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Abstract The (asymptotic) behaviour of the second moment of solutions to stochas-
tic differential equations is treated in mean-square stability analysis. This property
is discussed for approximations of infinite-dimensional stochastic differential equa-
tions and necessary and sufficient conditions ensuringmean-square stability are given.
They are applied to typical discretization schemes such as combinations of spectral
Galerkin, finite element, Euler–Maruyama, Milstein, Crank–Nicolson, and forward
and backward Euler methods. Furthermore, results on the relation to stability proper-
ties of corresponding analytical solutions are provided. Simulations of the stochastic
heat equation illustrate the theory.
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1 Introduction

An interesting property of a stochastic differential equation (SDE) or a stochastic par-
tial differential equation (SPDE) is the qualitative behaviour of its second moment for
large times. Both types of equations can be interpreted as SDEs on a (here separable)
Hilbert space (H, 〈·, ·〉H ). More specifically, let us consider a complete filtered prob-
ability space (Ω,A , (Ft , t ≥ 0), P) satisfying the “usual conditions” and the model
problem

dX (t) = (AX (t) + FX (t)) dt + G(X (t)) dL(t) (1.1)

with F0-measurable, square-integrable initial condition X (0) = X0. Here, the oper-
ator A : D(A) → H is the generator of a C0-semigroup S = (S(t), t ≥ 0) on H and
F is a linear and bounded operator on H , i.e., F ∈ L(H). Furthermore, L denotes
a U -valued Q-Lévy process that is assumed to be a square-integrable martingale as
considered in [27] on the real separable Hilbert space (U, 〈·, ·〉U ) with covariance
Q ∈ L(U ) of trace class and let G ∈ L(H ; L(U ; H)).

We recall from [24] that an equilibrium (solution) of (1.1) is the zero solution
(Xe(t) = 0, t ≥ 0). It is called mean-square stable if, for every ε > 0, there exists
δ > 0 such that E[‖X (t)‖2H ] < ε for all t ≥ 0 whenever E[‖X0‖2H ] < δ. It is
further asymptotically mean-square stable if it is mean-square stable and there exists
δ > 0 such that E[‖X0‖2H ] < δ implies limt→∞ E[‖X (t)‖2H ] = 0. A lot of effort has
been dedicated to the asymptotic mean-square stability analysis in finite and infinite
dimensions, see e.g., [2,17,24,26].

Since analytical solutions to SDEs are rarely available, approximations in time
and possibly in space by numerical methods have to be considered. The main focus
of research in recent years has been on strong and weak convergence when the dis-
cretization parameters �t in time and h in space tend to zero. However, this property
does not guarantee that the approximation shares the same (asymptotic) mean-square
stability properties as the analytical solution. For finite-dimensional SDEs it is known
that the specific choice of �t is essential. The goal of this manuscript is to generalize
the theory of asymptotic mean-square stability analysis to a Hilbert space setting. We
develop a theory for approximation schemes that has apriori no relation to the original
Eq. (1.1) and its properties. Later on, we will discuss which conditions on (1.1) and
its approximation lead to similar behaviour. An important application of mean-square
stability is in multilevelMonte Carlo methods, where combinations of approximations
on different space and time grids are computed. If the solution is mean-square unstable
on any of the included levels, this is enough for the estimator not to behave as it should,
see, e.g., [1].
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Mean-square stability analysis of SDE approximations 965

The mean-square stability analysis of numerical approximations of SDEs started
by considering approximations of the one-dimensional geometric Brownian motion,
see e.g., [14,15,29]. As it has been pointed out in [10,11], the analysis of higher-
dimensional systems and their approximations is also necessary, since the asymptotic
behaviour of the corresponding mean-square processes of systems with commuting
and non-commuting matrices often differs. The tools to perform mean-square stabil-
ity analysis of SDE approximations presented in [11] could in principle be used for
approximations of infinite-dimensional SDEs by a method of lines approach: After
projection on an Nh-dimensional space the mean-square stability properties of the
resulting finite-dimensional SDEs and their approximations can be determined by
considering the eigenvalues of N 2

h × N 2
h -dimensional matrices. However, due to the

computational complexity as Nh → ∞, neither the symbolic nor the numerical com-
putation of these eigenvalues can be done for arbitrarily large systems. For this reason,
we use an approach based on tensor-product-space-valued processes and properties
of tensorized linear operators.

The outline of this article is as follows: Sect. 2 sets up a theory of mean-square
stability analysis for discrete stochastic processes derived from recursions as they
appear in approximations of infinite-dimensional SDEs. In the main result, neces-
sary and sufficient conditions for asymptotic mean-square stability are shown. These
results are then applied in Sect. 3 to numerical approximations of (1.1) based on spa-
tial Galerkin discretization schemes and time discretizations with Euler–Maruyama
and Milstein methods using backward/forward Euler and Crank–Nicolson as rational
semigroup approximations. We conclude this work presenting simulations of stochas-
tic heat equations with spectral Galerkin and finite element methods in Sect. 4 that
illustrate the theory.

2 Asymptotic mean-square stability analysis

This section is devoted to the setup of asymptotic mean-square stability for families of
stochastic processes in discrete time given by recursion schemes as they typically show
up in approximations of (1.1). We derive necessary and sufficient conditions ensuring
asymptotic mean-square stability that can be checked in practice as it is shown later
in Sect. 3.

Let (Vh, h ∈ (0, 1]) be a family of finite-dimensional subspaces Vh ⊂ H with
dim(Vh) = Nh ∈ N indexed by a refinement parameter h. With an inner product
induced by 〈·, ·〉H , Vh becomes a Hilbert space with norm ‖ · ‖H . For a lin-
ear operator D : Vh → Vh , the operator norm ‖D‖L(Vh) is therefore given by
supv∈Vh ‖Dv‖H/‖v‖H and canbe seen to coincidewith‖DPh‖L(H),where Ph denotes
the orthogonal projection onto Vh .

Let us further consider the time interval [0,∞) and for convenience equidistant time
steps t j = j�t , j ∈ N0, with fixed step size �t > 0. Hence, t → ∞ is equivalent
to j → ∞. Assume that we are given a sequence of Vh-valued random variables
(X j

h , j ∈ N0) determined by the linear recursion scheme
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966 A. Lang et al.

X j+1
h = Ddet

�t,h X
j
h + Dstoch, j

�t,h X j
h (2.1)

with F0-measurable initial condition X0
h ∈ L2(Ω; Vh), i.e., E[‖X0

h‖2Vh ] < ∞. Here

Ddet
�t,h ∈ L(Vh) and Dstoch, j

�t,h is an L(Vh)-valued random variable for all j .

In terms of SDE (1.1), one can think of Ddet
�t,h as the approximation of the solution

operator of the deterministic part

dX (t) = (AX (t) + FX (t)) dt, t ∈ [t j , t j+1)

and Dstoch, j
�t,h approximates the stochastic part

dX (t) = G(X (t)) dL(t), t ∈ [t j , t j+1).

Although, in general, any not necessarily equidistant time discretization (t j , j ∈ N0)

that satisfies t j → ∞ if j → ∞ would be sufficient for the following theory, we see
in the given SDE example that Ddet

�t,h would be j-dependent in this case, which we
want to omit for the sake of readability.

Inspired by properties of standard approximation schemes for (1.1), we put the
following assumptions on the family (Dstoch, j

�t,h , j ∈ N0).

Assumption 2.1 Let h,�t > 0 be fixed. The family (Dstoch, j
�t,h , j ∈ N0) is

F -compatible in the sense of [12,21], i.e., Dstoch, j
�t,h is Ft j+1 -measurable and

E[Dstoch, j
�t,h |Ft j ] = 0 for all j ∈ N0. Furthermore, for all j ∈ N0, let

‖Dstoch, j
�t,h ‖L2(Ω;L(Vh)) = E[‖Dstoch, j

�t,h ‖2L(Vh)]1/2 < ∞

and

E

[
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

∣∣∣Ft j

]
= E

[
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

]
,

where ⊗ denotes the tensor product.

For the recursion scheme (2.1) an equilibrium (solution) is given by the zero solu-
tion, which is defined as X j

h,e = 0 for all j ∈ N0. We define mean-square stability of
the zero solution of (2.1) in what follows.

