed or untreated. The research performed for this project 

can be useful in the transition from a simulated environment in MATLAB to an actual real-world 

experimental setup involving animal models. The electrophysiology lab in Cal Poly‘s 

Biomedical Engineering department can move forward by implementing a LabVIEW equivalent 

of the group delay and simulated annealing algorithms for use in the current leech model used for 

experimentation.   

In regards to the implementation of a cooling schedule for simulated annealing, the 

design decisions are mostly a balance of performance versus computational effort. The choices 

made are entirely dependent upon the requirements and expectations for the application it is 

intended for.  



 

 

87 

References 

1. Marieb, E.N. and K. Hoehn, Human Anatomy & Physiology. Seventh ed. 2007, San 

Francisco: Pearson Benjamin Cummings. 

2. Matthews, G.G., Cellular Physiology of Nerve and Muscle. Fourth ed. 2003: Blackwell 

Publishing. 

3. Szlavik, R., In Vivo Electrical Stimulation of Motor Nerves, in Electrical and Computer 

Engineering. 1999, McMaster University: Hamilton, Ontario. p. 160. 

4. Gordon Smith, A. and J. Robinson Singleton, Idiopathic neuropathy, prediabetes and the 

metabolic syndrome. J Neurol Sci, 2006. 242(1-2): p. 9-14. 

5. Kernich, C.A., Patient and family fact sheet. Peripheral neuropathy. Neurologist, 2001. 

7(5): p. 315-6. 

6. Hughes, R., Peripheral nerve diseases: the bare essentials. Pract Neurol, 2008. 8(6): p. 

396-405. 

7. Poncelet, A.N., An algorithm for the evaluation of peripheral neuropathy. Am Fam 

Physician, 1998. 57(4): p. 755-64. 

8. Minde, J., et al., A novel NGFB point mutation: a phenotype study of heterozygous 

patients. J Neurol Neurosurg Psychiatry, 2009. 80(2): p. 188-95. 

9. Latov, N., Diagnosis of CIDP. Neurology, 2002. 59(12 Suppl 6): p. S2-6. 

10. Dorfman, L.J., et al., Studies of diabetic polyneuropathy using conduction velocity 

distribution (DCV) analysis. Neurology, 1983. 33(6): p. 773-9. 

11. Harati, Y., Diabetic peripheral neuropathies. Ann Intern Med, 1987. 107(4): p. 546-59. 

12. Szlavik, R.B., A novel method for characterization of peripheral nerve fiber size 

distributions by group delay. IEEE Trans Biomed Eng, 2008. 55(12): p. 2836-40. 

13. Erlanger, J. and H.S. Gasser, Electrical Signs of Nervous Activity, ed. U.o.P. Press. 1973, 

Philadelphia, PA. 

14. Szlavik, R.B. and G.E. Turner, A novel method for characterization of peripheral nerve 

fiber size distributions by group delay measurements and simulated annealing 

optimization. Conf Proc IEEE Eng Med Biol Soc, 2008. 2008: p. 5008-14. 

15. Aarts, E. and J. Korst, Simulated Annealing and Boltzmann Machines: A Stochastic 

Approach to Combinatorial Optimization and Neural Computing. 1989, Great Britain: 

John Wiley & Sons. 

16. Press, W.H., et al., Numerical Recipes in Pascal: The Art of Scientific Computing. 1989, 

Cambridge, MA: Press Syndicate of the University of Cambridge. 

17. Kirkpatrick, S., C.D. Gelatt, Jr., and M.P. Vecchi, Optimization by Simulated Annealing. 

Science, 1983. 220(4598): p. 671-680. 

18. Johnson, D.S., Optimization by Simulated Annealing: An Experimental Evaluation; Part 

I, Graph Partitioning. Operations Research, 1989. 37(6): p. 865-892. 

19. Brooks, S.P., Optimization using simulated annealing. The Statistician, 1995. 44: p. 241-

257. 

20. Nourani, Y.A.B., A comparison of simulated annealing cooling strategies. Journal of 

Physics, 1998. 31(41): p. 8373-8386. 

21. Romeo, F. and A. Sangiovannai-Vincentelli, A theoretical Framework for Simulated 

Annealing. Agorithmica, 1991. 6(1-6): p. 302-345. 



 

 

88 

22. Strenski, P.N. and S. Kirkpatrick, Analysis of finite length annealing schedules. 

Algorithmica, 1991. 6(1-6): p. 346-366. 

23. Henderson, D., S. Jacobson, and A. Johnson, The Theory and Practice of Simulated 

Annealing. International Series in Operations Research & Management Science, 2003. 

57: p. 287-319. 

24. Ortner, M., X. Descombes, and J. Zerubia, An adaptive simulated annealing cooling 

schedule for object detection in images. Rapport de recherche, 2007. RR n 6336. 

25. Porat, B., A Course In Digital Signal Processing. 1997, New York: John Wiley. 

26. Hodes, R., Linear relationship between fiber diameter and velocity of conduction in giant 

axon of squid. J Neurophysiol, 1953. 16(2): p. 145-54. 

27. Atiqullah, M.M., An Efficient Simple Cooling Schedule for Simulated Annealing. Lecture 

Notes in Computer Science, 2004. 3045: p. 396-404. 

28. Geman, S. and D. Geman, Stochastic relaxation, Gibbs distributions, and Bayesian 

restoration of images. Journal of Applied Statistics, 1984. 20(5): p. 721-741. 

 

 



 

 

89 

Appendix A – Supplemental Figures 

 

 

 

 

 

 



 

 

90 

Appendix B – MATLAB Source Code 

 

See following pages for MATLAB Source Code. 

