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Abstract In this paper, a novel technique designed for the
suppression of mixed Gaussian and impulsive noise in color
images is proposed. The new denoising scheme is based
on a weighted averaging of pixels contained in a filtering
block. The main novelty of the proposed solution lies in the
new definition of the similarity between the samples of the
processing block and a small window centered at the block’s
central pixel. Instead of direct comparison of pixels, a mea-
sure based on the similarity between a given pixel and the
samples from theneighborhoodof the central pixel is utilized.
This measure is defined as the sum of distances in a given
color space, between a pixel of the block and a certain num-
ber of most similar samples from the filtering window. The
main advantage of the proposed scheme is that the new sim-
ilarity measure is not influenced by the outliers injected into
the image by the impulsive noise and the averaging process
ensures the effectiveness of the new filter in the reduction
of Gaussian noise. The experimental results prove that the
novel filtering design is capable of suppressing mixed noise
of high intensity and is competitive with respect to the state-
of-the-art noise filtering methods.

Keywords Noise suppression · Mixed noise · Gaussian
noise · Impulsive noise · Color images · Image enhancement

1 Introduction

Noise reduction is one of the most frequently performed
imageprocessingoperations, as the enhancement of degraded
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images or video streams is crucial for the success of the con-
secutive image processing steps.

Very often color images are corrupted by various types of
noise, introduced by malfunctioning or damaged sensors in
the image formation process, poor lighting conditions and
aging of the storage material, electronic instabilities of the
signal, transmission errors in noisy channels and atmospheric
as well as electromagnetic interferences. As a result, images
are often corrupted by a mixture of Gaussian and impulsive
noise [2,13,19,30,36,58].

The suppression of this kind of noise is a challenging task,
as filters designed to cope with the Gaussian noise are not
able to remove the impulses and the techniques designed for
the impulsive noise removal are ineffective in the elimination
of the noise modeled by the Gaussian distribution [6,22,23,
37,49,50].

This effect is depicted in Fig. 1, in which the restoration of
a degraded image distorted bymixed noise is presented using
filters intended for Gaussian or impulsive noise suppression.
As can be observed, the popular, highly effective techniques
like Non-Local Means (NLM) [3,4], Block-Matching and
3D Filtering (BM3D) [9] or Bilateral Filter (BF) [52] are
unable to suppress the impulses and the final filtering result
is of unacceptable quality (see Fig. 1c–e). The same applies to
the methods of impulsive noise removal, like vector median
filter (VMF) [1], which are generally unable to reduce the
Gaussian noise component as depicted in Fig. 1f.

The widely used VMF efficiently removes the impulses;
however, as its output is one of the pixels from the filtering
window, the VMF is not able to reduce the Gaussian noise.
To alleviate this drawback, the average of the most reliable
pixels, determined using the reduced ordering technique, is
used to reduce the noise contamination [15,21,24,29,33,34,
38,47,48].
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Illustration of the inability of popular techniques to suppress
mixed Gaussian and impulsive noise. a Test image. b Noisy image. c
NLMfilter [3]. dBM3Dfilter [9]. eBilateral filter [52]. f Vectormedian
filter [1]

Very often the mixed noise is being suppressed by apply-
ing first a filter suitable for the removal of impulsive and
then the one intended for the reduction of Gaussian noise.
However, such a scheme is not effective, as the consecutive
application of twofilters leads to significant image distortions
and substantial increase in the computational burden [27].

Another approach to the problemofmixed noise reduction
is based on the switching filtering [10,18,27], which detects
the impulses and removes them using a suitable technique
replacing the remaining samples with a filter designed for
theGaussian noise. Such procedure can be effectivewhen the
contamination is not severe; otherwise, the detection module
fails to detect the impulseswhich aremasked by theGaussian
noise.

An efficient family of filters is utilizing the concept of a
peer group introduced in [5,11,41,42] and its fuzzy exten-
sions [27,28], in which a combination of impulsive noise
detection and a replacement scheme based on averaging is
performed. Another group of filters relies on the concept of
geodesic digital paths [8,25,26,51], which determines the
connection cost between pixels belonging to the processing
window used as weights in the averaging process.