Definition 2.1 Let Xh = (X j
h , j ∈ N0) be given by (2.1) for fixed h and�t . The zero

solution (X j
h,e = 0, j ∈ N0) of (2.1) is called mean-square stable if, for every ε > 0,

there exists δ > 0 such that E[‖X j
h‖2H ] < ε for all j ∈ N0 whenever E[‖X0

h‖2H ] < δ.

It is called asymptotically mean-square stable if it is mean-square stable and there
exists δ > 0 such that E[‖X0

h‖2H ] < δ implies lim j→∞ E[‖X j
h‖2H ] = 0. Furthermore,

it is called asymptoticallymean-square unstable if it is not asymptoticallymean-square
stable.
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Mean-square stability analysis of SDE approximations 967

For convenience, the abbreviation (asymptotic) mean-square stability is used for
the (asymptotic) mean-square stability of the zero solution of (2.1) or (1.1) if it is clear
from the context.

When applied to Y j = X j
h , the following lemma provides an equivalent condi-

tion for mean-square stability in terms of the tensor-product-space-valued process
X j
h ⊗ X j

h ∈ V (2)
h .Here, for a generalHilbert space H , the abbreviation H (2) = H ⊗ H

is used and H (2) is defined as the completion of the algebraic tensor product with
respect to the norm induced by

〈v,w〉H⊗H =
N∑
i=1

M∑
j=1

〈
v1,i , w1, j

〉
H

〈
v2,i , w2, j

〉
H ,

where v = ∑N
i=1 v1,i ⊗ v2,i and w = ∑M

j=1 w1, j ⊗ w2, j are representations of
elements v and w in the algebraic tensor product.

Lemma 2.1 Let Vh be a finite-dimensional subspace of H. Then, for any sequence
(Y j , j ∈ N0) of Vh-valued, square-integrable random variables,
lim j→∞ E[Y j ⊗ Y j ] = 0 if and only if lim j→∞ E[‖Y j‖2H ] = 0.

Proof By Parseval’s identity, for an orthonormal basis (ψ1, . . . , ψNh ) of Vh , we have

∥∥E [
Y j ⊗ Y j

]∥∥2
H (2) =

Nh∑
k,�=1

∣∣E [〈
Y j ⊗ Y j , ψk ⊗ ψ�

〉
H (2)

]∣∣2

=
Nh∑

k,�=1

∣∣E [〈Y j , ψk〉H 〈Y j , ψ�〉H
]∣∣2

and similarly

E

[
‖Y j‖2H

]
=

Nh∑
k=1

E

[〈
Y j , ψk

〉2
H

]
.

Therefore, one implication is immediately obtained, while the other follows from the
fact that

∥∥E [
Y j ⊗ Y j

]∥∥
H (2) ≤ E

[∥∥Y j ⊗ Y j
∥∥
H (2)

] = E

[
‖Y j‖2H

]
.

This finishes the proof. �

This lemma enables us to show the following sufficient condition for asymptotic

mean-square stability.
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968 A. Lang et al.

Theorem 2.1 Let Xh = (X j
h , j ∈ N0) given by (2.1) satisfy Assumption 2.1 and set

S j = Ddet
�t,h ⊗ Ddet

�t,h + E

[
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

]
.

Then the zero solution of (2.1) is asymptotically mean-square stable, if

lim
j→∞ ‖S j · · ·S0‖L(V (2)

h )
= 0.

Proof Let us first remark thatS j ∈ L(V (2)
h ) for all j ∈ N0 by the properties of Ddet

�t,h

and Dstoch, j
�t,h and of the Hilbert tensor product. In order to show asymptotic mean-

square stability, it suffices to show E[X j
h ⊗ X j

h ] → 0 as j → ∞ by Lemma 2.1. For
this, consider

E[X j+1
h ⊗ X j+1

h ] = E

[(
Ddet

�t,h + Dstoch, j
�t,h

)
X j
h ⊗

(
Ddet

�t,h + Dstoch, j
�t,h

)
X j
h

]

= E

[(
Ddet

�t,h ⊗ Ddet
�t,h

) (
X j
h ⊗ X j

h

)]

+ E

[(
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

) (
X j
h ⊗ X j

h

)]

+ E

[(
Ddet

�t,h ⊗ Dstoch, j
�t,h

) (
X j
h ⊗ X j

h

)]

+ E

[(
Dstoch, j

�t,h ⊗ Ddet
�t,h

) (
X j
h ⊗ X j

h

)]
.

The mixed terms vanish by the observation that

E

[(
Ddet

�t,h ⊗ Dstoch, j
�t,h

) (
X j
h ⊗ X j

h

)]

= E

[(
Ddet

�t,h ⊗ E[Dstoch, j
�t,h |Ft j ]

) (
X j
h ⊗ X j

h

)]
= 0,

since X j
h and Ddet

�t,h areFt j -measurable and E[Dstoch, j
�t,h |Ft j ] = 0 by Assumption 2.1.

Applying Assumption 2.1 once more, we therefore conclude

E[X j+1
h ⊗ X j+1

h ]
= E

[(
Ddet

�t,h ⊗ Ddet
�t,h + Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

) (
X j
h ⊗ X j

h

)]

= E

[(
Ddet

�t,h ⊗ Ddet
�t,h + E

[
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h |Ft j

]) (
X j
h ⊗ X j

h

)]

=
(
Ddet

�t,h ⊗ Ddet
�t,h + E

[
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

])
E

[
X j
h ⊗ X j

h

]
.

and obtain

E

[
X j+1
h ⊗ X j+1

h

]
= S j E

[
X j
h ⊗ X j

h

]
= (S j · · ·S0)E

[
X0
h ⊗ X0

h

]
.
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Mean-square stability analysis of SDE approximations 969

Since lim j→∞ ‖S j · · ·S0‖L(V (2)
h )

= 0, mean-square stability is shown with the

computation

E

[
‖X j+1

h ‖2H
]2

=
( Nh∑
k=1

E

[
〈X j+1

h , ψk〉2H
])2 ≤ Nh

Nh∑
k=1

E

[
〈X j+1

h , ψk〉2H
]2

≤ Nh

∥∥∥E
[
X j+1
h ⊗ X j+1

h

]∥∥∥
2

H (2)
≤ Nh‖S j · · ·S0‖2L(V (2)

h )
E

[
‖X0

h‖2H
]2

.

For asymptotic mean-square stability, note that for anyF0-measurable initial value
X0
h ∈ L2(Ω; Vh) it holds that lim j→∞ E[X j

h ⊗ X j
h ] = 0 if and only if

lim
j→∞

∥∥∥(
S j · · ·S0

)
E

[
X0
h ⊗ X0

h

]∥∥∥
V (2)
h

= 0,

for which a sufficient condition is given by lim j→∞ ‖S j · · ·S0‖L(V (2)
h )

= 0. There-

fore, the proof is finished. �

In many examples the operators (Dstoch, j

�t,h , j ∈ N0) have a constant covariance, i.e.,
they satisfy for all j ∈ N0

E

[
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

]
= E

[
Dstoch,0

�t,h ⊗ Dstoch,0
�t,h

]
. (2.2)

Often as in the following example they are even independent and identically dis-
tributed, which implies (2.2).

Example 2.1 Consider the one-dimensional geometric Brownian motion driven by an
adapted, real-valued Brownian motion (β(t), t ≥ 0)

dX (t) = λX (t)dt + σ X (t)dβ(t), t ≥ 0,

with initial condition X (0) = x0 ∈ R and λ, σ ∈ R. The solution can be approximated
by the explicit Euler–Maruyama scheme

X j+1 = X j + λ�t X j + σ�β j X j ,

for j ∈ N0, where �β j = β(t j+1) − β(t j ), or by the Milstein scheme

X j+1 = X j + λ�t X j + σ�β j X j + 2−1σ 2
(
(�β j )2 − �t

)
X j .