 



 

 

91 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   File:               Test_Annealing.m 
%   Revision Date:      03/25/09 
%   Author:             Robert B. Szlavik 
% 
%   Modified By:        Arya Vigeh 
%   Last Modified:      03/01/11 
% 
%   Description: 
%   Driver file for group delay and simulated annealing operations. Calls    

%   functions for determining the template distributions, computing compound 
%   action potentials and performing the group delay estimation followed by    
%   simulated annealing optimization. 
%              
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
MAX_TRIALS = 25;            %Total Number of Annealing Trials 

  
% Group Delay Variables 
dist_1 = 20.0E-3; 
dist_2 = 50.0E-3; 
I_o = 0.0; 
I_f = 1.0E-3; 
Delta_I = 0.5E-6; 
mode = 1; 
c = 5.0E5; 
step = 10.0E-6; 
span = 20.0E-3; 
r = 1.0E-3; 
s_scale = 1; 
I = 1; 
sigma_e = 1; 
alpha = 0.998; 
psi_m = 10E-3; 
psi_d = 3.5E5; 

  
% Simulated Annealing Variables 
sa_mode = 1; 
temp_start =10;             %Starting Temperature 
temp_factor = 0.9;          %Exponential Cooling Ratio 
temp_bound = 1.0E-5;        %Stopping Tmeperature 
error_bound = 1.0E-4;       %Error Bound 
max_step = 1000;            %Number of Transitions per Temperature Step 
fig_num = 8; 
t_step = 10; 

  
num_modes = 2; 
p_mat = [0.35 7.5E-6 1.699E-6; 0.65 13.0E-6 1.699E-6]; 
distrib_low_bound = 0; 
distrib_high_bound = 20.0E-6; 
distrib_step = 1.0E-7; 
pop_size = 100; 
bin_spacing = 1.0E-7; 



 

 

92 

  
line_limit_factor = 1; 

  
% Generate the Template Fiber Diameter Distribution 
[distrib_vect, distrib_function, cum_function, pop_diam_vect] = 

Fiber_Distribution(num_modes, p_mat, distrib_low_bound, distrib_high_bound, 

distrib_step, pop_size, bin_spacing); 

  
figure(1) 
plot(distrib_vect(:,1), distrib_vect(:,2)) 
title('Original Fiber Distribution'); 

  
distrib_vect_original = distrib_vect; 

  
save original_distribution.dat distrib_vect -ASCII -DOUBLE 

  
time_count = span/step; 

  
t = zeros(time_count, 1); 

  
for i = 1:time_count; 
    t(i) = (i-1)*step; 
end 

  
% Compute the Compound Evoked Potential at the First Recording Site 
[cap_1, e_pot_1, act_1, fibers_1] = Compound_Action_Potential(dist_1, I_o, 

I_f, Delta_I, c, step, span, r, s_scale, I, sigma_e, alpha, psi_m, psi_d, 

pop_diam_vect);  

  
%figure(2) 
%plot(t, cap_1) 
%figure(3) 
%plot(t, e_pot_1) 

  
% Compute the Compound Evoked Potential at the Second Recording Site 
[cap_2, e_pot_2, act_2, fibers_2] = Compound_Action_Potential(dist_2, I_o, 

I_f, Delta_I, c, step, span, r, s_scale, I, sigma_e, alpha, psi_m, psi_d, 

pop_diam_vect);  

  
figure(4) 
plot(t, cap_2) 
figure(5) 
plot(t, e_pot_2) 
figure(6) 
plot(t, e_pot_1) 

  
diff_count = length(e_pot_2(1,:)); 

  
tau = zeros(diff_count,1); 
H_Phase = zeros(time_count/2,diff_count); 
H_P = zeros(time_count/2,1); 
L_M = zeros(time_count/2,1); 
Lines_Matrix = zeros(time_count/2,diff_count); 



 

 

93 

f = zeros(time_count/2,1); 
delay_vect = zeros(diff_count,1); 
fiber_pop = zeros(diff_count,1); 
template = zeros(time_count,1); 

  
for i = 1:time_count/(2*line_limit_factor) 
    f(i) = ((i-1)*1/step)/time_count; 
end 

  
% Perform Group Delay Estimation 
for i = 1:diff_count 
    [tau(i), H_P, L_M, est_diam, est_v]=Group_Delay(e_pot_1(:,i), 

e_pot_2(:,i), step, span, line_limit_factor, dist_2-dist_1, c); 
    H_Phase(:,i) = H_P; 
    Lines_Matrix(:,i) = L_M; 
    delay_vect(i)=dist_2/est_v; 
    fiber_pop(i) = est_diam; 
end 

  
figure(7) 
plot(f, H_Phase) 
hold on 
plot(f, Lines_Matrix,'r') 

  
%Setup the histogram bin vector 

  
count = (distrib_high_bound - distrib_low_bound)/bin_spacing; 

     
distrib_vect_gd = zeros(count,2); 

     
for i = 1:count 
    distrib_vect_gd(i) = distrib_low_bound + (i-1)*bin_spacing; 
end 

  
distrib_vect_gd(:,2)=hist(fiber_pop, distrib_vect_gd(:,1)); 

  
distrib_vect_group_delay = distrib_vect_gd; 

  
figure(2) 
plot(distrib_vect_gd(:,1), distrib_vect_gd(:,2)) 
title('Group Delay Fiber Distribution'); 

  
save group_delay_estimated_distribution.dat distrib_vect_gd -ASCII -DOUBLE 

  
% Perform Simulated Annealing Optimization for N = MAX_TRIALS iterations 
for r = 1:MAX_TRIALS 
    fprintf('%i :  ', r) 