The authors of [14] described the Rank of Ordered
Absolute Differences (ROAD) statistic for impulse detection

and combined it with the bilateral denoising scheme [52],
designing a trilateral filter able to efficiently reduce themixed
noise. This filter, although intended for gray-scale images,
can be also applied to color images, replacing the difference
in intensities by the distance in a given color space.

In [20], a method for the restoration of heavily damaged
images, in which Bayesian classification of the input pixels
is combined with the kernel regression framework, was pro-
posed. In [46], similarly to the ROAD statistic, but for color
images, a sum of distances to the k-nearest pixels is used to
calculate the weights for each pixel that can be treated as a
measure of pixel distortion and these coefficients are used in
the weighted average of the pixels in the processing window.

In this paper, we propose a new technique which is able to
cope simultaneously with the two kinds of noise. The paper
is structured as follows. In Sect. 2, the new filtering design is
described. In the next section, the results of experiments and
a comparison with competitive filters are presented. Finally,
some conclusions are drawn in Sect. 4.

2 Proposed filtering design

Various techniques ofGaussian noise reduction has been pro-
posed in the recent years. A widely used family of filters is
based on the BF [52] which takes into the account the sim-
ilarity between pixels from a local processing window and
their topographic distance.Assuming that the pixels of a local
processing block B of size (2r + 1) × (2r + 1) are denoted
as x1, . . . , xN , where x1 is in the center and N is the number
of pixels in B, the output y1 of BF which replaces the central
pixel x1 is

y1 =
∑N

k=1 w1(x1, xk) · w2(x1, xk) · xk
∑N

k=1 w1(x1, xk) · w2(x1, xk)
, (1)

where the weights w1 and w2 are usually defined as

w1(x1, xk) = exp

{

−‖x1 − xk‖
2σ 2

1

}

, (2)

where ‖ · ‖ denotes the Euclidean distance in the RGB color
space, and

w2(x1, xk) = exp

{

−ρ(x1, xk)

2σ 2
2

}

, (3)

where ρ stands for the topographic distance between the
pixels on the image domain. Thus, the BF combines the
closeness of pixels in the color space and their topographic
proximity. The parameters σ1 and σ2 control the influence of
the weights on the final filter output.

Since its introduction, various modifications of the BF,
aiming mainly at increasing its ability to preserve image
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Fig. 2 Calculation of the ROAD measure

details, have been introduced [17,39,40,56,57]. However,
although effective in the case of Gaussian noise, the bilateral
filter cannot remove the impulses, which are treated as tiny
details. To alleviate this problem, various designs introduce
additional weighting factors which diminish the influence of
outliers on the final filtering outcome.

In [14], an extension of the bilateral filter based on the
ROAD measure was proposed. The so-called trilateral filter
assigns to each pixel its measure of impulsiveness, which is
consideredwhen building the average over the pixels belong-
ing to the local processing region. The indicator of pixel’s
distortion is defined as

ROAD =
α∑

k=1

d1(k), (4)

where d1(k) is the kth smallest Euclidean distance in the RGB
color space between the central pixel x1 of a smallwindowW
centered at x1 and α denotes the number of close neighbors.
If the central pixel is distorted by impulsive noise, then the
corresponding value ofROAD is high. This valuewill be high
even if the central pixel is an impulse and has close, similarly
damaged neighbors. For example, in a 3× 3 window, setting
α = 5, the ROAD will fail to detect the impulses and will
be small if the filtering window contains 5 similar impulses,
which is unlikely even for strong impulsive noise.

Figure2 shows the calculation of the ROAD coefficient
for the gray-scale image, when α = 3. As can be observed,
generally the value of the α parameter is of high importance,
as in this exemplary situation, for higher α the central pixel
does not possess close neighbors and the ROAD would be
substantially increased [12,23,24,43–45,54,55].