Then the deterministic operators in (2.1)

Ddet
�t,EM = Ddet

�t,Mil = 1 + λ�t
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970 A. Lang et al.

are equal for both schemes, and the corresponding approximations of the stochastic
integrals are given by

Dstoch, j
�t,EM = σ�β j , Dstoch, j

�t,Mil = σ�β j + 2−1σ 2
(
(�β j )2 − �t

)

for j ∈ N0. Both families of stochastic approximation operators satisfy Assump-
tion 2.1 and

E

[
Dstoch, j

�t,EM ⊗ Dstoch, j
�t,EM

]
= σ 2�t, E

[
Dstoch, j

�t,Mil ⊗ Dstoch, j
�t,Mil

]
= σ 2�t

(
1 + 2−1σ 2�t

)

do not depend on j . We observe that the equidistant time step �t is essential here.

Having this example inmind,we are able to give a necessary and sufficient condition
for asymptotic mean-square stability when assuming (2.2) and therefore to specify
Theorem 2.1. The condition relies on the spectrum of a single linear operator S ∈
L(V (2)

h ).

Corollary 2.1 Let Xh = (X j
h , j ∈ N0) given by (2.1) satisfy Assumption 2.1 and

(2.2). Then the zero solution of (2.1) is asymptotically mean-square stable if and only
if

S = Ddet
�t,h ⊗ Ddet

�t,h + E

[
Dstoch,0

�t,h ⊗ Dstoch,0
�t,h

]
∈ L(V (2)

h )

satisfies ρ(S ) = maxi=1,...,N2
h
|λi | < 1, whereλ1, . . . , λN2

h
are the eigenvalues ofS .

Furthermore, it is asymptotically mean-square stable if ‖S ‖
L(V (2)

h )
< 1.

Proof Setting S j = S for all j ∈ N0 in Theorem 2.1, we obtain by the same
arguments

E

[
X j+1
h ⊗ X j+1

h

]
= (

S j · · ·S0
)
E

[
X0
h ⊗ X0

h

]
= S j+1

E

[
X0
h ⊗ X0

h

]
.

As a consequence, lim j→∞ E[X j
h ⊗ X j

h ] = 0 if and only if lim j→∞ S j = 0
which is equivalent to ρ(S ) < 1 by the same arguments as, e.g., in [8,11,17]. This
completes the proof of the first statement. Since ρ(S ) ≤ ‖S ‖

L(V (2)
h )

, a sufficient

condition for asymptotic mean-square stability is given by ‖S ‖
L(V (2)

h )
< 1. �


In the framework of SDE approximations, note that this corollary is an SPDE
version formulated with operators of the results for finite-dimensional linear systems
in [11]. There, the proposed method relies on a matrix eigenvalue problem. For SPDE
approximations, this approach is not suitable, since the dimension of the considered
eigenvalue problem increases heavily with space refinement. More precisely, for h >

0, the spectral radius of an (N 2
h × N 2

h )-matrix has to be computed. To overcome
this problem, we perform, in what follows, mean-square stability analysis of SPDE
approximations based on operators as introduced above.
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Mean-square stability analysis of SDE approximations 971

3 Application to Galerkin methods

We continue by applying the previous results to the analysis of some classical numer-
ical approximations of (1.1) which admits by results in [27, Chapter 9] an up to
modification unique mild càdlàg solution and is for t ≥ 0 given by

X (t) = S(t)X0 +
∫ t

0
S(t − s)F(X (s)) ds +

∫ t

0
S(t − s)G(X (s)) dL(s). (3.1)

We assume further that the operator −A : D(−A) ⊂ H → H of (1.1) is densely
defined, self-adjoint, and positive definite with compact inverse. This implies that −A
has a non-decreasing sequence of positive eigenvalues (λi , i ∈ N) for an orthonormal
basis of eigenfunctions (ei , i ∈ N) in H and fractional powers of −A are provided by

(−A)r/2ei = λ
r/2
i ei

for all i ∈ N and r > 0. For each r > 0, Ḣr = D((−A)r/2)with inner product 〈·, ·〉r =〈
(−A)r/2·, (−A)r/2·〉H defines a separable Hilbert space (see, e.g., [20, Appendix B]).
We assume that the sequence (Vh, h ∈ (0, 1]) of finite-dimensional subspaces fulfil

Vh ⊂ Ḣ1 ⊂ H and define the discrete operator −Ah : Vh → Vh by

〈−Ahvh, wh〉H = 〈vh, wh〉1 =
〈
(−A)1/2vh, (−A)1/2wh

〉
H

for all vh, wh ∈ Vh . This definition implies that −Ah is self-adjoint and posi-
tive definite on Vh and therefore has a sequence of orthonormal eigenfunctions
(eh,i , i = 1, . . . , Nh) and positive non-decreasing eigenvalues (λh,i , i = 1, . . . , Nh)

(see e.g., [20, Chapter 3]). By using basic properties of the Rayleigh quotient, we
bound the smallest eigenvalue λh,1 of −Ah from below by the smallest eigenvalue λ1
of −A through

λh,1 = min
vh∈Vh\{0}

〈vh, vh〉1
‖vh‖2H

≥ min
v∈H\{0}

〈v, v〉1
‖v‖2H

= λ1, (3.2)

since Vh ⊂ H , cf. [9]. This estimate turns out to be useful when comparing asymptotic
mean-square stability of (1.1) and its approximation later in this section.

Let the covariance of the Lévy process L be self-adjoint, positive semidefinite, and
of trace class. Then results in [27, Chapter 4] imply the existence of an orthonormal
basis ( fi , i ∈ N) of U and a non-increasing sequence of non-negative real numbers
(μi , i ∈ N) such that for all i ∈ N, Q fi = μi fi with Tr(Q) = ∑∞

i=1 μi < ∞ and L
admits a Karhunen–Loève expansion

L(t) =
∞∑
i=1

√
μi Li (t) fi , (3.3)
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972 A. Lang et al.

where (Li , i ∈ N) is a family of real-valued, square-integrable, uncorrelated Lévy
processes satisfying E[(Li (t))2] = t for all t ≥ 0. Note that due to the martingale
property of L , the real-valued Lévy processes satisfy E[Li (t)] = 0 for all t ≥ 0 and
i ∈ N. This implies, together with the stationarity of the Lévy increments �L j

i =
Li (t j+1) − Li (t j ), that for all i ∈ N and j ∈ N0,

E

[
�L j

i

]
= E

[
�L0

1

]
= E [L1(�t)] = 0.

Since the series representation of L can be infinite, an approximation of L might be
required to implement a fully discrete approximation scheme, which is typically done
by truncation of the Karhunen–Loève expansion, i.e., for κ ∈ N, set the truncated
process Lκ(t) = ∑κ

i=1
√

μi Li (t) fi . Note that the choice of κ is essential and should
be coupled with the overall convergence of the numerical scheme as is discussed in,
e.g., [3,5,25]. Within this work, we consider numerical methods based on the original
Karhunen–Loève expansion (3.3) of L . However, this does not restrict the applicability
of the results since Lκ fits in the framework by setting μi = 0 for all i > κ .

As standard example in this context we consider the stochastic heat equation which
is used for simulations in Sect. 4.

Example 3.1 (Stochastic heat equation) Let H = L2([0, 1]) be the separable Hilbert
space of square-integrable functions on [0, 1]. On this space we consider the operator
A = ν�, where ν > 0 and � denotes the Laplace operator with homogeneous
zero Dirichlet boundary conditions which is the generator of a C0-semigroup, cf. [20,
Example 2.21]. The equation

dX (t) = ν�X (t) dt + G(X (t)) dL(t)

is referred to as the (homogeneous) stochastic heat equation.
It is known (see, e.g., [20, Chapter 6]) that the eigenvalues and eigenfunctions of

the operator −A are given by

λi = νi2π2, ei (y) = √
2 sin(iπy), i ∈ N, y ∈ [0, 1].

We first assume, for simplicity, that U = H = L2([0, 1]) and that the operator Q
diagonalizes with respect to the eigenbasis of −A, i.e., fi = ei for all i ∈ N. For
this choice, we consider the operator G = G1 that gives rise to a geometric Brownian
motion in infinite dimensions, cf. [20, Sect. 6.4]. It is for all u, v ∈ H defined by the
equation

G1(v)u =
∞∑
i=1

〈v, ei 〉H 〈u, ei 〉Hei .

As a second example, we let U = Ḣ1 with the same diagonalization assumption as
before, i.e., fi = λ

1/2
i ei for all i ∈ N. Here, we let the operatorG = G2 be aNemytskii

operator which is defined pointwise for x ∈ [0, 1], u ∈ Ḣ1 and v ∈ H by
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(G2(v)u)[x] = v(x)u(x).

