
UAV Pirates and SilenTrack
Integration

June 4th, 2010
Professor John Saghri

Approved By:

Travis Dean ___________________
Hushnak Singh ___________________
Ashley Wager ___________________
Matt Woolridge ___________________

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19143178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I. INTRODUCTION
The goal of integrating the SilenTrack system

with the UAV Pirating system is to allow for

loitering UAVs to be pirated faster and at greater

distances than the old UAV Pirating system was

capable due to decision making and visual

confirmation by the user. Since the pirating

system was already setup and verified, our tasks

were broken into 5 main areas: hardware,

takeover firmware, takeover software, pirating

algorithm, and SilenTrack interface. The

hardware circuitry was in place for the most

part, but was lacking in documentation, so it was

documented and transferred from individual

circuits on two breadboards to a single PCB and

modified to run on a single power source to

reduce parts count and to reduce the

troubleshooting time with all the loose

connection possibilities. The PCB also made the

system look cleaner and made it more durable.

The takeover firmware needed to be able to

generate a signal from the Nexys board, and the

takeover software needed control of the signal

from the PC. The design restriction here was the

available data path width from the PC to the

FPGA across the USB connection. We decided

early that we had to use the remap channels and

the Tx and Rx channel registers to be able to

transmit the data to the FPGA. We also found

out that the Interlink Buddy Box connection can

only do 8 channels, so we could work with the

old USB IP core without having to regenerate

the user logic for additional registers. The

SilenTrack communication was outlined for us

by the Raytheon Team. They provided us with

the information to communicate with the system

and provided some sample data and a data

format for how everything is transmitted. We

had to write an interface for this that would

establish a connection with SilenTrack and read

in the appropriate data, discarding a lot of the

extra data SilenTrack automatically sends. The

pirating algorithm was difficult to design due to

the unknown effects of sending out signals to a

random UAV with unknown channel mapping.

We designed a brute force system where we lock

out the original pilot, save the steady state

settings, test changing the data on each channel

and observing the effects until we have the three

channel mapping being done by the system.

Further detail on each member's contributions

are available in the member contributions

portion towards the end of the report and in a

summary table in the appendix.

General Problem Summary
Remote Controlled (R/C) aircraft are

inexpensive, quickly built, simple to fly, and are

capable of delivering biological or explosive

weapons. Conventional detection of these small

Unmanned Aerial Vehicles (UAVs) is difficult,

and destruction of the craft using sophisticated

weaponry is not cost effective.

Client Overview
Our customer is Raytheon, a technology leader

specializing in defense, homeland security, and

other government markets throughout the world.

With a history of innovation spanning more than

80 years, Raytheon provides state-of-the-art

electronics, mission systems integration, and

other capabilities in the areas of sensing, effects,

command, control, communications and

intelligence systems, as well as a broad range of

mission support services.

Related Work
Systems are in progress that can triangulate the

position of an enemy transmitter and also

optically track an enemy aircraft.

II. PRODUCT DEFINITION

Need Statement
Due to their typically small size and low cost,

unfriendly unmanned aerial vehicles (UAVs)

can be difficult or nearly impossible to detect

using conventional radar or to eliminate using

advanced weaponry; with the ability to cause

significant harm to the public and provide

unnoticed surveillance to an enemy, a system

capable of both detecting and taking control over

such aircraft would greatly increase the

defensive abilities of our armed forces, police,

and other security professionals.

Requirements
Marketing
To interface a UAV pirating system with a real

time three dimensional video tracking system in

order to automatically and continuously scan

and detect the presence of suspicious UAVs and

their appropriate radio frequency control signals.

The system will alert the user of potential

threats, decode detected control signals, and take

control over the UAV.

Engineering
The integration of the UAV pirating system with

the SilenTrack video tracking system will allow

the combined system to automatically identify

and track a suspicious air vehicle visually as

well as identify and decode the RF control

signal. Once a threat has been identified, the

system will execute an algorithm to associate

each control channel with the corresponding

flight control surface. Once the control channels

have been decoded the user can use a hand held

radio controller to maneuver the drone which is

now under their command.

Constraints
As this project is more “proof of concept” than a

polished system that would be suitable for

marketing, we constrain some of the

requirements in order to focus on obtaining

control of an enemy aircraft that may have non-

standard channel mapping. Rather than scan the

entire 72MHz range, we will conduct testing

with a few channels of our choosing. We can

achieve this by interfacing a common channel

scanner available at any hobbyist store. These

scanners have transistor logic to indicate which

channels are active, which will serve as inputs

for our digital system. A software implantation

written in the C programming language will

provide the logic necessary to alert the user of

active signals and to use the channel information

to set the output transmitter accordingly.

Software will also determine the number of

active servo channels and will attempt to make

intelligent assumptions to determine the servo

channel mapping. After mapping these assumed

channels to our transmitter, the pilot may

activate the high-powered transmitter and direct

the drone to a safe location.

III. DESIGN

Overview of team process
Since this was an integration project, the

specifications were rigidly set on both the

SilenTrack side and on the existing UAV

technology. This simultaneously gave us

guidance and restrictions in our design work. A

lot of the requirements for the interface were

already outlined in the old documentation and

what the SilenTrack team provided us, and we

spent a lot of time in the early stages figuring

out how we were going to integrate all the

components, so when we split into our own

parts, we designed all our components for easy

integration.

Hardware Block Diagrams
Receiver Reader

Figure 2 - Receiver Reader VHDL module

The receiver reader is a VHDL module running
on the Nexys board that reads the servo
information from the detected enemy signal.
When the UAV Pirate system tunes the receiver
into the correct channel, the receiver outputs
information to the servos in pulses - the length of
the pulse determines the angle of the servo. The
receiver reader measures the lengths of all
these pulses, so that the Nexys board can send
servo positions to the GUI. The servo activity
then gets displayed in bars for the user.