     
    [est_size, est_comp, res_error, fin_temp] = Annealing(sa_mode, fiber_pop, 

delay_vect, dist_2, cap_2(:,2000), e_pot_2, step, span, c, temp_start, 

temp_factor, temp_bound, error_bound, max_step, r, s_scale, I, sigma_e, 

alpha, fig_num, t_step); 

  



 

 

94 

    %Setup the histogram bin vector 
    count = (distrib_high_bound - distrib_low_bound)/bin_spacing; 

  
    distrib_vect_sa = zeros(count,2); 

  
    for i = 1:count 
        distrib_vect_sa(i) = distrib_low_bound + (i-1)*bin_spacing; 
    end 

  
    distrib_vect_sa(:,2)=hist(est_size, distrib_vect_sa(:,1)); 

  
    distrib_vect_annealed = distrib_vect_sa; 

     
    template_evoked_potential(:,1) = t(:,1); 
    template_evoked_potential(:,2) = cap_2(:,2000); 

  
    save template_evoked_potential.dat template_evoked_potential -ASCII -

DOUBLE 
    save optimized_distribution.dat distrib_vect_sa -ASCII -DOUBLE 
    save optimized_evoked_potential.dat est_comp -ASCII -DOUBLE 

  
    [prob,df]=Chi_Square(distrib_vect_original, distrib_vect_original); 
    %prob 
    %df 
    [probgd,df]=Chi_Square(distrib_vect_original, distrib_vect_group_delay); 
    %probgd 
    %df 
    [probsa,df]=Chi_Square(distrib_vect_original, distrib_vect_annealed); 
    %probsa 
    %df 
    fprintf('\t GD ChiSquared: %.4g', probgd) 
    fprintf('\t SA ChiSquared: %.4g\n', probsa) 
end 

 



 

 

95 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Function:       Annealing 
%   Revision Date:  03/25/09 
%   Author:         Robert B. Szlavik 
% 
%   Modified By:      Arya Vigeh 
%   Last Modified:  03/04/11 
% 
%   Implements the simulated annealing algorithm to determine the size 
%   distribution of a population of fibers for which the summated compound 
%   action potential most close, in an optimized sense, resembles a 
%   maximal evoked potential template. 
% 
%   USES FUNCTIONS:     Function_Centroid 
%                       Fiber_Evoked_Potential            
% 
%   Arguments:       

%   sa_mode         =   Annealing mode (1 uses Centroid Function) 
%           fiber_pop       =   Vector of fiber diameters from Group Delay 
%           delay_vect      =   Associated time delay of each fiber in       

%       fiber_pop 
%           dist            =   distance between recording electrodes 
%           template        =   Template fiber diameters 
%           e_pot           =   Single fiber evoked potentials from      

%            template 
%           step            =   10.0E-6 
%           span            =   20.0E-3 
%           c               =   5.0E5 
% 
%           temp_start      =   Simulated Annealing Starting Temperature 
%           temp_factor     =   Exponential Decay Factor 
%           temp_bound      =   Stopping Temperature 
%           error_bound     =   Error bound limit for SA 
%           max_step        =   Number of iterations at each temperature step 
% 
%           r           =   1.0E-3 
%           s_scale     =   1 
%           I           =   1 
%           sigma_e     =   1 
%           alpha       =   0.998 
%           fig_num     =   figure number for MATLAB plots 
%           t_step      =   10 
% 
% 
%   Returns:         

%  est_size  =   Fiber diameter distribution after annealing 
%           est_comp  =   Compound Evoked potential vector from  

%     optimized distribution 
%           res_error =   Current value of the Final Error (cost function) 
%           fin_temp  =   Last temperature value reached before algorithm 

%     exits 
%            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  



 

 

96 

function [est_size, est_comp, res_error, fin_temp] = Annealing(sa_mode, 

fiber_pop, delay_vect, dist, template, e_pot, step, span, c, temp_start, 

temp_factor, temp_bound, error_bound, max_step, r, s_scale, I, sigma_e, 

alpha, fig_num, t_step) 

  
mode = 1; 
index = 0;              %for log decay and linex 
linear_step = 0.0005;       %for linear decrease 
temperature = temp_start; 

  
%LinEx array of values 
linear_index = [10 9 8 7 6 5 4 3 2 1 
                0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 
                0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 
                0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.001 
                0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 0.0002 

0.0001 
                9E-05 8E-05 7E-05 6E-05 5E-05 4E-05 3E-05 2E-05 1E-05 0];    

  
count = span/step; 

  
t = zeros(count,1); 

  
for i = 1:count 
    t(i) = (i-1)*step; 
end 

  
if (sa_mode == 1) 

     
    for i = 1:length(fiber_pop) 

     
        v_centroid = zeros(count,2); 

             
        v_centroid(:,1) = t; 
        v_centroid(:,2) = e_pot(:,i); 

             
        [cent_val, centroid] = Function_Centroid(v_centroid, t_step); 

         
        fiber_delay = delay_vect(i); 

         
        if (fiber_delay > cent_val) 

                 
            delay_count = floor((fiber_delay - cent_val)/step); 

                 
            e_current = e_pot(:,i); 
            e_pot(:,i) = zeros(count,1); 

                 
            for j = 1:(count-delay_count) 
                e_pot(j+delay_count,i) = e_current(j); 
            end 

                 
        end 



 

 

97 

             
        if (fiber_delay <= cent_val) 

                 
            delay_count = floor((cent_val - fiber_delay)/step); 

                 
            e_current = e_pot(:,i); 
            e_pot(:,i) = zeros(count,1); 