To see that G ∈ L(H ; L(U ; H)) note that for u, v ∈ H , by the triangle inequality
and Cauchy–Schwarz we have for G1

‖G1(v)u‖H ≤
∞∑
i=1

|〈v, ei 〉H ||〈u, ei 〉H | ≤
( ∞∑

i=1

〈v, ei 〉2H
)1/2 ( ∞∑

i=1

〈u, ei 〉2H
)1/2

= ‖v‖H‖u‖H .

Next, for G2 with v ∈ H and u ∈ Ḣ1, it holds that

‖G2(v)u‖2H =
∫ 1

0
u(x)2v(x)2 dx =

∫ 1

0

( ∞∑
i=1

λ
1/2
i 〈u, ei 〉H λ

−1/2
i ei (x)

)2

v(x)2 dx

≤
( ∞∑

i=1

λi | 〈u, ei 〉H |2
)∫ 1

0

( ∞∑
i=1

λ−1
i ei (x)

2

)
v(x)2 dx

≤ ‖u‖2
Ḣ1

(
2

∞∑
i=1

λ−1
i

)∫ 1

0
v(x)2 dx =

(
2

∞∑
i=1

λ−1
i

)
‖u‖2

Ḣ1‖v‖2H .

Here, the first inequality is an application of the Cauchy–Schwarz inequality, while
the second follows from the fact that the sequence (|ei (x)|, i ∈ N) is bounded by

√
2

for all x ∈ [0, 1]. Therefore, we obtain

‖G1‖L(H ;L(H)) ≤ 1, ‖G2‖L(H ;L(Ḣ1,H)) ≤
(
2

∞∑
i=1

λ−1
i

)1/2

.

3.1 Time discretization with rational approximations

Let us first recall that a rational approximation of order p of the exponential function
is a rational function R : C → C satisfying that there exist constants C, δ > 0 such
that for all z ∈ C with |z| < δ

|R(z) − exp(z)| ≤ C |z|p+1.

Since R is rational there exist polynomials rn and rd such that R = r−1
d rn . We want

to consider rational approximations of the semigroup S generated by the operator −A
and of its approximations −Ah as they were considered in [30]. With the introduced
notation, the linear operator R(�t Ah) is given for all vh ∈ Vh by

R(�t Ah)vh = r−1
d (�t Ah)rn(�t Ah)vh =

Nh∑
k=1

rn(−�tλh,k)

rd(−�tλh,k)

〈
vh, eh,k

〉
H eh,k . (3.4)
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To start, let us consider the mean-square stability properties of a Galerkin Euler–
Maruyama method, which is given by the recursion

X j+1
h =

(
Ddet

�t,h + DEM, j
�t,h

)
X j
h (3.5)

for j ∈ N0 with initial condition X0
h = Ph X0, where

Ddet
�t,h = R(�t Ah) + r−1

d (�t Ah)�t Ph F,

Dstoch, j
�t,h = DEM, j

�t,h = r−1
d (�t Ah)PhG(·)�L j

(3.6)

with �L j = L(t j+1) − L(t j ). Note that the linear operators (Dstoch, j
�t,h , j ∈ N0)

satisfy all assumptions of Corollary 2.1 since they only depend on the Lévy increments
(�L j , j ∈ N0). For this type of numerical approximation, the result fromCorollary 2.1
can be specified:

Proposition 3.1 The zero solution of the numerical method (3.5) is asymptotically
mean-square stable if and only if

S = Ddet
�t,h ⊗ Ddet

�t,h + �t (C ⊗ C)q ∈ L(V (2)
h )

satisfies that ρ(S ) < 1, where q = ∑∞
k=1 μk fk ⊗ fk ∈ U (2) and C ∈ L(U ; L(Vh))

with

Cu = r−1
d (�t Ah)PhG(·)u.

Proof Note that since Vh is finite-dimensional, L(Vh) = LHS(Vh) so (C ⊗ C)

is well-defined as an element of L(U (2), L(2)
HS(Vh)) ⊂ L(U (2), L(V (2)

h )) by [18,
Lemma 3.1(ii)], which yields for j ∈ N

E

[
DEM, j

�t,h ⊗ DEM, j
�t,h

]
= E[C�L j ⊗ C�L j ] = (C ⊗ C)E[�L j ⊗ �L j ].

Since E[�L j ⊗ �L j ] = �t q by Lemma 5.1, the proof follows from
Corollary 2.1. �


The still rather abstract condition can be specified to an explicit sufficient condition.

Corollary 3.1 A sufficient condition for asymptotic mean-square stability of (3.5) is

(
max

k=1,...,Nh
|R(−�tλh,k)| + max

k=1,...,Nh
|r−1
d (−�tλh,k)|�t‖F‖L(H)

)2

+ max
k=1,...,Nh

|r−1
d (−�tλh,k)|2�t Tr(Q)‖G‖2L(H ;L(U ;H)) < 1.
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Proof We first note that by the triangle inequality and the properties of the linear
operator induced by the rational approximation R defined in Eq. (3.4) we obtain that

‖Ddet
�t,h‖L(Vh) = ‖R(�t Ah) + r−1

d (�t Ah)�t Ph F‖L(Vh)

≤ max
k=1,...,Nh

|R(−�tλh,k)| + max
k=1,...,Nh

|r−1
d (−�tλh,k)|�t‖F‖L(H)

and, similarly

‖C‖L(U ;L(Vh)) ≤ max
k=1,...,Nh

|r−1
d (−�tλh,k)|‖G‖L(H ;L(U ;H)).

Since

‖(C ⊗ C)q‖
L(V (2)

h )
≤

∞∑
k=1

μk‖C fk‖2L(Vh) ≤ Tr(Q)‖C‖2L(U ;L(Vh))

and ‖Ddet
�t,h ⊗ Ddet

�t,h‖L(V (2)
h )

= ‖Ddet
�t,h‖2L(Vh)

, we obtain the claimed condition, which

is sufficient by Corollary 2.1. �

We continue with the higher order Milstein scheme. Applying [3] in our context

reads

X j+1
h = (Ddet

�t,h + DEM, j
�t,h + DM, j

�t,h)X
j
h , (3.7)

where Ddet
�t,h and DEM, j

�t,h are as in (3.6) and

DM, j
�t,h =

∞∑
k,�=1

r−1
d (�t Ah)

√
μkμ�PhG(G(·) fk) f�

∫ t j+1

t j

∫ s

t j
dLk(r) dL�(s).

Remark 3.1 In order to compute the iterated integrals of DM, j
�t,h , one may assume (cf.

[3,16]) that for all H -valued, adapted stochastic processes χ = (χ(t), t ≥ 0) and all
i, j ∈ N, the diffusion operator G satisfies the commutativity condition

G(G(χ) f j ) fi = G(G(χ) fi ) f j .

Under this assumption satisfied in Example 3.1, DM, j
�t,h simplifies to

DM, j
�t,h = 1

2

∞∑
k,�=1

√
μkμ�r

−1
d (�t Ah)PhG(G(X j

h) fk) f�(�L j
k�L j

� − �[Lk, L�] j ),

where �[Lk, L�] j = [Lk, L�]t j+1 − [Lk, L�]t j . Here, [Lk, L�]t denotes the quadratic
covariation of Lk and L� evaluated at t ≥ 0, which is straightforward to compute when
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Lk, L� are jump-diffusion processes (cf. [3]). For the simulation of more general Lévy
processes in the context of SPDE approximation, we refer to [7,13].

As for the Euler–Maruyama scheme, Corollary 2.1 can be specified for thisMilstein
scheme.

Proposition 3.2 Assume that the mapping C ′(u1, u2) = r−1
d (�t Ah)PhG(G(·)u1)u2

for u1, u2 ∈ U can be uniquely extended to a mapping C ′ ∈ L(U (2), L(Vh)). Then
the zero solution of (3.7) is asymptotically mean-square stable if and only if

S = Ddet
�t,h ⊗ Ddet

�t,h + �t (C ⊗ C)q + �t2

2
(C ′ ⊗ C ′)q ′

satisfies that ρ(S ) < 1. Here, q ′ = ∑∞
k,�=1 μkμ�( fk ⊗ f�) ⊗ ( fk ⊗ f�) ∈ U (4) and

C and q as in Proposition 3.1.