Buddy Box Module

BuddyBox Module

Clock

Buddy Box Input

Channel Selectors 1

Channel Selectors 2

CH 4 to 1 in

CH 8 to 5 in

Source Select

30

15

32

32

Buddy Box Output

Figure 3 - Buddy Box VHDL Module

To simplify the piloting of aircraft whose servos
are "scrambled," the UAV pirate system can
reconfigure the channel layout as needed. It
takes advantage of the “buddy box” interface: a
cable by which the joystick positions of one
transmitter, acting as a “trainer”, can be passed
to a transmitter which then sends the signal out.
Instead of connecting these two transmitters
directly together, the Nexys board rearranges
the channels in between the trainer and the
transmitter. The trainer’s signal output goes into
the Buddy Box module, which reads the
information and then sends a rearranged signal

PC Nexys

PCB
SilenTrack

Servo/Channel

Remap data
P

o
s
it
io

n
/

S
p
e

e
d
 o

f

U
A

V
Tx/Rx channel/PWR

Servo activity

Active channels

F
X

2

Frequency

Scanner

Pilot

Transmitter

Broadcast

Transmitter

Frequency

Synthesizer

Receiver

PPM Channel Data

Remapped or Generated Channel data

9 Channel

Receiver data

Rx Channel/Power

Tx Channel RF/Gnd

9V Synthesizer PWR

Switched PWR

Figure 1 - System Diagram

System Diagram

to the transmitter. The buddy box module

combines the old Channel Remapper with the

new direct signal generation module. A high

signal on Source Select outputs a signal

generated from the channel data, while a low

signal outputs remap data. The CH 4 to 1 in and

CH 8 to 5 in are each 32 bit signals, 8 bits for

each of the 8 channels that the buddy box

connection supports.

Figure 4 - Buddy Box Connection pins

Frequency Synthesizer and Channel Selectors

Figure 5 - Frequency Synthesizer and Receiver

The frequency synthesizers allow the user to

choose any of the channels to receive or transmit

on. Channels 11-60 are selectable via rotary

switches on the back of each module, but our

system is able to digitally tune these modules

using the information given in the following

truth table. The channel selector uses digital

switch ICs to allow the FPGA development

board to short different pins on the rotary switch

to ground to set different channels (refer to truth

table).

Figure 6 - Channel Selector Hardware diagram

Position on
Rotary
Switch

Rotary Switch Pins
(rearranged to show truth table)

5 6 1 2 3 4

0 1 1 1 1

Always
Ground

Always
Ground

1 1 1 1 0

2 1 1 0 1

3 1 1 0 0

4 1 0 1 1

5 1 0 1 0

6 1 0 0 1

7 1 0 0 0

8 0 1 1 1

9 0 1 1 0

0=
ground

1= high
voltage

Figure 7 - Truth Table for Channel Selector

switches

Frequency Checker

Figure 8 - Frequency Checker

The frequency checker allows the user to view

which channels are in use on the 72 MHz range.

The checker was an off the shelf product that

constantly iterates through each of the 50

channels and simply lights up an led if there is

activity on that frequency. Our module taps into

the frequency checker by reading the values

being passed to the LED columns and rows. The

checker’s LEDs are a 5 by 10 grid that are

controlled by a MOSFET at the beginning of

each row and column. For the rows, the signal

is controlled by a PMOSFET normally high at

2.9V and drops to 0V. The columns are

NMOSFETs and are normally low at 0V and

rising to 400mV. Both rows and columns

operate at a 60Hz frequency. When a single led

has both its appropriate row and column

transistors turned on, current is allowed to flow

and the led turns on. The signals coming off the

frequency checker are run through a comparator

circuit used to pull up the voltages of the signals.

Since the voltages coming off the rows and

columns are 2.9V and .4V respectively, they

must be pulled up to at least 3.3V for the Nexys

2 board to recognize the signals. LM239AJ

comparator chips are used with a 5V rail to pull

the voltages of the frequency checker to just

above 3V. From there, the signals are sent to the

Nexys board through the FX2 connector.

Nexys 2 FPGA Development Board

Nexys

Servo Activity
Buddy Box Input

Frequency Checker Input
User Selected Channel Number

Channel Remapping Configuration

Remapped Buddy Box Signals
Servo Activity
Active Channel Number
Source Select
8 Channel direct data

Figure 9 - Nexys 2 Board System diagram

The Nexys 2 FPGA development board is used

as the main processing unit in the system.

Processing algorithms are used to communicate

between the user and the hardware. All modules

are connected to this unit and it serves as the

major terminal to direct communication between

them.

Software Algorithms
User Interface

FromMyThread()

If wp=0

If channel

detected

Check if the active

channels were

detected

If still active

Delete channel

Check if new

channels are

active

If no active

channels after

deletion

Delete only

remaining active

channel

OnAbort()

If wp=1

Update servo

outputs for

receiving channel

Update the

progress bars

If not active

Add channel

If there was a

change and am

not transmitting

OnAbort()

Return

Yes

Yes

Yes

Yes

Yes

No

No No

No

No

Yes

Figure 10 -FromMyThread Software Flowchart

OnSetChannel()

If music is

playing

If transmitting

If user did not

input channel

Stop playing

music

Turn

transmitter

off

Set receiving

channel

Retrieve servo

outputs

Alert user that a

threat has been

detected

Set and power

cycle the

receiver

Display servo

outputs and

channel

reminders

Send servo

channel numbers

to NEXYS

Alert user to

transmit when

ready

Return

Set the channel

Did user

change the

entered

channel

If channel in

the holder

array

Retrieve servo

outputs

Set receiving

channel

Alert user if there

is a threat

detected or not

MessageBox

asking user to

enter valid

frequency

Yes

No

Yes

No

No

Yes

No

No

Yes

Yes

Figure 11 - OnSetChannel Software Flowchart

OnAbort()

If music is

playing

If currently

transmitting

If needing to

turn transmitter

off

Stop playing music

Turn off transmitter

Update display

based on number

of active channels

Reset progress

bars

Reset transmit and

power on

transmitter

variables

Return

Yes

No

Yes

Yes

No

No

Figure 12 - OnAbort Software Flowchart

MyThread

InitInstance()

Get starting values

for active channels

and servo outputs

Initialize output

and history array

to zero

While program is

running

Free memory and

then get the

current active

channels

Sample channels

and keep their

history

Convert array of

bits to channel

numbers

Send array of

active channel

numbers to system

Free memory and

get the current

servo outputs

Send array of

servo outputs to

system

Clean up NEXYS

board and return

Figure 13 - MyThread Software Flowchart

OnInitDialog()

Initialize and

create dialog

window

Play sound to alert

user

Initialize global

holder array

Initialize the

NEXYS board

Begin the worker

threads MyThread and

SilenTrackThread

Display to the user

there are no active

channels

Set the min and

max ranges of the

progress bars

Initialize the servo

channel numbers

and the invert bits

Display the servo

channel numbers

Return

Figure 14 - OnInitDialog Software Flowchart

OnAutoRemap()

Acquire Steady

State Values

Set Nexys for

transmitting and

transmit steady

state values

Get channel i

Is channel at

max value?
Set to Throttle

Change channel value by

DELTA and transmit channel

value. Wait for SilenTrack

data and collect SilenTrack

data.