The proposed filtering design, which will be calledRobust
Local Similarity Filter (RLSF), is based on the ROAD con-
cept. We assign pixels x j , j = 1, . . . , N from a region B
surrounding the central pixel x1, the ROAD calculated as the
sum of the smallest distances between x j ∈ B and the pix-
els contained in a small window W , typically of size 3 × 3
centered at x1. The construction of the modified ROAD is
illustrated again for a gray-scale image in Fig. 3. The cen-
tral pixel x1 of a processing region has the intensity 154 and
the ROAD of pixel with intensity 55 is calculated summing
the α smallest distances to the pixel belonging to W in the
processing block center (red window).
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Fig. 3 Calculation of the similarity measure between a pixel with
intensity 55 (upper left corner) and the 3 × 3 window centered at
the processed pixel x1 with intensity 154. The processing block B is
depicted by green and thewindowW by red square (color figure online)

In this way, if a pixel from the processing region is cor-
rupted, its ROAD will be high, as it is unlikely that the small
window in the center will also have similar outliers. The
important feature of the new design is that the central pixel
x1 may be corrupted and the ROAD assigned to a pixel x j

fromBwill be not affected, as this pixel will find uncorrupted
close pixels in the small window W centered at x1.

The structure of the proposed design is similar to the BF;
however, to decrease the computational load, we neglect the
topographic distance between pixels

y1 =
∑N

j=1 w j · x j
∑N

j=1 w j
, (5)

with

w j = K
(
1

α

α∑

k=1

d j (k)

)

, (6)

where K denotes the kernel function (e.g., Gaussian) and
d j (k) is the kth smallest Euclidean distance in the RGB color
space between x j and the pixels of W .

3 Experiments

The proposed filter was evaluated on a set of color test
images depicted in Fig. 4. The images were first distorted
by Gaussian noise with standard deviation in the range 10–
50, (with step 10), and then, 10%–50% of the pixels were
replaced by random-valued impulsive noise, so that every
RGBchannel of a corrupted pixelwas assigned a value drawn
from the uniform distribution from the range [0,255]. To sim-
plify the notation, the noise intensity pwill denote aGaussian
noise with standard deviation p and with p%pixels with ran-
domly corrupted channels.

The restoration efficiency has been assessed using the
commonly used PSNR measure defined as

MSE = 1

3N

N∑

j=1

3∑

q=1

(x j,q − x̂ j,q)
2, (7)
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Fig. 4 Color test images used in experiments
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Fig. 5 Plots of the kernel functions

PSNR = 10 log10

(
2552

MSE

)

, (8)

where x j,q , q = 1, 2, 3 are the RGB channels of the original
image pixels and x̂ j,q are the restored components.

In our experiments, various kernel functions were used to
determine the weight in (6). The suitability of the following
functions, whose graphs are presented in Fig. 5, was evalu-
ated:

• Triangular: K (x) = 1 − (x/σ), |x/σ | ≤ 1,
• Epanechnikov: K (x) = 1 − (x/σ)2, |x/σ | ≤ 1,
• Biweight: K (x) = (1 − (x/σ)2)2, |x/σ | ≤ 1,
• Triweight: K (x) = (1 − (x/σ)2)3, |x/σ | ≤ 1,
• Tricube: K (x) = (1 − |x/σ |3)3, |x/σ | ≤ 1,
• Gaussian: K (x) = exp(−(x/σ))2,
• Cosine: K (x) = cos(πx/2σ), |x/σ | ≤ 1.
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Fig. 6 Dependence of the optimal PSNR obtained using the proposed
RLSF on α and r parameters using the Gaussian and Epanechnikov
kernels. The test images shown in Fig. 4 were contaminated with mixed
noise of intensity p = 30