                 
            for j = 1:(count-delay_count) 
                e_pot(j,i) = e_current(j+delay_count); 
            end  
        end 

         
    end 

     
end 

  
selection_vector = zeros(length(fiber_pop)); 

  
compound = zeros(count,1); 

  
min_fib_diam = min(fiber_pop); 
max_fib_diam = max(fiber_pop); 

  
error_value = error_bound + 1; 
res_error = error_value; 
temp = temp_start; 

  
while ((error_value > error_bound) && (temp > temp_bound)) 

     
    k = 0; 
    oracle_count = 0; 
    change_count = 0; 
    total_change_count = 0; 
    rejected_count = 0; 

  
    while ((k < max_step) && (error_value > error_bound)) 

         
        k = k + 1; 
        selection_vector = randperm(length(fiber_pop)); 
        chosen_fiber = selection_vector(1); 

         
        new_fiber_diam = min_fib_diam + rand(1)*(max_fib_diam - 

min_fib_diam); 
        new_fiber_delay = dist/(c*new_fiber_diam); 

         
        original_fiber_diam = fiber_pop(chosen_fiber); 
        original_fiber_delay = delay_vect(chosen_fiber); 

         
        fiber_pop(chosen_fiber) = new_fiber_diam; 
        delay_vect(chosen_fiber) = new_fiber_delay; 

         



 

 

98 

        if (sa_mode == 0) 

         
            v_vect = Fiber_Evoked_Potential(mode, c, step, span, 

new_fiber_delay, r, new_fiber_diam/2, s_scale, I, sigma_e, alpha); 
            e_pot(:,chosen_fiber) = v_vect(:,2); 
        end 

         
        if (sa_mode == 1) 

             
            v_centroid = zeros(count,2); 

             
            v_centroid(:,1) = t; 
            v_centroid(:,2) = e_pot(:,chosen_fiber); 

             
            [cent_val, centroid] = Function_Centroid(v_centroid, t_step); 

             
            if (new_fiber_delay > cent_val) 

                 
                delay_count = floor((new_fiber_delay - cent_val)/step); 

                 
                e_current = e_pot(:,chosen_fiber); 
                e_pot(:,chosen_fiber) = zeros(count,1); 

                 
                for i = 1:(count-delay_count) 
                    e_pot(i+delay_count,chosen_fiber) = e_current(i); 
                end 

                 
            end 

             
            if (new_fiber_delay <= cent_val) 

                 
                delay_count = floor((cent_val - new_fiber_delay)/step); 

                 
                e_current = e_pot(:,chosen_fiber); 
                e_pot(:,chosen_fiber) = zeros(count,1); 

                 
                for i = 1:(count-delay_count) 
                    e_pot(i,chosen_fiber) = e_current(i+delay_count); 
                end  
            end 

                    
        end        

         
        compound = zeros(count,1); 

         
        for j = 1:length(fiber_pop) 
            for i = 1:count 
                compound(i) = compound(i) + e_pot(i,j); 
            end 
        end 

         
        %Calculating Two-Norm Error Value  



 

 

99 

        error_value = 0; 

         
        for i = 1:count 
            error_value = error_value + (template(i) - compound(i))^2; 
        end 

         
        error_value = sqrt(error_value); 
        change = res_error - error_value; 
        oracle_value = rand(1); 

         
        if((oracle_value <= exp(-abs(change)/temp)) || (change >= 0)) 

             
            if (oracle_value <= exp(-abs(change)/temp)) 
                oracle_count = oracle_count + 1;  %Change due to Boltzmann 

  %probability 
            end 

             
            if (change >= 0) 
                change_count = change_count + 1;  %Change due to decreased 

  %cost function 
            end 

             
            total_change_count = total_change_count + 1; 

             
            res_error = error_value; 

             
        else 

          
            % Change not accepted, so restore original values 
            fiber_pop(chosen_fiber) = original_fiber_diam; 
            delay_vect(chosen_fiber) = original_fiber_delay; 

             
            if (sa_mode == 0) 

             
                v_vect = Fiber_Evoked_Potential(mode, c, step, span, 

original_fiber_delay, r, original_fiber_diam/2, s_scale, I, sigma_e, alpha); 
                e_pot(:,chosen_fiber) = v_vect(:,2); 

                 
            end 

             
            if (sa_mode == 1) 

                 
                e_pot(:,chosen_fiber) = e_current; 

                 
            end 

             
            rejected_count = rejected_count + 1; 

             
        end 

             

     
    end 



 

 

100 

     

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Cooling Schedules Implemented Below % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
    % Decrement temperature by scale factor (Exponential Decay) 
    temp = temp*temp_factor; 

     
    % Logarithmic Decay    
    %index = index + 1; 
    %if (index < 151) 
    %    temp = .001/(log(index) + 1);  
    %else 
    %    temp = 0; 
    %end  
    % End Log Decay 

  
    % Start LinEx 
    %index = index + 1; 
    %temp = linear_index(index); 
    % End LinEx 

     
    % Adaptive Temperature Decay 
    %if(temp < 0.05) 
    %    temp = temp * .9; 
    %elseif(temp < 0.5) 
    %    temp = temp * .5; 
    %else 
    %    temp = temp * .1; 
    %end 

  

     
    % Linear Decrease 
    %temp = temp - linear_step; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% End of Temperature Decrements       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

  

  
    compound = zeros(count,1); 

     
    for j = 1:length(fiber_pop) 
        for i = 1:count 
            compound(i) = compound(i) + e_pot(i,j); 
        end 
    end     

  
    %fprintf('Temp:  %3.2g, \n', temp) 
    %fprintf('\t Error:  %3.2g,', error_value) 
    %fprintf('\t Tot Ch:  %d, ', total_change_count) 
    %fprintf('\t Con Ch %d \n ', change_count) 