Does height

change by

HT_THRESHH

OLD?

Set channel to

elevator

Did height

increase?

Set channel

inverted

Does direction

change by

DIR_THRESH

HOLD?

Set channel to

rudder

Did UAV turn

left?

Set channel

inverted

Set channel to not

used.

Send steady state

value for channel i.

Wait for UAV to

return to steady

state

For channel i = 0

to 7

Turn off valid bit,

send over remap

data, turn on valid

bit

Return

End Loop

No

Yes

No

No

Yes

Yes Yes

Yes

No

No

Figure 15 - OnAutoRemap Software Flowchart

Connect to

SilenTrack

Send Initialization

Packet

while(!done)

Receive

SilenTrack Header

Check Number of

Tracks

Create Mutex

for(Number of

Tracks)

If track ID

equals track

following

If no current

Track and

classification =

aircraft
Parse and Copy

Data

Parse and Copy

Data

Set track following

to track ID

End For Loop

End While Loop

Close SilenTrack

Connection

Destroy Mutex

Yes

No

Yes

No

Figure 16 - SilenTrack Thread

OnTransmit()

If music is

playing

If the system is

ready to

transmit

If transmitter

has not been

turned on yet

If the kill switch

was pressed

Stop playing music

Turn on the

transmitter

Return the servo

outputs to normal

transmission

Display to the user

that the system is

now transmitting

No

Return

No

Yes

Yes

No

No

Yes

Yes

Figure 17 - OnTransmit Software Flowchart

Receiver Reader
(VHDL described in words rather than
flowcharts)

The receiver reader is a VHDL module that

connects to the servo pins of a receiver and reads

in the pulse lengths of each signal. It works with

a 100MHz clock (period of 1 us) so that the

length of a pulse, in us, can be counted and

output in 12-bit vectors. (A pulse is when the

voltage is high; the servo signals idle low and

switch high for a pulse.) 9 of these 12-bit

vectors, for up to 9 received servo channels, are

output on Channels1and2, ..., Channels7and8,

and Channel9.

Channels1and2(11 downto 0) stores channel 1,

with bit 11 being the MSB and bit 0 the LSB.

The number is unsigned, and represents the most

recent pulse length (in us) seen on the input pin

Servos(0). Channels1and2(23 downto 12) stores

channel 2, with bit 23 being the MSB and bit 12

the LSB. This number represents the most recent

pulse length seen on Servos(1). This same

pattern follows for all other channels, except that

Channel9, being only 12 bits long, stores only

channel 9.

The receiver reader's input pins should be

connected to the signal pins for every servo

coming out of the PCM receiver.

Buddy Box Module
(VHDL described in words rather than
flowcharts)

Buddy Box Module is a VHDL module that

reads one PPM signal over the buddy box

interface and outputs a 8-channel PPM signal

based on the input. Each of the 8 output

channels can be configured to be any input

channel, a short pulse, or a long pulse. Any of

these can also be "inverted," which turns a

short pulse into a long pulse and vice versa.

The pulse measurer in ChannelRemapper.vhd

reads the buddy box signal and outputs the pulse

lengths, in us, of each channel into

ChannelsData.

9 channel mappers, in ChannelMapper.vhd,

configure RemappedChannelsData based on

ChannelsData. Each of these takes

ChannelsData as input, has an input

ChannelSelector to decide what channel will get

routed to ChannelOut (numbers 0-8 selects

channels 1-9, number 9 is a short pulse, number

10 is a long pulse). If the ChannelInvert bit is

high, the output will be the inverse of the

selected channel.

Finally, the BuddyBoxOutput in

OutputModule.vhd outputs a 9-channel PPM

signal based on the data in

RemappedChannelsData. Physically, we cut into

the signal line of a Futaba trainer cable to remap

the signal between the trainer and the

transmitter. On the trainer side, the PPM out pin

is connected to the BuddyBoxIn pin on the

Nexys board, and on the transmitter side we

connect the PPM in pin to the

BuddyBoxOut pin on the Nexys board. The V+

switched pins and the ground pins are connected

together, with ground wire also connecting to

the Nexys ground.

This module also has 2 32-bit inputs for direct

signal output on 8 channels. Each of the 8

channels can be varied from 0x00 to 0xFF to go

from minimum to maximum pulse width on that

channel. Switching between the remap module

and the direct signal generation is handled by the

Source Select signal which selects direct output

when high and remap output when low.

Scurvy.c

scan_frequency()

setRX()

setTX()

set_mode()

send_signal()

read_receiver()

remap_channel

Scan_frequency()Main()

Read in data from

frequency checker

Parse data into 8

bit blocks

Send to Slave

Registers

Figure 18 - Scurvy Main and Scan_Frequency

software flowcharts

setRX()

Sending RX

channel?

Yes

Send Channel

to Receiver No

Receiver

on?

Turn/Keep Rx

relay on

Yes

Turn/Keep Rx

relay off

No

setTX()

Sending TX

channel?

Yes

No
Send Channel to

Syntheizer

Synthesizer

on?

Turn/Keep Tx

relay on

Yes

Turn/Keep Tx

relay off

No

Figure 19 - setRX and setTX Software

Flowcharts

read_receiver()

for the first 8

channels
Read 2 channels

Split 2x12 bit data

into 3x8 registersChannel 9

Read data

Split data into 2

registers

Figure 20 - read_receiver Software Flowchart

Set_mode()

Source=1? Yes

No

Output Nexys

generated data

Soucre=0? Yes

No

Output

Remapped

channels data

Output original

Pilot signal

Figure 21 - Set_mode Software Flowchart

Sending valid

channel data?