Proof Note thatC ′⊗C ′ : U (4) → L(V (2)
h ) andC ′⊗C : U (2)⊗U → L(V (2)

h ) arewell-

defined by the same arguments as in Proposition 3.1. Since Dstoch, j
�t,h = DEM, j

�t,h +DM, j
�t,h ,

we obtain for j ∈ N0

E

[
Dstoch, j

�t,h ⊗ Dstoch, j
�t,h

]
= E

[
DEM, j

�t,h ⊗ DEM, j
�t,h

]
+ E

[
DM, j

�t,h ⊗ DEM, j
�t,h

]

+ E

[
DEM, j

�t,h ⊗ DM, j
�t,h

]
+ E

[
DM, j

�t,h ⊗ DM, j
�t,h

]
.

Thefirst termand Ddet
�t,h⊗Ddet

�t,h are given in Proposition 3.1. For the second term,writ-

ing �(2)L = ∑∞
k,�=1

√
μkμ�

(∫ t j+1
t j

∫ s
t j
dLk(r) dL�(s)

)
fk ⊗ f�, Lemma 5.2 yields

E

[
DM, j

�t,h ⊗ DEM, j
�t,h

]
= E

[
C ′�(2)L j ⊗ C�L j ] = (C ′ ⊗ C)E

[
�(2)L j ⊗ �L j ] = 0

and analogously the same for the third term. Finally, Lemma 5.2 also implies

E

[
DM, j

�t,h ⊗ DM, j
�t,h

]
= E

[
C ′�(2)L j ⊗ C ′�(2)L j ] = (C ′ ⊗ C ′)E

[
�(2)L j ⊗ �(2)L j ]

and the statement follows directly from Corollary 2.1. �


Remark 3.2 The assumption on C ′ in Proposition 3.2 holds for the operators G1 and
G2 in the setting of Example 3.1. One can get rid of this assumption by using that the
bound on G ∈ L(H ; L(U ; H)) allows for an extension of the bilinear mapping to the
projective tensor product space U ⊗π U , cf. [18]. One would then have to assume
additional regularity on L to ensure that �(2)L j in the proof of Proposition 3.2 is in
the space L2(Ω;U ⊗π U ). Alternatively, one considers finite-dimensional truncated
noise, which leads to equivalent norms.
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3.2 Examples of rational approximations

Let us next consider specific choices of rational approximations R and investigate
their influence on mean-square stability. First, we derive sufficient conditions based
on Corollary 3.1 for Euler–Maruyama schemes with standard rational approxima-
tions. More specifically, we consider the backward Euler, the Crank–Nicolson, and
the forward Euler scheme.

Theorem 3.1 Consider the approximation scheme (3.5).

1. (Backward Euler scheme) Let R be given by R(z) = (1 − z)−1. Then (3.5) is
asymptotically mean-square stable if

(1 + �t‖F‖L(H))
2 + �t Tr(Q)‖G‖2L(H ;L(U ;H))

(1 + �tλh,1)2
< 1.

2. (Crank–Nicolson scheme) Let R be given by R(z) = (1 + z/2)/(1 − z/2). Then
(3.5) is asymptotically mean-square stable if

(
max

k∈{1,Nh}

∣∣∣∣
1−�tλh,k/2

1+�tλh,k/2

∣∣∣∣+�t
‖F‖L(H)

(1+�tλh,1/2)

)2

+�t
Tr(Q)‖G‖2L(H ;L(U ;H))

(1+�tλh,1/2)2
< 1.

3. (Forward Euler scheme) Let R be given by R(z) = 1+ z. Then (3.5) is asymptot-
ically mean-square stable if

(
max

�∈{1,Nh}
|1 − �tλh,�| + �t‖F‖L(H)

)2 + �t Tr(Q)‖G‖2L(H ;L(U ;H)) < 1.

Proof Let us start with the backward Euler scheme. Since the functions r−1
d (z) and

R(z) are equal and it holds for all k = 1, . . . , Nh that |R(−�tλh,k)| ≤ |R(−�tλh,1)|,
we obtain by Corollary 3.1 asymptotic mean-square stability if

(1 + �tλh,1)
−2

(
(1 + �t‖F‖L(H))

2 + �t Tr(Q)‖G‖2L(H ;L(U ;H))

)
< 1.

For the Crank–Nicolson scheme, note that the function R is decreasing on R− and
that R(z) ∈ [−1, 1] for all z ∈ R

−. Thus, the maximizing eigenvalue is either the
largest, λh,Nh , or the smallest, λh,1, and therefore,

|R(−�tλh,k)| ≤ max
�∈{1,Nh}

|R(−�tλh,�)|.

Since |r−1
d (−�tλh,k)| ≤ |r−1

d (−�tλh,1)| for all k = 1, . . . , Nh , the claim follows
with Corollary 3.1.

By the same arguments, we obtain for the forward Euler scheme that |R(−�tλh,i )|
is maximized either at z = −�tλh,1 or z = −�tλh,Nh . Therefore, since r

−1
d (z) = 1,

the claim follows again with Corollary 3.1, which finishes the proof. �
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For the Milstein scheme, Proposition 3.2 yields the following sufficient condition.

Proposition 3.3 Under the assumptions of Proposition 3.2, the Milstein scheme (3.7)
with R(z) = (1 − z)−1 is asymptotically mean-square stable if

(1 + �t‖F‖L(H))
2 + �t Tr(Q)‖G‖2L(H ;L(U ;H)) + �t2

2
Tr(Q)2‖G‖4L(H ;L(U ;H))

< (1 + �tλh,1)
2.

Proof In the same way as in the proof of Corollary 3.1, we bound

‖(C ′ ⊗ C ′)q ′‖
L(V (2)

h )
≤ ‖C ′‖2L(U (2);L(Vh))

Tr(Q)2

≤ (1 + �tλh,1)
−2‖G‖4L(H ;L(U ;H)) Tr(Q)2.

Hence, our assumption ensures that ‖S ‖
L(V (2)

h )
< 1, which by Corollary 2.1 is suffi-

cient for asymptotic mean-square stability. �

Note that the sufficient condition for the Milstein scheme is more restrictive than the
sufficient condition presented in Theorem 3.1(1) for the backward Euler–Maruyama
method due to the additional positive term in the estimate in Proposition 3.3.

3.3 Relation to the mild solution

To connect existing results on asymptotic mean-square stability of (1.1) to the results
for discrete schemes in Sect. 3.2, we have to restrict ourselves to Q-Wiener processes
W = (W (t), t ≥ 0) due to the framework for analytical solutions in [24]. Specifically,
we consider

dX (t) = (AX (t) + FX (t)) dt + G(X (t)) dW (t). (3.8)

The following special case of [24, Proposition 3.1.1] provides a sufficient condition
for the asymptotic mean-square stability of (1.1) by a Lyapunov functional approach.

Theorem 3.2 Assume that X0 = x0 ∈ Ḣ1 is deterministic and there exists c > 0
such that

2〈v, Av + F(v)〉H + Tr[G(v)Q(G(v))∗] ≤ −c‖v‖2H

for all v ∈ Ḣ2. Then the zero solution of (3.8) is asymptotically mean-square stable.

We use this theorem to derive simultaneous sufficient mean-square stability condi-
tions for (3.8) and the corresponding backward Euler scheme (3.5).
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Corollary 3.2 Assume that X0 = x0 ∈ Ḣ1 is deterministic. Then the zero solutions
of (3.8) and its approximation (3.5) with R(z) = (1− z)−1 are asymptotically mean-
square stable for all h and �t if

2
(‖F‖L(H) − λ1

) + Tr(Q)‖G‖2L(H ;L(U ;H)) < 0. (3.9)

Proof We show first that (3.9) yields asymptotic mean-square stability of (3.8) by
reducing it to the assumption in Theorem 3.2. For the second term there, note that for
any v ∈ Ḣ2,

Tr[G(v)Q(G(v))∗]

= Tr[(G(v))∗G(v)Q] =
∞∑
k=1

〈G(v)Q fk,G(v) fk〉

≤
∞∑
k=1

μk‖G‖2L(H ;L(U ;H))‖v‖2H‖ fk‖2U = Tr(Q)‖G‖2L(H ;L(U ;H))‖v‖2H ,

where the first equality follows from the properties of the trace. The first term satisfies

〈v, Av + F(v)〉 = 〈v, F(v)〉 + 〈v, Av〉 ≤ ‖F‖L(H)‖v‖2H − ‖v‖21
≤ (‖F‖L(H) − λ1)‖v‖2H

using the definition of ‖ · ‖1. Altogether, we therefore obtain
2〈v, Av + F(v)〉H + Tr[G(v)Q(G(v))∗]

≤ (
2

(‖F‖L(H) − λ1
) + Tr(Q)‖G‖2L(H ;L(U ;H))

)‖v‖2H ,

i.e., with (3.9) asymptotic mean-square stability of (3.8) by setting

c = −(
2

(‖F‖L(H) − λ1
) + Tr(Q)‖G‖2L(H ;L(U ;H))

)
.