     



 

 

101 

    %figure(fig_num) 
    %plot(t, template, 'g') 
    %hold on 
    %plot(t, compound, 'r') 
    %hold off 

  

     
end 

  
fprintf('\t Error:  %3.2g,', error_value) 
fprintf('\t Tot Ch:  %d, ', total_change_count) 
fprintf('\t Con Ch %d  ', change_count) 

     
est_size = fiber_pop; 
est_comp = compound; 
fin_temp = temp; 

 



 

 

102 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Function:       Chi_Square 
%   Revision Date:  04/03/09 
%   Author:         Robert B. Szlavik 
% 
%   Modified By:      Arya Vigeh 
%   Last Modified:  3/17/11 
% 
%   Computes the Chi-Squared Value between two distributions of fiber 

diameters. 
% 
%   USES FUNCTIONS:                     None             
% 
%   Arguments:  first_distrib   =   the original template distribution of 

fiber diameters 
% 
%           second_distrib  =   a modified distribution of fiber diameters 

either after 
%                           the group delay estimation or simulated annealing 
%                           optimization. 
% 
%   Returns:    prob                =   chi-squared value 
% 
%           df          =   degrees of freedom 
%    
%            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Chi Square Calculation 

  
function [prob, df] = Chi_Square(first_distrib, second_distrib) 

  
chi_square = 0; 
df=length(first_distrib(:,1))-1; 

  
sum1 = 0; 
sum2 = 0; 

  
for i = 1:length(first_distrib(:,1)) 
    sum1 = sum1+first_distrib(i,2); 
    sum2 = sum2+second_distrib(i,2); 
end 

  
for i = 1:length(first_distrib(:,1)) 
    if ((first_distrib(i,2) ~= 0) || (second_distrib(i,2)~=0))  
        chi_square = chi_square + ((first_distrib(i,2)-

second_distrib(i,2))^2)/(first_distrib(i,2)+second_distrib(i,2)); 
    end 
    if ((first_distrib(i,2) == 0) && (second_distrib(i,2)==0)) 
        df=df-1; 
    end 
end 

  
prob=1-gammainc(0.5*chi_square,0.5*df)'; 



 

 

103 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Function:       Compound_Action_Potential 
%   Revision Date:  03/04/09 
%   Author:         Robert B. Szlavik 
% 
%   Computes an array of compound evoked potentials.   
% 
%   USES FUNCTIONS:                 Exponential_Activation_Function 
%                                   Fiber_Evoked_Potential 
% 
%   Arguments:  dist                =   propagation distance in (m) 
%               I_o                 =   initial stimulus current value in 
%                                       (A) 
%               I_f                 =   final stimulus current value in 
%                                       (A) 
%               Delta_I             =   stimulus current increment in (A) 
%                                       Fiber_Evoked_Potential function 
%               c                   =   velocity diameter constant (1/s) 
%               step                =   time step in (s) 
%               span                =   simulation time span in (s) 
%               r                   =   distance from recording point to  
%                                       fiber centerline (m) 
%               s_scale =           =   scaling factor for s variable  
%                                       (dimensionless) (s = s_scale*a) 
%               I                   =   current through the second pole (A) 
%               sigma_e             =   extracellular conductivity (S/m) 
%               alpha               =   fraction of I distributed to first  
%                                       pole 
%               psi_m               =   current scaling factor in (A) 
%               psi_d               =   exponential scaling factor in (1/m) 
%               fiber_pop           =   column vector of fiber diameters in 
%                                       (m) where the dimensions are 
%                                       fiber_pop[# of fibers, 1] 
%                
% 
%   Returns:    cap                 =   array of compound action potentials 
%                                       at each stimulus curent level. 
%                                       cap[length(time),# of stim steps] 
%               e_pot               =   decomposed evoked potential array 
%                                       of non-zero potential increments 
%                                       adding into the compound evoked 
%                                       potential 
%                                       e_pot[length(time),# non-zero 
%                                       potential increments] 
%               act                 =   array of all activated fibers at 
%                                       a stimulus current step.  Position of 
%                                       1s in each column vector correspond 
%                                       to the activated fiber in the fiber 
%                                       population vector 
%                                       act[# in fiber_pop, # of stim 
%                                       steps] 
%               fibers              =   array of newly activated fibers at 
%                                       a given stimulus current step. 
%                                       Position of 1s in each column 



 

 

104 

%                                       vector correspond to the activated 
%                                       fiber in the fiber population 
%                                       vector. 
%                                       fibers[# in fiber_pop, # of stim 
%                                       steps] 
%                                        
%    
%   Internal:   mode                =   mode for Fiber_Evoked_Potential 
%                                       function.  Set equal to 1 for 
%                                       time function. 
%               delta_fiber         =   fiber time delay vector in (s) for 

%       input 
%                                       into Fiber_Evoked_Potential 
%                                       function. 
%                                       delta_fiber[# in fiber_pop] 
%               radius              =   fiber radius vector in (m) 
%                                       radius[# in fiber_pop] 
%               stim_loop_count     =   number of stimulus current steps 
%                                       as per 
%                                        
%                                       (I_f - I_o)/Delta_I 
% 
%               time_loop_count     =   number of time steps as per 
% 
%                                       span/step 
%                
%               fiber_potential     =   accumulated compound action 
%                                       potential vector 
%                                       fiber_potential[:,1] = time points 
%                                       in (s). 
%                                       fiber_potential[:,2] = accumulated 
%                                       potential values in (V). 
%               stim_val            =   current value of the stimulus 
%                                       current amplitude in (A). 
%               step                =   unit step function value for 
%                                       determining if the current fiber 
%                                       evoked potential is added to the 
%                                       accumulating compound evoked 
%                                       potential. 
%               diff_count          =   count variable for the number of 
%                                       non zero and thus incremental 
%                                       fiber evoked potentials. 
%                
%            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
function [cap, e_pot, act, fibers] = Compound_Action_Potential(dist, I_o, 