Send_signal()

Yes

Read CH 1 to 6

Sending CH7?

Yes

Read CH7

Read CH8

Reading CH8?

Yes

Output CH1-8 (use

old data for 7,8 if

needed)

No

No

Figure 22 - Send_signal Software Flowchart

remap_channel()

For the first 6

channels

For last 3 channels

Get_channel()

concat with

chan_sel1

get_channel()

Concat with

chan_sel2

send to ch

remapper

Figure 23 - remap_channel Sotware Flowchart

Nexyscomm.cpp
(used to communicate between the PC and

Nexys 2)

Setup_nexys()

This function is used to set up and initialize

communication between the PC and Nexys

board. It first initializes the device table and tries

to connect to the Nexys board. If the device is

not found, then it exits and displays an error

message. If the device is found then it gets the

device name and opens up the data connection

for the board. If either if these function calls

fails then they will display an error message and

exit as well. At the end of the function, the board

is ready to communicate with the PC.

Cleanup()

This function is used to close the data

communication between the PC and Nexys

board and should always be called upon ending

the program.

Get_scanner()

Get_scanner is used to get the data from the

Nexys board concerning the frequency checker.

It reads in 7 bytes of data representing the 50

channels displayed on the checker. These bytes

are stored in a char array which is returned at the

end of the function.

Cs_set_channel()

Cs_set_channel will take the channel passed in

and send the appropriate values to the Nexys

board. The channel passed in is a single integer

with allowable values ranging from 11 to 60.

The ones and tens digit is calculated separately

each as a 4 bit number, and then concatenated

together to form an 8 bit value and sent to the

appropriate data registers for the transmitter and

receiver. As an example, if the requested

channel is 17, then the lower 4 bits of the sent

data would be 7 (0111) and the upper 4 bits

would be 1 (0001) so your data register would

be 00010111.

Cs_power_on()

This function will either power cycle the

receiver or turn on and off the transmitter based

on the value passed in. If the value is a 1, then

the receiver will be power cycled by sending a 1

to the CS_PWR data register, will sleep for half

a second, and then turn it back off by passing a 0

to the same register. If the value sent to

cs_power_on is a 2, then if the transmitter is

currently turned off, it will be turned on, and

visa versa.

Import_receiver()

Import_receiver() is used to read in the values

being read by the receiver. The algorithm

utilizes a loop that calculates 2 channels at a

time, because that is how the data is paired up by

the Nexys board. In total, each channel is

represented by 12 bits, but data can only be

received in 8 bit increments. The data registers

are set up that each channel’s lower 8 bits of

data are in its own register. Its upper 4 bits of

data is paired up with another channel’s upper

bits to form an 8 bit number. The main goal of

this function is to take these registers and put

each channel’s data back together. Starting at

channel 1, the loop reads in the data for the

lower 8 bits of the odd and next even channel

(i.e. would process channels 1 and 2 together).

Then it reads in the register that contains the

upper bits for both channels. After splitting

those upper bits apart, it concatenates the values

to the lower 8 bits and creates an integer

representing the entire channel. It returns an

array of integers, each integer representing a

channel.

Remap()

Remap() basic function is to tell the Nexys

board how to remap the channels. It takes the

data from the GUI and passes it down to the

board where it is implemented in the VHDL.

Each channel is represented by a 5 bit number.

The lower 4 bits designate which channel it is

being remapped to, and the most significant bit

is the invert bit. To be passed down to the Nexys

board, the channels data (least significant 4 bits)

are paired up to form 8 bit values and all the

invert bits are in their own register. This

function creates those registers and passes the

data down to the Nexys board.

Send_to_nexys()

This function does exactly what it says, send the

data to the specified register using the dpcutil

library provided by Digilent.

Rcv_from_nexys()

This function gets the data from the specified

register using the dpcutil library provided by

Digilent.

send_to_nexys()

Send to Nexys is a function to write data to the

specified register using the dpcutil library

provided by Digilent.

set_mode()

Set mode is a new function that writes the mode

and current power states of the transmitter and

receiver to the mode/power register, CS_PWR.

The Mode/Power register is described furthur in

the Appendix.

set_tx()

Set_tx changes the channel on the transmitter

and turns it on. It also updates the mode/power

register on the PC side so the computer does not

accidentally turn off the transmitter when

updating that register with different information.

There is a 250 ms sleep in this program to

ensure proper channel switching time is allowed.

set_rx()

Set_rx does the same thing as set_tx, except for

the receiver. The power cycle delay in the

receiver is 500 ms instead of 250 ms.

Components
Nexys 2 FPGA Development Board

Figure 24 - Nexys 2 FPGA Developement Board

Frequency Checker

Figure 25 - Frequency Checker

Frequency Synthesizer

Figure 26 - Frequency Synthesizer

Futaba 9C Transmitter

Figure 27 - Futaba 9C Transmitter

Futaba PCM Receiver

Figure 28 - Futaba R319 DPS PCM Receiver

System Integration and Testing

Test Plan
Since the components are all varied in their

functionality, each component had its own tests

to verify functionality. For the hardware testing,

we built the new board, reconfigured the old

firmware to work with the new hardware and

tested all the functionality of the system to make

sure everything worked as it was with the old

circuitry.

For the Takeover firmware, the main task was to

test that the signal being generated from the

Nexys board was being accepted by the

dedicated transmitter and by the RC receiver.

To test this, the switches were used as the 8 bit

control, and the same data was sent on all the

channels after creating a VHDL wrapper for

what would be the final Buddy Box Module.

The takeover software was tested by writing a

new nexys_comm file and a console application

to run the command to test all the features. The

console application tested all the old features as

well as the shared registers and signal generation

from the Nexys Board. The verification of the

Nexys board generating takeover signals was a 5

second loop that moved the Elevators and

Rudder from one extreme to the center to the

opposite extreme and changed the throttle to

values between 0 and 30%.