First, we investigated the influence of the block size r
and α parameter in (6) on the filtering efficiency expressed
in terms of the PSNR measure applying various kernels.
The σ parameter of the kernels was adjusted so that the
best PSNR value was achieved. The simulations revealed
that independently of the noise contamination level and the
applied kernel, for various natural color images, the opti-
mal settings of the block B size r and the α parameter of
the ROAD measure are in the range [3–5], and the setting
r = α = 4 was used for the comparison of the proposed
design with competitive denoising methods. Figure6 depicts
the dependence of the best possible PSNR metric on r and
α parameters for the test images shown in Fig. 4 using the
Gaussian and Epanechnikov kernels. As can be observed,
the structure of the visualizations is similar.
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Fig. 7 Dependence of PSNR values obtained using the proposed RLSF with the size of processing block r = 4 and setting α = 4, on the σ

parameter value for different kernel functions K. The color test images depicted in Fig. 4 were contaminated with mixed noise of intensity p = 30
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Fig. 8 Dependence of PSNR values obtained using the proposed RLSF with Epanechnikov kernel on σ value, for r = 4, α = 4 on test images
distorted with various noise level

Figure7 depicts the influence of the σ parameter on the
restoration results for a block B size r = 4 and α = 4 inW ,
when using various kernel functions. As expected, the opti-
mal PSNR values were not dependent on the choice of the
kernel shape; however, the Triweight, Tricube or Epanech-
nikov functions are less dependent on the σ value than the
Gaussian kernel. This effect is beneficial, as the optimal value
of the kernel smoothing parameter σ is slightly dependent on
the image structure and also on the contamination intensity
as exhibited in Fig. 8. Therefore, for further experiments, the
Epanechnikov kernel was chosen, as it not only is less sensi-
tive to the σ value but is also computationally less demanding
than the widely used Gaussian function. Due to the fact that
this kernel drops to 0, it is also more robust to the outliers
introduced by the impulsive noise process.

Analyzing the plots of this figure, the setting σ = 100
enables to achieve results very close to the optimal ones
for considerable amount of noise distortions. For images
degraded by less intensive mixed noise, lower values of the
smoothing parameter, e.g., σ = 50, should be used.

The proposed filtering design has been compared with a
set of competitive filters whose structure has been described
in detail in [7]

• Fuzzy vector median filter (FVMF),
• Fuzzy ordered vector median filter (FOVMF),
• Fuzzy vector directional filter (FVDF),
• Adaptive nearest-neighbor filter (ANNF),
• Adaptive nearest-neighbormultichannel filter (ANNMF),
• Directional distance filter (DDF),

• Alpha-trimmed vector median filter (ATVMF),
• Hybrid directional filter (HDF),
• Fuzzy ordered vector directional filter (FOVDF),
• Entropy vector median filter (EVMF),
• Adaptive hybrid directional filter (AHDF).

The comparison with the state-of-the-art denoising meth-
ods presented in Table1 and also in Fig. 9 shows that the
proposed filter clearly outperforms the competitive tech-
niques for medium and high noise contamination levels.
The Epanechnikov kernel yields slightly lower PSNR val-
ues; however, for applications in which the computational
complexity plays a crucial role, the use of this kernel is rec-
ommended.

The RLSF better preserves image edges and produces
visually pleasing results, without noticeable unfiltered noise.
It is also worth noticing that the proposed design is signif-
icantly faster than the NLM and BM3D methods and also
much faster than the above-listed filters for the default 9× 9
processing block.

4 Conclusions

In this paper, a new approach to the suppression of mixed
Gaussian and impulsive noise has been presented. The main
novelty of thiswork lies in the introduction of a novel efficient
measure of the similarity of a pixel from theprocessing region
and a small filtering window centered at the pixel which is
being restored. The experimental results revealed that the
new filter is competitive with existing denoising solutions.
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HAND and CLOCK test images

Noisy, p = 30

RLSF Gaussian Kernel

RLSF Epanechnikov Kernel

ATVMF

FVMF

Fig. 9 Comparison of the efficiency of the new RLSF with r = 4,
α = 4 and p = 30, using the Gaussian and Epanechnikov kernels with
the ATVMF and FVMF

Future work will be focused on the introduction of additional
measures which evaluate the impulsiveness of pixels taken
for the weighted averaging process.
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