I_f, Delta_I, c, step, span, r, s_scale, I, sigma_e, alpha, psi_m, psi_d, 

fiber_pop) 

  
    mode = 1; 
    delta_fiber = zeros(length(fiber_pop)); 
    radius = zeros(length(fiber_pop)); 

  
    stim_loop_count = (I_f - I_o)/Delta_I; 



 

 

105 

    time_loop_count = span/step; 

     
    fiber_potential = zeros(time_loop_count, 2); 
    cap = zeros(time_loop_count, stim_loop_count); 
    act = zeros(length(fiber_pop), stim_loop_count); 
    fibers = zeros(length(fiber_pop), stim_loop_count); 

     
    for i = 1:length(fiber_pop) 
        delta_fiber(i) = dist/(c*fiber_pop(i)); 
        radius(i) = fiber_pop(i)/2; 
    end     

     
    stim_val = I_o; 

     
    for i = 1:stim_loop_count 

         
        for j = 1:length(fiber_pop) 

         
            if stim_val >= Exponential_Activation_Function(psi_m, psi_d, 

fiber_pop(j)) 
                Step = 1.0; 
                act(j,i) = 1; 
            elseif stim_val < Exponential_Activation_Function(psi_m, psi_d, 

fiber_pop(j)) 
                Step = 0.0; 
            end 

             
            fiber_potential = Step*Fiber_Evoked_Potential(mode, c, step, 

span, delta_fiber(j), r, radius(j), s_scale, I, sigma_e, alpha); 
            cap(:,i) = cap(:,i) + fiber_potential(:,2); 

             
        end 

             
        stim_val = stim_val + Delta_I; 

         
    end 

     
    diff_count = 0; 

     
    fibers(:,1) = act(:,1); 

     
    for i = 2:stim_loop_count 

         
        fibers(:,i) = act(:,i)-act(:,i-1); 

         
        if norm(act(:,i)-act(:,i-1)) ~= 0 
            diff_count = diff_count + 1; 
        end 

         
    end 

     
    e_pot = zeros(time_loop_count,diff_count); 



 

 

106 

    diff_count = 0; 

     
    for i = 2:stim_loop_count 

         
        if norm(act(:,i)-act(:,i-1)) ~= 0 
            diff_count = diff_count + 1; 
            e_pot(:,diff_count) = (cap(:,i)-cap(:,i-1)); 
        end 

     
    end 

  

     

     

     

     

     

         



 

 

107 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Function:       Exponential_Activation_Function 
%   Revision Date:  02/23/09 
%   Author:         Robert B. Szlavik 
% 
%   Arguments:  psi_m               =   current scaling factor in (A) 
%               psi_d               =   exponential scaling factor in (1/m) 
%               d                   =   fiber diameter in (m) 
%    
%   Returns:    act_function        =   fiber activation current value in 
%                                       (A) 
%            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
function act_function = Exponential_Activation_Function(psi_m, psi_d, d) 

  
    act_function = psi_m*exp(-psi_d*d); 

     

     



 

 

108 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Function:       Fiber_Distribution 
%   Revision Date:  02/27/09 
%   Author:         Robert B. Szlavik 
% 
%   Arguments:  num_modes           =   Number of Gaussian modes in the 
%                                       fiber diameter probability density 
%                                       function specified by n 
%               p_mat               =   (n,3) matrix of mode perameters 
%                                       where the columns are the  
%                                       parameters psi, mu and sigma for 
%                                       the normalized Gaussian mode 
%                                       defined below 
% 
%   Mode(x)     = (psi)/(sigma*sqrt(2*pi))*exp(-(x-mu)^2/(2*sigma^2)) 
% 
%                                       where x is the diameter in (m) 
%               distrib_low_bound   =   lower fiber diameter bound of the 
%                                       distribution in (m) 
%               distrib_high_bound  =   upper fiber diameter bound of the 
%                                       distribution in (m) 
%               step                =   probability distribution step size 
%                                       in (m) 
%               pop_size            =   number of fibers in the simulated 
%                                       population. 
%               bin_spacing         =   bin spacing size in (m) 
%    
%   Returns:    distrib_vect(:,1)   =   vector of fiber diameters in (m) 
%               distrib_vect(:,2)   =   vector of fiber frequencies  for 
%                                       plotting histogram 
%               pop_diam_vect       =   vector of actual fiber diameters in 
%                                       (m) 
%        
% 
%   Internal:   count                   =   number of points in vector  
%                                           based 
%                                           on bound span and step or  
%                                           bin_size 
%               distrib_function(:,1)   =   vector of fiber diameters in 
%                                           (m) 
%               distrib_function(:,2)   =   probability density vector 
%               cum_function(:,1)       =   vector of fiber diameters in  
%                                           (m) 
%               cum_function(:,2)       =   cumulative distribution vector 
%               temp_function           =   vector used in computation of 
%                                           the cumulative distribution 
%                                           function; 
%               x                       =   vector of fiber diameter in (m) 
%               random_vect             =   uniformly distribution random 
%                                           vector used to generate fiber 
%                                           diameter distribution 
%               pop_diam_vector         =   randomly generated fiber 
%                                           diameter vector in (m)     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   



 

 