The SilenTrack communication had the

additional challenge of security and clearance.

We were unable to test this until recently

because we had no access to the SilenTrack

system. After our first visit to Raytheon we

were able to modify our software to successfully

establish communication with SilenTrack and

process the data it was sending out to a format

we could use.

The test for the Pirating algorithm is to first

measure how accurately we can retransmit the

steady state signal, then check the effects of the

signals we send out to measure the effects.

After this, we have to verify that the software is

recognizing specific maneuvers associated with

changes in the signal such as increased throttle

and changes in the rudder or elevator.

Results and Analysis
The hardware has been successfully changed to

use a single power supply, have all components

on one board and to have more rugged

modification to COTS parts. It has been tested

with the original firmware and software as well

as the new firmware and the console app that

tested all the function of the new firmware.

The takeover firmware and software were

originally tested with an oscilloscope to make

sure the waveforms measured the PPM output of

the Futaba 9C transmitters. The signal was then

connected through the Buddy Box connection to

make sure it could control servos hooked up to a

receiver. We also implemented the test

procedure described in the test section to display

a test pattern on the airplane to verify that we are

controlling the airplane from the PC.

So far we have only had two chances to meet

with Raytheon to test our software with

SilenTrack. In the first meeting we had no

cameras, so we could only test our

communication with the computers. We didn't

have success with it initially since some of the

information we had on establishing a connection

was incorrect. After a few modifications we

were able to communicate with SilenTrack and

parse the data correctly. We verified this at our

meeting with the SilenTrack team in El

Segundo. We were able to read the data for

pedestrians and vehicles in the parking lot and

covert them to the right data format.

Due to the limited interaction and time with the

SilenTrack team we have not had a chance to

test the pirating algorithm. In the first

interaction we had no cameras, so we would not

be able to observe anything through the

SilenTrack system. During the second visit we

were not able to fly an airplane because the

SilenTrack system is setup over the Raytheon

employee parking lot, and it was filled up on the

day we went to test out the rest of the system.

So, in the interest of not causing unnecessary

property damage, we were only allowed to

record movement of the UAV while controlled

by a person and record the corresponding

SilenTrack data.

User Interface

The Graphical User Interface (GUI) is coded

using C++ in Visual Studio 2008. First,

communication with the Nexys board needed to

be tested to make sure the new communication

protocols worked properly. Manually inputted

data was sent via the Nexys communication to

simulate the sending of channel data and then

switching back to remap data. Second, testing

with SilenTrack communication was done with

sample SilenTrack data. This was done in two

ways. The first way this was tested was by

running through a loop of sample output data

from SilenTrack and verifying that the

information was passing through and being

parsed properly. The second way was by

connecting the GUI with the SilenTrack system

on-site at Raytheon in El Segundo and collecting

live data from the parking lot. The last part of

the GUI testing requires testing the channel

remap algorithm. Since this test requires both

the use of the SilenTrack system and an actual

flight of a UAV, this piece has not been fully

tested yet. The SilenTrack system has only

recently been made available for us to use at a

Raytheon facility, and we have not had the

opportunity to fly a UAV at the same time and

location where we could use SilenTrack. Based

on these difficulties, it sounds reasonable to use

a passive algorithm that doesn’t take control of

the plane while it remaps the channels, but

instead remaps channels as it observes a human

controller flying the plane. This latter method

will be a slower way to remap channels. For

instance, it would require a controller to change

the plane’s height before the algorithm can

figure out which channel is associated with

elevation. A future test is being planned with the

UAV and SilenTrack at a Raytheon facility in

Goleta.

System Integration:
After each module was verified as working

correctly they were integrated together. This test

relied heavily upon successful integration of

SilenTrack and Nexys communication for all

components to function together properly. The

system needed to be tested at a Raytheon site to

make use of the live SilenTrack system.

BUDGET AND JUSTIFICATION

Custom PCB
The custom PCB was used to replace the

previous bread board implementation of circuits

to perform level shifting of frequency checker

output and circuits to program 72MHz receiver

and frequency synthesizer. The Custom PCB

produced marked improvement in system

reliability and stability.

Futaba TP-FSM RF Frequency
Synthesizer Module
This COTS component is used to synthesize any

frequency on the 72 MHz band. One was

purchased to create a parallel upgraded system

to replace the original UAV Pirates system. A

Parallel system was built to allow the original

system to remain operational until the new

system was tested and verified to be fully

operational.

Futaba R319 DPS 9-Channel Receiver
Module
This COTS component is used to receive any

frequency on the 72 MHz band. One was

purchased to create a parallel upgraded system

to replace the original UAV Pirates system.

Hobbico 72MHz Frequency Checker
This COTS component is used to scan the

72MHz frequency band to check for activity on

all channels. One was purchased to create a

parallel upgraded system to replace the original

UAV Pirates system. A second unit was

purchased to replace a unit that was damaged by

accidental over voltage.

4.8V Rechargeable Battery Pack
The system was modified to run all Pirate

components except for the transmitter on 4.8V.

One additional battery pack was purchased to

extend the run time of Pirate system.

Voltmeter
The voltmeter plugs into the battery bus to allow

the user to monitor battery voltage. If battery

voltage is getting low the user can change out

one of the battery packs for a fully charged one

without having to power off the system.

Relay SSR 1A Mini-SIP
These relays are used to power cycle the

transmitter and receiver. Two were purchased to

create a parallel upgraded system to replace the

original UAV Pirates system.

IC Quad Bilateral Switch 14-DIP
These switches are used to program the

appropriate channels for the receiver and

synthesizer. Eight were purchased to create a

parallel upgraded system to replace the original

UAV Pirates system and to have several spares.

IC Quad Voltage Comparator 14-DIP
The comparators are used to perform voltage

level shifting to interface the 72MHz frequency

checker with the Nexys board. Eight were

purchased to create parallel upgraded system to

replace the original UAV Pirates system and to

have several spares.

Connectors, Cables, and Hardware
Various connectors and cables were purchased

and modified to interface the various COTS

modules, the custom PCB, and the Nexys board.

Hardware was purchased to mount the

individual components to a Plexiglas project

board.