We continue with (3.5) observing first that λh,1 ≥ λ1 by (3.2). Therefore, the
condition in Theorem 3.1(1) yields

�t
(
2

(‖F‖L(H) − λ1
) + Tr(Q)‖G‖2L(H ;L(U ;H))

) + �t2
(‖F‖2L(H) − λ21

)
< 0.

This is satisfied and finishes the proof since the first term is negative by assumption
and so is the second using (3.9) and

‖F‖2L(H) − λ21

= (‖F‖L(H) + λ1
)(‖F‖L(H) − λ1

)

≤ (‖F‖L(H) + λ1
) ((‖F‖L(H) − λ1

) + 2−1 Tr(Q)‖G‖2L(H ;L(U ;H))

)
< 0. �


Note that under (3.9) in Corollary 3.2, the backward Euler–Maruyama scheme pre-
serves the qualitative behaviour of the analytical solution without any restriction on h
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and �t . Hence, it can be applied to numerical methods requiring different refinement
parameters in parallel such as multilevel Monte Carlo, which efficiently approxi-
mates quantities E[ϕ(X (T ))] (see, e.g., [4,6] for details). Here, it is essential that the
behaviour is preserved on all refinement levels [1].

On the other hand, note that in the homogeneous case, i.e., F = 0, the stability
condition in Theorem 3.1(1) reduces to

Tr(Q)‖G‖2L(H ;L(U ;H)) < λh,1(2 + �tλh,1)

so that even if (1.1) is asymptotically mean-square unstable, its approximation (3.5)
can always be rendered stable by letting�t be large enough. In that case the analytical
solution and its approximation have a different qualitative behaviour for large times.

Remark 3.3 Based on Theorem 3.1, it is also possible to examine the relation between
asymptotic mean-square stability of (3.8) and its approximation by the other rational
approximations.However, due to the nature of the sufficient conditions inTheorem3.1,
analogous results to Corollary 3.2 include restrictions on h and �t .

For theMilstein scheme considered in Proposition 3.3we can also derive a sufficient
condition for the simultaneousmean-square stability not relyingon h and�t .However,
due to the additional term in Proposition 3.3, the condition becomes slightly more
restrictive than in Corollary 3.2. More precisely we obtain the following:

Corollary 3.3 Assume that X0 = x0 ∈ Ḣ1 is deterministic and F = 0. Then the zero
solutions of (3.8) and its Milstein approximation (3.7) with R(z) = (1 − z)−1 are
asymptotically mean-square stable for all h and �t if

−√
2λ1 + Tr(Q)‖G‖2L(H ;L(U ;H)) < 0.

Proof The asymptotic mean-square stability of (3.8) follows by Corollary 3.2 since

−2λ1 + Tr(Q)‖G‖2L(H ;L(U ;H)) < −√
2λ1 + Tr(Q)‖G‖2L(H ;L(U ;H)) < 0.

The sufficient condition for (3.7) in Proposition 3.3 can be rewritten as

�t (−2λh,1+Tr(Q)‖G‖2L(H ;L(U ;H)))+�t2(−2λ2h,1+Tr(Q)2‖G‖4L(H ;L(U ;H)))<0.

The first summand is negative since

−2λh,1 + Tr(Q)‖G‖2L(H ;L(U ;H)) < −√
2λ1 + Tr(Q)‖G‖2L(H ;L(U ;H)) < 0.

The assumption
√
2λ1 > Tr(Q)‖G‖2L(H ;L(U ;H))

implies for the second summand that

−2λ2h,1 + Tr(Q)2‖G‖4L(H ;L(U ;H)) < 0.

Thus, asymptotic mean-square stability of (3.7) follows. �
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4 Simulations

In this section we adopt the setting of Example 3.1 and use numerical simulations
to illustrate our theoretical results. More specifically, we consider the stochastic heat
equation

dX (t) = ν�X (t) dt + G(X (t)) dW (t). (4.1)

with X0(x) = √
30x(1 − x), then E[‖X0‖2H ] = 1. We consider a Q-Wiener process

W (t) = ∑∞
i=1

√
μiβi (t)ei , where (βi , i ∈ N) is a sequence of independent, real-

valued Brownian motions, and assume μi = Cμi−α with Cμ > 0 and α > 1. Here,
Cμ scales the noise intensity andα controls the space regularity ofW , see, e.g., [23,25].

4.1 Spectral Galerkin methods

For G = G1 in Example 3.1, we obtain with the approach presented in [20, Sect. 6.4]
the infinite-dimensional counterpart of the geometric Brownian motion

X (t) =
∞∑
i=1

〈X (t), ei 〉Hei =
∞∑
i=1

xi (t)ei ,

where each of the coefficients xi (t) is the solution to the one-dimensional geometric
Brownian motion

dxi (t) = −λi xi (t) dt + √
μi xi (t) dβi (t).

Furthermore, the second moment is given by

E

[
‖X (T )‖2H

]
=

∞∑
i=1

E

[
|xi (T )|2

]
=

∞∑
i=1

〈X0, ei 〉2H exp((−2λi + μi )T ).

As a consequence, the asymptotic mean-square stability of (4.1) holds if and only if
−2λi + μi < 0 for all i ∈ N. By using the explicit representation of the eigenvalues
λi and μi , this corresponds to −2νi2π2 + Cμi−α < 0 which is equivalent to the
condition −2λ1 + μ1 = −2νπ2 + Cμ < 0, i.e., (4.1) is asymptotically mean-square
unstable if and only if Cμ > 2νπ2.

For the spectral Galerkin approximation, we choose Vh = span(e1, . . . , eNh ),
Nh < ∞. Thus, we consider Xh(t) = ∑Nh

k=1 xk(t)ek . To obtain a fully discrete
scheme, we approximate the one-dimensional geometric Brownian motions in time
by the three considered rational approximations in Theorem 3.1 and Proposition 3.3.
Propositions 3.1 and 3.2 yield asymptotic mean-square stability if and only if the cor-
responding linear operators S satisfy ρ(S ) < 1. The operator is in the first case for
k, � = 1, . . . , Nh given by
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S (ek ⊗ e�) = (Ddet
�t,h ⊗ Ddet

�t,h)(ek ⊗ e�) + �t
(
(C ⊗ C)q

)
(ek ⊗ e�)

= (Ddet
�t,hek ⊗ Ddet

�t,he�) + �t
∞∑

m=1

μm
(
((Cem)ek) ⊗ ((Cem)e�)

)
.

Since

Ddet
�t,hek = R(�t Ah)ek =

Nh∑
r=1

R(−�tλr )〈ek, er 〉Her = R(−�tλk)ek

and

(Cem)ek = r−1
d (�t Ah)PhG1(ek)em = r−1

d (�t Ah)Ph

( ∞∑
n=1

〈ek, en〉H 〈em, en〉Hen
)

= δk,mr
−1
d (�t Ah)ek = δk,mr

−1
d (−�tλk)ek,

the corresponding eigenvalues Λk,� are

Λk,� = R(−�tλk)R(−�tλ�) + δk,� �tμk r
−1
d (−�tλk)r

−1
d (−�tλ�).

Using a Milstein scheme instead, we obtain for S in Proposition 3.2 with simi-
lar computations as before and the observations that the commutativity condition in
Remark 3.1 is fulfilled and that �[βk, β�] j = δk,��t

Λk,� = R(−�tλk)R(−�tλ�) + δk,� r
−1
d (−�tλk)r

−1
d (−�tλ�)

(
�tμk + �t2μ2

k/2
)
.