109 

  
function [distrib_vect, distrib_function, cum_function, pop_diam_vect] = 

Fiber_Distribution(num_modes, p_mat, distrib_low_bound, distrib_high_bound, 

step, pop_size, bin_spacing) 

  
    count = (distrib_high_bound-distrib_low_bound)/step; 

     
    distrib_function = zeros(count,2); 
    cum_function = zeros(count,2); 
    temp_function = zeros(count,1); 
    x = zeros(count,1); 
    random_vect = zeros(pop_size,1); 
    pop_diam_vect = zeros(pop_size,1); 

     
%   Compute the probability distribution function. 

  
    for i = 1:count 
        distrib_function(i,1) = distrib_low_bound + (i-1)*step; 
        x(i) = distrib_function(i,1); 
        for j = 1:num_modes 
            distrib_function(i,2) = distrib_function(i,2) + 

((p_mat(j,1))/(p_mat(j,3)*sqrt(2*pi)))*exp(-(x(i)-

p_mat(j,2))^2/(2*p_mat(j,3)^2)); 
        end 
    end 

     
%  Compute the cumulative distribution function.     

     
    for i = 1:count 
        cum_function(i,1) = distrib_low_bound + (i-1)*step; 
        for j = 1:i 
            temp_function(j) = distrib_function(j,2); 
        end 
        cum_function(i,2) = step*trapz(temp_function); 
    end 

     
%  Do the inverse mapping to compute the population of fiber diameters 

  
    random_vect = rand(pop_size,1); 

  
    for i = 1:pop_size 
        pop_diam_vect(i) = interp1(cum_function(:,2), cum_function(:,1), 

random_vect(i), 'spline'); 
    end 

     
%  Setup the histogram bin vector 

  
    count = (distrib_high_bound - distrib_low_bound)/bin_spacing; 

     
    distrib_vect = zeros(count,2); 

     
    for i = 1:count 
        distrib_vect(i) = distrib_low_bound + (i-1)*bin_spacing; 



 

 

110 

    end 

     
    distrib_vect(:,2)=hist(pop_diam_vect, distrib_vect(:,1)); 



 

 

111 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Function:       Fiber_Evoked_Potential 
%   Revision Date:  02/27/09 
%   Author:         Robert B. Szlavik 
% 
%   Uses Fleisher's model to generate the time or position dependent 
%   extracellular waveform of a single fiber evoked potential. 
% 
%   Arguments:  mode    =   potential as a function of time (mode = 1) 
%                           potential as a function of distance (mode = 0) 
%               c       =   velocity diameter constant (1/s) 
%               step    =   time or distance step in (s) or (m) 
%                           respectively 
%               span    =   total time in (s) or total length in (m) 
%               delta   =   time shift in (s) or space shift in (m) 
%               r       =   distance from recording point to fiber 
%                           centerline (m) 
%               a       =   fiber radius (m) 
%               s_scale =   scaling factor for s variable (dimensionless) 
%                           (s = s_scale*a) 
%               I       =   current through the second pole (A) 
%               sigma_e =   extracellular conductivity (S/m) 
%               alpha   =   fraction of I distributed to first pole 
%                           (dimensionless) 
% 
%    
%   Returns:    v_vect      v_vect(1,:) = vector of time in (s) or distance 
%                                         in (m) 
%                           v_vect(2,:) = potential (V) 
% 
%   Internal:   count   =   number of points in vector (count = span/delta) 
%               diameter=   fiber diameter (diameter = 2*a) 
%               s       =   distance from center 0 to first two poles (m) 
%                           (s = s_scale*a) in (m) 
%               D       =   parameter defined in Fleisher's paper  
%                           (D = (a+s)/(r+s)) 
%               u       =   distance from the center 0 to the third pole 
%                           (u = (s)*(1+alpha)/(1-alpha) in (m) 
%               z       =   current distance value in (m) 
%            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
function v_vect = Fiber_Evoked_Potential(mode, c, step, span, delta, r, a, 

s_scale, I, sigma_e, alpha) 

  
    count = span/step; 

     
    v_vect = zeros(count,2); 

     
    diameter = 2*a; 
    s = s_scale*a; 
    D = (a+s)/(r+s); 
    u = (s)*((1+alpha)/(1-alpha)); 

     



 

 

112 

    if (mode == 1) 
        for i = 1:count 
            v_vect(i,1) = (i-1)*step; 
            z = (v_vect(i,1)-delta)*c*diameter; 
            v_vect(i,2) = (I*D^2)/(4*pi*a*sigma_e)*(alpha*exp(-

((D/4)^2)*(((z+s)/a)^2))-exp(-((D/4)^2)*(((z-s)/a)^2))+(1-alpha)*exp(-

((D/4)^2)*(((z-u)/a)^2))); 
        end       
    end 

   
    if (mode == 0) 
        for i = 1:count 
            v_vect(i,1) = (i-1)*step; 
            z = v_vect(i,1)-delta; 
            v_vect(i,2) = (I*D^2)/(4*pi*a*sigma_e)*(alpha*exp(-

((D/4)^2)*(((z+s)/a)^2))-exp(-((D/4)^2)*(((z-s)/a)^2))+(1-alpha)*exp(-

((D/4)^2)*(((z-u)/a)^2))); 
        end 
    end 

 



 

 