Multiplex Easy Star RC Airplane
Fuselage
Main structural component of airplane used to

test our design and verify range of signals. One

fuselage was ordered to replace the original one

that was severely damaged while learning to fly

the RC plane.

BILL OF MATERIALS

Item Qty Unit Price Extended Price

Custom PCB 2 $163.20 $326.40

Futaba TP-FSM RF Frequency Synthesizer Module 1 $99.98 $99.98

Futaba R319 DPS 9-Channel Receiver Module 1 $189.99 $189.99

Hobbico 72MHz Frequency Checker 2 $28.99 $57.98

Futaba 4.8V Rechargeable Battery Pack 1 $34.99 $34.99

Voltmeter 1 $17.99 $17.99

Relay SSR 1A Mini-SIP 2 $13.43 $26.86

IC Quad Bilateral Switch 14-DIP 8 $0.29 $2.32

IC Quad Voltage Comparator 14-DIP 8 $0.57 $4.56

Multiplex Easy Star RC Airplane Fuselage 1 $28.49 $28.49

FX-2 Connector 1 $8.63 $8.63

Male Header 6 pin 2 row 2 $1.23 $2.46

Male Header 40 pin 2 row 2 $5.43 $10.86

Female Header 40 pin 2 row 1 $6.43 $6.43

Male Header 20 pin 2 row 6 $3.68 $22.08

Female Header 20 pin 2 row 6 $4.68 $28.08

Total $868.10

Figure 29 - Bill of Materials

Team Member Contributions

Travis Dean
My responsibility was primarily with developing

and integrating an algorithm to have the GUI

automatically remap the channels. My job also

included modifications to the GUI as needed to

integrate this functionality. The GUI changes

were simply adding a button to start the

algorithm after the system is set to receive

channel data.

The algorithm required much more thought. The

idea behind the algorithm is that the system will

take a steady state snapshot of the UAV and

store the data locally. Then, a small adjustment

is made to one channel, enough to cause the

plane to move out of the steady state. The

system looks at the SilenTrack data after

changing a channel, and determines if the UAV

moved out of the steady state. If it did, then the

system knows that the channel it changed

correlates to the change in the aircraft. For

instance, if the plane increased in height, then

the changed channel is associated with the

elevator. After each change, the UAV is returned

to its steady state so as to not interfere with the

next change.

The algorithm work also required me to

coordinate with Hushnak on the Nexys

communication protocols to ensure that the GUI

could switch between sending channel remap

data and actual channel servo data. We even

added a valid bit to confirm to the Nexys board

when data on the line was valid for reading.

In addition to work on the algorithm, I assisted

Ashley in the SilenTrack communication. Most

of this help was during testing and integration

phases to integrate SilenTrack with the GUI and

ensure proper communication with the

SilenTrack system.

Hushnak Singh
My responsibilities for this project were the

takeover firmware, takeover software as well as

be the Team Manager. As team manager I was

responsible for coordinating meeting times for

our weekly meetings as well as preparing the

slides for our progress. I assisted on the

development of the algorithm for the channel

association algorithm, helped troubleshoot issues

in the hardware redesign and helped modify

COTS parts for integration.

On the takeover firmware, I first analyzed the

signals coming from the Futaba transmitter,

looking at the signal times and arrangement for

control of the eight channels. I measured these

on an oscilloscope and designed a VHDL

module to create signals with the least data input

possible. I reduced the signal construction from

the old remap module's 12 bit to an 8 bit data

system. The benefit is that eight channels only

take 8 registers to transmit full control of a UAV

instead of 14 channels like the 9 channel FPGA

to PC read uses. This is done by building the

minimum pulse times into the VHDL and using

the full range of the 8 bit integer to control the

pulse from the minimum to maximum durations.

The tradeoff of using only 8 bits is that the

precision is changed to 4µs instead of 1µs for

the pulse width time. When compared to the

pulse times of 600µs to 1.5µs, this is not a

significant disadvantage as most servos will not

respond to pulse changes of 4µs anyways.

For the takeover software I modified the existing

Microblaze code to allow switching between

remap data and Nexys generated data for the

Buddy Box connection, and to read the data

from the USB registers and pass it along to the

Buddy Box Module to generate data for all 8

channels. I modified the frequency channel

changing functions on the FPGA and on the PC

side to have the waits on the PC side instead of

on the FPGA because they can be done with the

Sleep function on the PC where you can have

feedback that you are in sleep, but they have to

be done with useless executions of loops on the

FPGA.

Since we are using 9 registers for two functions

each, I also modified and tested a data read

mode system and a correct data validation

system. Because the USB IP core can only do

one way communication on each register, the PC

is assigned the responsibility of sending the right

information, and the Nexys board will process it

all based on the Mode/Power register. The two

functions most affected by this are the Remap

and Send_Signal functions. These both read

from a series of registers, so they check for the

proper data transmission mode as well as

making sure that the data is valid before they

start reading anything from the registers. The

Tx and Rx channel sets don't use the validation

because they only read from one register, but

they both check for the right mode so they don't

accidentally try to set the transmit or receive

channel to a value of a signal on channel 7 or 8.

I also modified and created a lot of code to test

all the functionality of these modules as well as

the rest of the firmware with the new software. I

developed a console application with a text

interface to test all the functions of the

Nexys_Comm file and all the functions in the

scurvy.c file based on the values in the USB

registers.

Ashley Wager

My primary responsibility was integrating the

Pirates GUI with Raytheon's SilenTrack by

implementing the necessary changes. This

included spawning a new thread in the program

that connects to SilenTrack and continually

receiving and parsing the track packets.

The SilenTrack thread uses the packets it

receives to continuous scan for an Ariel Vehicle.

Once it has found one of these the thread saves

the ID of this track and begins to check the

SilenTrack for this track only. Every time the

SilenTrack finds the track in the packet it is

looking for it parses that data and copies over to

our defined structure to allow Travis’s algorithm

in the main thread to access the track data easily.

This caused a shared data problem with the

algorithm in the main thread. This problem was

solved by enclosing every access to the data

structure between a wait and a release of a

mutex.

In addition to integrating the GUI with

SilenTrack I also helped with the overall

functionality of the GUI. Most of this help

consisted of fixing any errors that were

encountered and cleaning up disorderly code.