Note that for both operators S , the eigenvalues Λk,� with k �= � satisfy

|Λk,�| = |R(−�tλk)R(−�tλ�)| ≤ R(−�tλs)
2 ≤ Λs,s,

where |R(−�tλs)| = max j=1,...,Nh |R(−�tλ j )|. Hence, ρ(S ) < 1 is equivalent to
|Λk,k | < 1 for all k = 1, . . . , Nh . In Table 1 the eigenvalues Λk,k and sufficient and
necessary conditions for asymptotic mean-square stability are collected.

As it is noted above, (4.1) is asymptotically mean-square stable if and only if the
condition −2λ1 + μ1 < 0 holds. As can be seen from Table 1 and the choice of
the eigenvalues, the Euler–Maruyama scheme (3.5) with backward Euler and Crank–
Nicolson rational approximation shares this property without any restriction on Vh
and �t . In Fig. 1a the qualitative behaviour of the Euler–Maruyama method with the
three rational approximations in Theorem 3.1 is compared. We choose our parameters
to be ν = 1, Nh = 15, and μi = i−3 for i ∈ N, i.e., Cμ = 1 and α = 3. Since
−2λ1 + Cμ = −2π2 + 1 < 0, the analytical solution to (4.1) is asymptotically
mean-square stable.
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Table 1 Spectral Galerkin methods with corresponding eigenvalues Λk,k and asymptotic mean-square
stability conditions

Rational approximation/stochastic
approximation

Λk,k ρ(S ) < 1 ⇔ for all k = 1, . . . , Nh :

Backward Euler/EM 1+�tμk
(1+�tλk )2

−2λk + μk − �tλ2k < 0

Backward Euler/Milstein
1+�tμk+�t2μ2

k/2

(1+�tλk )2
−2λk + μk + �t (−λ2k + μ2

k/2) < 0

Crank–Nicolson/EM (1−�tλk/2)
2+μk�t

(1+�tλk/2)2
−2λk + μk < 0

Forward Euler/EM (1 − �tλk )
2 + μk�t −2λk + μk + �tλ2k < 0
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BE,  Δ t=0.04
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FE,  Δ t=0.001
FE,  Δ t=0.00095
FE,  Δ t=0.00091
reference solution
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0.95

1

1.05

t

M
S

X

 

 

BE,  Δ t=1.25

BE,  Δ t=0.25

BM,  Δ t=1.25

BM,  Δ t=0.25
reference solution

a b

Fig. 1 Spectral Galerkin approximate of (4.1) with G1, Nh = 15, and different �t . a Crank–Nicolson
(CN), backward (BE) and forward (FE) Euler. b Euler–Maruyama (BE) and Milstein (BM) based on
backward Euler

For the approximation of E[‖X j
h‖2H ] we use M = 106 samples in a Monte Carlo

simulation, i.e., we approximate

E

[
‖X j

h‖2H
]

≈ MSX (t j ) = 1

M

M∑
i=1

Nh∑
k=1

|̂x j,(i)
k |2,

where (̂x j,(i)
k , i = 1, . . . , M) consists of independent samples of numerical approxi-

mations of xk(t j ) with different schemes. The reference solution is
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E

[
‖Xh(t)‖2H

]
=

Nh∑
k=1

E

[
|xk(t)|2

]
=

Nh∑
k=1

〈X0, ek〉2H exp ((−2λk + μk)t) .

As it can be seen in Fig. 1a, the backward Euler and the Crank–Nicolson scheme
reproduce the mean-square stability of (4.1) already for large time step sizes (�t =
1/25), but the forward Euler scheme requires a 44 times smaller �t . Here, the finest
time step size is given by�t = 1/1100 which satisfies the restrictive bound in Table 1
such that ρ(S ) < 1. Due to a rapid amplification of oscillations caused by negative
values of X j

h for coarser time step sizes outside the stability region (i.e. �t = 1/1000
and 1/1050), the mean-square process deviates rapidly from the reference solution at
a certain time point.

In Fig. 1b the qualitative behaviour of the Euler–Maruyama and Milstein schemes
with a backward Euler rational approximation on the time interval [0, 5] is compared.
The parameters ν = 8/(5π4) and μi = 3/10 i−3 are chosen such that the Milstein
scheme is asymptotically mean-square unstable for �t = 1.25 and asymptotically
mean-square stable for �t = 0.25 while the Euler–Maruyama scheme is asymptoti-
cally mean-square stable for both choices. These theoretical results are reproduced in
the simulation.

4.2 Galerkin finite element methods

Let us continue with G = G2 in Example 3.1 and a Galerkin finite element setting,
similar to that of [22]. This is to say, we let Vh be the span of piecewise linear functions
on an equidistant grid of [0, 1]with Nh interior nodes so that Vh is an Nh-dimensional
subspace of Ḣ1 with refinement parameter h = (Nh + 1)−1. With the exception that
U = Ḣ1, all other parameters are as in Fig. 1a of Sect. 4.1.

In contrast to the setting in Sect. 4.1, the solution and its approximation are no longer
sums of one-dimensional geometric Brownian motions and thus, analytical necessary
and sufficient conditions for ρ(S ) < 1 are not available. We therefore consider the
results of Theorem 3.1 instead. With the setting of this section,

λh,i = 12νh−2 (2 + cos(iπh))−1 (sin(iπh/2))2

for i ∈ N, which was derived in [20, Sect. 6.1]. For the convenience of the reader, the
sufficient conditions of Theorem 3.1 for the considered approximation schemes are
collected in simplified form in Table 2, expressed in terms of stability parameters ρBE,

ρCN and ρFE. By setting ĝ =
(
2

∑∞
i=1 λ−1

i

)1/2
, we replace ‖G2‖L(H ;L(U ;H)) in these

conditions with the upper bound derived in Example 3.1. Note that Corollary 3.2 with
these parameters implies simultaneous asymptotic mean-square stability of (4.1) and
the finite element backward Euler scheme (3.5).

As in Sect. 4.1 we compare the mean-square behaviour of the backward Euler and
the forward Euler scheme in Fig. 2a but now for the finite element discretization up to
T = 2.5. We observe that the increase of the time step size by a very small amount,
i.e., from �t = 0.00066 to �t = 0.00067, causes the forward Euler system to switch
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Table 2 Finite element methods with sufficient conditions for ρ(S ) < 1

Rational approximation ρ(S ) < 1 ⇐:

Backward Euler ρBE = �t Tr(Q)ĝ2 − 2�tλh,1 − �t2λ2h,1 < 0

Crank–Nicolson ρCN = max
k∈{1,Nh }

∣∣∣ 1−�tλh,k/2
1+�tλh,k/2

∣∣∣2 + �t Tr(Q)ĝ2

(1+�tλh,1/2)2
− 1 < 0

Forward Euler ρFE = max
k∈{1,Nh }(1 − �tλh,k )

2 + �t Tr(Q)ĝ2 − 1 < 0
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CN,  Δ t=0.15
CN,  Δ t=0.015

a b

Fig. 2 Finite Element approximation of (4.1) with G = G2, Nh = 15, and different �t . a Backward (BE)
and forward (FE) Euler. b Backward Euler (BE) and Crank–Nicolson (CN).

from a stable to an unstable behaviour. This agrees with the theory in Table 3, as ρFE
changes sign in that interval, i.e., stability is only guaranteed for the smaller time step.
Therefore we conclude that the sufficient condition is sharp in our model problem.

For the approximation of E[‖X j
h‖2H ], we use the same method as before but take

M = 104 samples in theMonte Carlo approximation. For the computation of the norm
in H , we use the fact that for given representation X j

h = ∑Nh
m=1 xmφm with respect to

the hat functions {φm,m = 1 . . . , Nh} that span Vh

‖X j
h‖2H =

Nh∑
m=1

Nh∑
n=1

xmxn 〈φm, φn〉H .