113 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Function:       Function_Centroid 
%   Revision Date:  03/20/09 
%   Author:         Robert B. Szlavik 
% 
%   Arguments:  v       =   potential and time vector 
%                           (:,1) = vector of time points (s) 
%                           (:,2) = potential values at time points (V) 
%               t_step  =   point step value (speeds up integration)               
%    
%   Returns:    cent_val                =   centroid value in (s) 
%               centroid                =   computed function centroid 
%                                           (:,1)=time vector (s) 
%                                           (:,2)=centroid_top_function 
%                                           (:,3)=centroid_bottom_function                                       
% 
%   Internal:   centroid_top_function   =   array holder for t*f(t) 
%                                           function for centroid 
%               centroid_bottom_function=   array holder for f(t) function 
%                                           for centroid 
%               step                    =   time step in (s) 
%            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

  
function [cent_val, centroid] = Function_Centroid(v, t_step) 

  
    centroid = zeros(length(v(:,1))/t_step,3); 

  
    centroid_top_function = zeros(length(v(:,1))/t_step); 
    centroid_bottom_function = zeros(length(v(:,1))/t_step); 

  
    step = v(2,1)-v(1,1); 

  
    for i = 1:t_step:length(v(:,1)) 
        centroid_top_function(i) = abs(v(i,1)*v(i,2)); 
        centroid_bottom_function(i) = abs(v(i,2)); 
        centroid(i,1) = v(i,1); 
        centroid(i,2) = centroid_top_function(i); 
        centroid(i,3) = centroid_bottom_function(i); 
    end 

     
    cent_val = 

(step*trapz(centroid_top_function))/(step*trapz(centroid_bottom_function)); 

     

  



 

 

114 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%   Function:       Group_Delay 
%   Revision Date:  03/15/09 
%   Author:         Robert B. Szlavik 
% 
%   Computes a group delay estimate of the propagation time between 
%   two recording sites as well as a group delay estimate of the fiber 
%   diameter and the fiber conduction velocity.   
% 
%   Arguments:  vwfe_1              =   single fiber potential waveform at 
%                                       the first recording electrode in 
%                                       (V) as a function of the time  
%                                       vector with points sampled at step  
%                                       (s) for a total of span (s)  
%               vwse_2              =   single fiber potential waveform at 
%                                       the second recording electrode in 
%                                       (V) as a function of the time 
%                                       vector with points sampled at step 
%                                       (s) for a total of span (s) 
%               step                =   time step in (s) 
%               span                =   time span in (s) 
%               line_limit_factor   =   constant factor that limits the 
%                                       length of the phase vector used 
%                                       in computing the least squares 
%                                       estimate of the slope by 
%                                       2*line_limit_factor 
%               dist                =   distance between recording 
%                                       electrodes in (m) 
%               c                   =   velocity diameter constant (1/s) 
% 
%   Returns:    tau                 =   group delay estimated propagation 
%                                       time between the two recording 
%                                       sites (s) 
%               H_Phase             =   phase spectrum vector (radians) 
%               Lines_Vector        =   least squares estimate of linear 
%                                       phase response vector (radians) 
%               est_diam            =   group delay estimated fiber 
%                                       diameter (m) 
%               est_v               =   group delay estimated fiber 
%                                       propagation velocity (m/s) 
%                                        
%    
%   Internal:   f                   =   frequency vector (Hz) 
%               H_of_f              =   fiber frequency response H(f) 
%                                       vector 
%               H_of_f_Phase        =   angle of the H(f) vector (radians) 
%               sum_numerator       =   variable used in computing the 
%                                       least squares estimate of the 
%                                       slope of the phase response 
%               sum_denominator     =   variable used in computing the  
%                                       least squares estimate of the 
%                                       slope fo the phase response 
%            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 



 

 

115 

  
function [tau, H_Phase, Lines_Vector, est_diam, est_v] = Group_Delay(vwfe_1, 

vwse_2, step, span, line_limit_factor, dist, c) 

  
count = span/step; 

  
f = zeros(count,1); 
Lines_Vector = zeros(count/2,1); 
H_of_f = zeros(count,1); 
H_Phase = zeros(count/2,1); 

  
for i = 1:count 
    f(i) = ((i-1)*1/step)/count; 
end 

  
S_fe = fft(vwfe_1); 
S_se = fft(vwse_2); 

  
for i = 1:count 
    H_of_f(i) = S_se(i)/S_fe(i); 
end 

  
H_of_f_Phase = unwrap(angle(H_of_f)); 

  
for i = 1:count/2 
    H_Phase(i,1) = H_of_f_Phase(i); 
end; 

  
sum_numerator = 0.0; 
sum_denominator = 0.0; 
for i = 1:count/(2*line_limit_factor) 
    sum_numerator = sum_numerator + f(i)*H_of_f_Phase(i); 
    sum_denominator = sum_denominator + f(i)^2; 
end 
Lines = sum_numerator/sum_denominator; 

  
for i = 1:count/(2*line_limit_factor)  
    Lines_Vector(i) = Lines*f(i); 
end 

  
tau = (-1/(2*pi))*Lines; 
est_diam = dist/(c*tau); 
est_v = dist/tau; 

  

 



 

 

116 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Filename: Schedule_Calc.m 
% Author: Arya Vigeh 
% Last Modified: 1/18/11 
% Description: Calculates the Total Number of Fiber Diameter Changes 
%               (TNFDC) for Exponential Cooling Schedules 
% 
%   Inputs:  
%       start_temp : The starting temperature 
%       stop_temp : The stopping temperature 
%       max_trials : The number of transitions per temperature step 
%       factor : The exponential cooling ratio (factor) 
% 
%   Outputs: 
%       cs_value : Total Number of Fiber Diameter Changes (TNFDC) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [cs_value] = Schedule_Calc(start_temp, stop_temp, max_trials, 

factor) 
    starttemp = start_temp; 
    stoptemp = stop_temp; 
    trials = max_trials; 
    scale = factor; 

     
    count = 0; 
    i = starttemp; 
    while i > stoptemp 
        count = count + trials; 
        i = i*scale; 
    end 

     

  
    cs_value = count 

     

     

  
end 

 