Matt Woolridge
My responsibilities for this project included

hardware development, budget and parts

management, and contribution to overall system

design, specifications, and testing.

My immediate contribution to this project was

being actively involved in the initial

development of the new system features,

requirements, and specifications. As a team

member I proposed ideas of how the system

should work and what would be needed to

achieve that. Throughout the project I continued

to provide input on system design changes.

My contributions in hardware development

included the layout, ordering, and assembly of a

custom PCB to replace the original breadboard

implementation of the frequency scanner

interface circuits, the receiver channel

programming circuits, and the frequency

synthesizer programming circuits. I also

redesigned the original Pirate system to run on a

single rechargeable supply voltage. This

modification eliminates the cost of replacing

expensive alkaline batteries and simplifies the

overall power distribution portion of the system.

To extend the operating time of the system when

running on battery power I added a bus type

connection that allows multiple rechargeable

battery packs to be connected in parallel to the

system board. Also, to allow the user to monitor

the voltage of the batteries I integrated a small

LED display voltmeter that can be plugged into

the battery bus. If the user notices the voltage is

running low they can swap out one of the battery

packs without losing power to the system. I was

also responsible for modifying all off the shelf

items that were integrated into the system. I put

a lot of effort into making the system as durable

and reliable as possible. It became apparent very

early that loose and broken connections between

the numerous components was creating a

troubleshooting nightmare so much care was

taken to make all connectors and cables as

rugged as possible. Besides reducing the

troubleshooting time required on our part, these

improvements will allow future teams to focus

on further system development and not system

maintenance. I was also responsible for system

hardware documentation. This included creating

detailed and accurate circuit diagrams and

wiring diagrams. Good documentation resources

are key to ensuring future teams can understand

how the system works and to facilitate future

modifications. The accompanying user’s manual

was updated to reflect all changes made to the

system and contains detailed interconnect

diagrams, wiring diagrams, pin outs, and an

illustrated parts breakdown.

As parts and budget manager I was responsible

for submitting parts requests, ordering parts, and

keeping track of our remaining budget. These

actions were coordinated through the Cal Poly

Project Based Learning manager and our

Raytheon project advisor.

Through all phases of the project I performed or

assisted in testing and verification of the system

and its numerous sub components.

APPENDICES

Get Pirates program to work in VS
The following four downloads are required for the Pirates GUI program to operate properly.

Downloading and installing the correct version is important as newer versions of the software will not

work.

Microsoft Visual Studio 2008 SP1

http://www.microsoft.com/downloads/details.aspx?FamilyId=FBEE1648-7106-44A7-9649-

6D9F6D58056E&displaylang=en

Microsoft Chart control for ms.net framework 3.5

http://www.microsoft.com/downloads/details.aspx?FamilyId=130F7986-BF49-4FE5-9CA8-

910AE6EA442C&displaylang=en

Microsoft chart controls add-on for Microsoft Visual Studio 2008

http://www.microsoft.com/downloads/details.aspx?FamilyId=1D69CE13-E1E5-4315-825C-

F14D33A303E9&displaylang=en

Digilent adept 1.1 – Make sure to download version 1.1, not the newer version

http://www.digilentinc.com/Products/Detail.cfm?Prod=ADEPT

http://www.microsoft.com/downloads/details.aspx?FamilyId=FBEE1648-7106-44A7-9649-6D9F6D58056E&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=FBEE1648-7106-44A7-9649-6D9F6D58056E&displaylang=en
http://ms.net/
http://www.microsoft.com/downloads/details.aspx?FamilyId=130F7986-BF49-4FE5-9CA8-910AE6EA442C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=130F7986-BF49-4FE5-9CA8-910AE6EA442C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=1D69CE13-E1E5-4315-825C-F14D33A303E9&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=1D69CE13-E1E5-4315-825C-F14D33A303E9&displaylang=en
http://www.digilentinc.com/Products/Detail.cfm?Prod=ADEPT

Team Member Contributions

Name Roles and Responsibilities

Travis Dean Software

Developer

Implemented Pirating Algorithm

Cleaned up old GUI

Integrated SilenTrack thread

Modified main thread to use modified firmware

Made new changes to Gui

Hushnak Singh Team Manager

Firmware

Developer

Coordinated group meetings and Teleconferences

Designed and implemented UAV control signals on Nexys Board

Wrote software to adjust control signals from PC

Wrote software to test all the hardware and new firmware

Implemented shared data registers for different data types

Cleaned up power cycling for better control from the PC

Ashley Wager Software

Developer

Designed Silentrack Interface

Designed data exchange between SilenTrack and Pirates

Resolved race condition in data sharing

Assisted in data validation for shared FPGA USB registers

Matt Woolridge Parts Acquisition

Hardware

Developer

Redesigned hardware to work on one battery

Combined all the circuitry on one board

Assembled and tested the PCB and modified COTS parts

Improved and corrected the circuit diagrams from last year

Ordered and Procured tools and parts

System Assembly

Figure 30 - System Interconnect Diagram

Assembly Name Description

A1 Nexys 2 Interfaces Pirate GUI with RF modules

A2 PCB
Performs level shifting and channel programming interface between

COT modules and Nexys 2

A3 Frequency Checker Monitors 72 MHz band for active channels

A4 Receiver Receives servo control signals being sent to UAV

A5 Frequency Synthesizer Generates appropriate RF carrier frequency

A6 Output Transmitter
Converts pilot transmitter or system generated PPM control signals