In Fig. 2a the mean-square behaviour of the the backward Euler scheme and the
Crank–Nicolson scheme for �t = 0.015 to �t = 0.15 is compared. We see from
Table 3 that ρCN changes sign when the time step size is increased, which occurs

123



986 A. Lang et al.

Table 3 Specific values of Table 2 for varying �t

�t ρBE ρCN ρFE

0.15 −5.11613e+00 2.08460e−03 1.99602e+05

0.015 −3.13089e−01 −1.58504e−01 1.91542e+03

0.00068 −1.32387e−02 −1.31050e−02 6.09395e−02

0.00067 −1.30434e−02 −1.29135e−02 3.39709e−04

0.00066 −1.28480e−02 −1.27221e−02 −1.27626e−02

for significantly larger time steps than for the forward Euler scheme. The simulation
results show a substantial change in the decay behaviour of E[‖X j

h‖2H ] for the Crank–
Nicolson scheme with time step size�t = 0.15 compared to�t = 0.015, which is no
longer convincing to be mean-square stable. Since the sufficient condition ρCN < 0
from Table 2 is not fulfilled for �t = 0.15, it is unclear from the theory if asymptotic
mean-square stability holds in that case.
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5 Appendix: Properties of Lévy increments

In this appendix we derive properties of theU -valued, square-integrable Lévy process
that are used in the proofs of Propositions 3.1 and 3.2. We apply the same setting and
notation as in Sect. 3.

Lemma 5.1 Let L be a U-valued Lévy process and let, for 0 ≤ a < b, �L =
L(b) − L(a) and �t = b − a. Then

E[�L ⊗ �L] = �t
∞∑
k=1

μk fk ⊗ fk .

Proof We first note that �L ⊗ �L is well-defined as a member of L1(Ω;U (2)) since

E
[‖�L ⊗ �L‖U (2)

] = E

[
‖�L‖2U

]
= Tr(Q)�t < ∞.
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The increments �Lk = Lk(b) − Lk(a) of �L = ∑∞
k=1

√
μk�Lk fk fulfil

E [�Lk�L�] = δk,��t for k, � ∈ N. Thus, we obtain

E[�L ⊗ �L] =
∞∑

k,�=1

√
μkμl E[�Lk�Ll ] fk ⊗ f� = �t

∞∑
k=1

μk fk ⊗ fk

which finishes the proof. �


Lemma 5.2 Let L be aU-valued, square-integrable Lévy process and set for 0 ≤ a <

b with �t = b − a,

�(2)L =
∞∑

k,�=1

√
μkμ�

(∫ b

a

∫ s

a
dLk(r) dL�(s)

)
fk ⊗ f� ∈ L2(Ω;U (2)).

Then

1. E
[
�(2)L ⊗ �L

] = 0,

2. E
[
�(2)L ⊗ �(2)L

] = �t2
2

∑∞
k,�=1 μkμ�

(
( fk ⊗ f�) ⊗ ( fk ⊗ f�)

)
.

Proof Since L is stationary, we may assume without loss of generality that a = 0 and
b = t > 0. We first note that

E

[(∫ t

0

∫ s

0
dLi (r) dL j (s)

) (∫ t

0

∫ s

0
dLk(r) dL�(s)

)]

= E

[(∫ t

0
Li (s−) dL j (s)

)(∫ t

0
Lk(s−) dL�(s)

)]
.

To simplify this expression, we use the angle bracket process (〈X,Y 〉t , t ≥ 0),
which for two real-valued semimartingales X and Y with (locally) integrable
quadratic covariation [X,Y ] is defined as the unique compensator which makes
([X,Y ]t − 〈X,Y 〉t , t ≥ 0) a local martingale. For this, we have the polarization
identity,

〈X,Y 〉t = 1

4
(〈X + Y, X + Y 〉t − 〈X − Y, X − Y 〉t ) ,

which can be found, along with an introduction to this process, e.g., in [28, Sect. III.5].
For square-integrable martingales M , it holds (see, e.g., [19, Sect. 8.9]) that

E[〈M, M〉t ] = E[M(t)2] and therefore, by the polarization identity, if N is another
square-integrable martingale, then,

E[〈M, N 〉t ] = 1

4

(
E[(M(t) + N (t))2] − E[(M(t) − N (t))2]

)
= E[M(t)N (t)].

123



988 A. Lang et al.

Applying this to the Lévy integral, which is a martingale, we obtain

E

[(∫ t

0
Li (s−) dL j (s)

) (∫ t

0
Lk(s−) dL�(s)

)]

= E

[〈∫

0
Li (s−) dL j (s),

∫

0
Lk(s−) dL�(s)

〉

t

]

= E

[∫ t

0
Li (s−)Lk(s−) d

〈
L j , L�

〉
s

]
,

where the last equality is a property of the angle bracket process and the stochastic
integral, see [19, Sect. 8.9]. Now, when j = �, we have, since L j is a Lévy process
and E[L2

j (s)] = s, that
〈
L j , L�

〉
s = 〈

L j , L j
〉
s = s by [27, Chapter 8]. When j �= �

on the other hand, L j L� is a square-integrable martingale by [27, Theorem 4.49(ii)].
Integration by parts yields

[L j , L�]s = L j (s)L�(s) −
∫ s

0
L j (r−) dL�(r) −

∫ s

0
L�(r−) dL j (r).

Therefore, [L j , L�] is also a square-integrable martingale (with zero mean), because
the right hand side is a square-integrable martingale. Since

(〈
L j , L�

〉
s , s ≥ 0

)
is the

unique compensator of [L j , L�] it must follow that
〈
L j , L�

〉
s = 0 for all s ≥ 0. Thus,

E[∫ t
0 Li (s−)Lk(s−) d

〈
L j , L�

〉
s] is non-zero only if j = �, and in that case

E

[∫ t

0
Li (s−)Lk(s−) d

〈
L j , L j

〉
s

]
=

∫ t

0
E [Li (s−)Lk(s−)] ds.

In conclusion we have obtained

E

[(∫ t

0

∫ s

0
dLi (r) dL j (s)

) (∫ t

0

∫ s

0
dLk(r) dL�(s)

)]
=

{
t2/2 for j = � and i = k,

0 otherwise,
(5.1)

which yields by the monotone convergence theorem that �(2)L ∈ L2(Ω;U (2)) with

E

[
‖�(2)L‖2U (2)

]
=

∞∑
k,�=1

μkμ� E

[(∫ t

0

∫ s

0
dLk(r) dL�(s)

)2
]

= t2

2

∞∑
k,�=1

μkμ� = t2

2
Tr(Q)2 < ∞.

This entails that �(2)L ⊗ �L ∈ L1(Ω;U (2) ⊗U ), since

(
E

[
‖�(2)L ⊗ �L‖U (2)⊗U

])2 =
(
E

[
‖�(2)L‖U (2)‖�L‖U

])2

≤ E

[
‖�(2)L‖2U (2)

]
E

[
‖�L‖2U

]
= t3

2
Tr(Q)3 < ∞.
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by the Cauchy–Schwarz inequality. Similarly, it holds that �(2)L ⊗ �(2)L ∈
L1(Ω;U (2) ⊗U (2)). Therefore, we obtain

E

[
�(2)L ⊗ �L

]
=

∞∑
k,�,m=1

√
μkμ�μm E

[
�Lm

(∫ t

0

∫ s

0
dLk(r) dL�(s)

)]
( fk ⊗ f�) ⊗ fm ,

and, in the same way as the first observation of this proof,

E

[
�Lm

(∫ t

0

∫ s

0
dLk(r) dL�(s)

)]
= E

[〈∫
dLm(s),

∫
Lk(s−) dL�(s)

〉

t

]

= E

[∫ t

0
Lk(s−) d 〈Lm, L�〉s

]
= 0.

This is justified since 〈Lm, L�〉s �= 0 only ifm = � and that in this case the expectation
of the integral is still zero since Lk has zero expectation.

We note that by (5.1)

E

[
�(2)L ⊗ �(2)L

]

=
∞∑

i, j,k,�=1

√
μiμ jμkμ�

(
( fi ⊗ f j ) ⊗ ( fk ⊗ f�)

)

· E
[(∫ t

0

∫ s

0
dLi (r) dL j (s)

)(∫ t

0

∫ s

0
dLk(r) dL�(s)

)]

= t2

2

∞∑
k,�=1

μkμ�

(
( fk ⊗ f�) ⊗ ( fk ⊗ f�)

)
,

which shows the second claim. �
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