and transmits them to UAV

A7 Pilot Transmitter Radio controller for user to control UAV

A8 PC Interfaces with SilenTrack and runs Pirate GUI

A9 4.8V Battery Pack Rechargable battery pack to power Pirate system

A10 Voltmeter Plugin LED Voltmeter with 9V battery

A11 SilenTrack Raytheon 3D Video Tracking System

CA1
Nexys 2 / PCB Interface

Cable
40 Conductor Ribbon Cable

CA2 Receiver Output Cable Custom Cable

CA3
Frequency Synthesizer

Output Cable
Custom Cable

CA4 Buddy Box Cable Buddy Box Cable

CA5
Nexys 2 / PC Interface

Cable
USB to mini USB Cable

CA6
PC / SilenTrack Interface

Cable
CAT5 Network Cable

Figure 31 - System Assembly Description

PCB Schematic

1
C9out

2
C10out

4.8V
3

14

13

12

C7out

C8out

GNDLM239N

4
Vref 2

11
C8

5
C10

6
Vref 2

C9
7

10

9

8

Vref 2

C7

Vref 2U1

1

2

3

4

R1

R2

R3

R4

5

6

7

8

R5

C1

C2

C3

17

18

19

20

nc

GND

nc

+4.8V

9

10

11

12

C4

C5

C6

C7

R16

1.62 kΩ

R17

10 kΩ

R18

7.5 kΩ

R3

1kΩ

R4

1kΩ

1
R4out

2
R3out

4.8V
3

14

13

12

R1out

R2out

GNDLM239N

4
R3

11
Vref 1

5
Vref 1

6
R4

Vref 1
7

10

9

8

R2

Vref 1

R1U2

1
C6out

2
C5out

4.8V
3

14

13

12

nc

C4out

GNDLM239N

4
Vref 2

11
C4

5
C5

6
Vref 2

C6
7

10

9

8

Vref 2

nc

ncU3

1
R5out

2
C3out

4.8V
3

14

13

12

C2out

C1out

GNDLM239N

4
Vref 2

11
C1

5
C3

6
R5

Vref 1
7

10

9

8

Vref 2

C2

Vref 2U4

B
a

tt
e

ry
 P

a
c
k

J
5

Vref 1

Vref 2

R2

1kΩ

R1

1kΩ

R8

1kΩ

R7

1kΩ

R6

1kΩ

R5

1kΩ

R11

1kΩ

R10

1kΩ

R9

1kΩ

R13

1kΩ

R12

1kΩ

R15

1kΩ

R14

1kΩ

1
R1out

2
C3out

R2out
3

C4out
4

13
nc

14
C9out

nc
15

C10out
16

9
R5out

10
C7out

nc
11

C8out
12

5
R3out

6
C5out

R4out
7

C6out
8

29
Tx tens 1

30
Tx tens 2

Tx tens 3
31

Tx tens 4
32

25
Rx ones 1

26
Rx ones 2

Rx ones 3
27

Rx ones 4
28

21
Rx tens 1

22
Rx tens 2

Rx tens 3
23

Rx tens 4
24

17
nc

18
C2out

nc
19

C1out
20

33
Tx ones 1

34
Tx ones 2

Tx ones 3
35

Tx ones 4
36

37
Rx pwr cycle

38
Tx pwr cycle

gnd
39

gnd
40

N
e

x
y
s
 2

J
1

1
RX T1

2
RX T3

3

14

13

12

GND

Rx tens 2

Rx tens 3CD4016BE

4
RX T2

11
RX T6

5
Rx tens 1

6
Rx tens 4

4.8V
7

10

9

8

RX T4

RX T5U5

1
RX O1

2
RX O3

3

14

13

12

GND

Rx ones 2

Rx ones 3CD4016BE

4
RX O2

11
RX O6

5
Rx ones 1

6
Rx ones 4

4.8V
7

10

9

8

RX O4

RX O5U6

1
TX O1

2
TX O3

3

14

13

12

GND

Tx ones 2

Tx ones 3CD4016BE

4
TX O2

11
TX O6

5
Tx ones 1

6
Tx ones 4

4.8V
7

10

9

8

TX O4

TX O5U7

1
TX T1

2
TX T3

3

14

13

12

GND

Tx tens 2

Tx tens 3CD4016BE

4
TX T2

11
TX T6

5
Tx tens 1

6
Tx tens 4

4.8V
7

10

9

8

TX T4

TX T5U8

13

14

15

16

C8

C9

C10

nc

F
re

q
u

e
n

c
y
 C

h
e

c
k
e

r

J
2

1

2

3

4

RX T1

RX T2

RX T3

RX T4

5

6

7

8

RX T5

RX T6

RX O1

RX O2

17

18

19

20

nc

nc

nc

+4.8V

9

10

11

12

RX O3

RX O4

RX O5

RX O6

13

14

15

16

nc

nc

nc

RX GND

R
e

c
e

iv
e

r

J
3

1

2

3

4

TX T1

TX T2

TX T3

TX T4

5

6

7

8

TX T5

TX T6

TX O1

TX O2

17

18

19

20

nc

nc

nc

nc

9

10

11

12

TX O3

TX O4

TX 05

TX O6

13

14

15

16

GND

nc

nc

nc

F
re

q
u

e
n

c
y
 S

y
n

th
e

s
iz

e
r

J
4

1
RX GND

2
GND

4

3

GND

Rx pwr cycle
RX Reset Relay

K1

1
Pwr in

2
Pwr out

4

3

GND

Tx pwr cycle
TX Reset Relay

K2

1
Pwr in

2
Pwr out

T
X

 P
o

w
e

r

R
e

s
e

t

J
6

SW1

D1

R19

510 Ω

+4.8V

GND

+

-

Figure 32 - Pirate PCB Schematic

Mode/Power Register Explained

CS_PWR Register Usage

bit 7 6 5 4 3 2 1 0

usage Source Select Reg 7-12 Tx/CH7 Rx/CH8
Valid
data unused

Tx
Power

Rx
Power

1 Nexys generated
Channel
Data CH7 CH8 Valid

on on

0
Remap Buddy Box
input

Remap
Data

TX
channel

Rx
channel

Not
valid

off off

Bit 0 - 0x01 1=Receiver powered on
Bit 1 - 0x02 1=Transmitter powered on
Bit 2 - 0x04 Not used
Bit 3 - 0x08 1=Data is valid to be read (Does not include validation for RXON or TXON)
Bit 4 - 0x10 1=Ch8 data, 0=RX_Channel
Bit 5 - 0x20 1=Ch7 data, 0=TX_Channel
Bit 6 - 0x40 1=Sending Ch 1-6 Direct Data, 0=Sending Remap/invert data
Bit 7 - 0x80 1=Transmit from Channel Data, 0=Transmit from Remap data

