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Abstract This paper describes an empirical study aiming

at identifying the main differences between different

logistic regression models and collision data aggregation

methods that are commonly applied in road safety literature

for modeling collision severity. In particular, the research

compares three popular multilevel logistic models (i.e.,

sequential binary logit models, ordered logit models, and

multinomial logit models) as well as three data aggregation

methods (i.e., occupant based, vehicle based, and collision

based). Six years of collision data (2001–2006) from 31

highway routes from across the province of Ontario,

Canada were used for this analysis. It was found that a

multilevel multinomial logit model has the best fit to the

data than the other two models while the results obtained

from occupant-based data are more reliable than those from

vehicle- and collision-based data. More importantly, while

generally consistent in terms of factors that were found to

be significant between different models and data aggrega-

tion methods, the effect size of each factor differ sub-

stantially, which could have significant implications for

evaluating the effects of different safety-related policies

and countermeasures.

Keywords Injury severity � Multilevel logistic regression

models � Collision data aggregation

1 Introduction

The outcome of a collision is polytomous in nature such as

no injury (NI), minimal injury, minor injury, major (inca-

pacitating) injury, and fatal injury. This type of data is

mostly modeled using logistic regression models. Most of

the models are extensions of the multinomial logit models

based on the assumption of independent severity classes

[1–11]. Although different modeling methodologies are

available from literature to examine collision severity as

related to various influencing factors, little is known on the

relative merits of these alternatives. The first objective of

this research is therefore to compare three most widely

used logistic regression models, namely, sequential binary

logit models, ordered logit models, and multinomial logit

models in a multilevel framework for injury severity

analysis.

Some of the issues related to injury severity analysis are

within-crash correlation, hierarchical nature of collision

data, misclassification, underreporting, endogeneity, sam-

ple size, and spatial correlation [5, 11–21]. While a number

of recent studies have been devoted to addressing some of

these issues, the issue pertaining to the hierarchical nature

of collision data has not been addressed adequately. Col-

lision data is hierarchical in nature with possible correla-

tion at the occupant or vehicle level. Ignoring such

correlation (intra-class correlation) could lead to false

estimation of standard errors and undermine the true
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significance of parameter estimates [22]. However, little

work has been done to account for the multilevel structure

of the collision data. Jones and Jørgensen [17] and

Lenguerrand et al. [20] were among the first, as identified

in Usman et al. [23], to recognize the need to consider the

hierarchical crash-car-occupant structure of collision data

for crash severity modeling. They discussed the potential

issues of ignoring the clustering nature of data and the

correlation within the clusters, such as erroneous estimates

of model coefficients and understated standard errors and

confidence intervals for the effects. They, however, did not

discuss the effects of data aggregation. Their conclusions

were similar to those from other disciplines such as epi-

demiology, social research, and political science [24–27].

The second objective of this research is therefore to eval-

uate the effects of data aggregation through an empirical

investigation using three levels of aggregations, i.e.,

occupant level, vehicle level, and collision level.

This paper contributes to the literature by generating

new knowledge about the implications of different mod-

eling alternatives and data aggregation methods for colli-

sion severity analysis. The paper first describes the data

used in the empirical investigation, including study sites,

data sources, and data processing and integration. The three

different data aggregation methods are discussed in details.

Then, an overview of the three logistic regression models

in the construct of the multilevel framework is provided,

followed by a discussion on the model calibration process

and the results. Finally, the main findings are summarized,

focussing particularly on the differences from different

approaches.

2 Data description

This research makes use of a collision database prepared in

our previous effort [23, 28, 29]. This dataset is unique in

several aspects, including reliable observations on traffic

and environmental conditions when the collision occurred,

and extensive spatial and temporal coverage, as described

in the following section.

2.1 Study sites

A total of 31 patrol routes, each representing a highway

section covered by a single maintenance unit (yard), from

different regions of Ontario, Canada, were selected for this

analysis as shown in Fig. 1. These sites were selected based

Fig. 1 Study sites
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on representativeness of different classes of highways,

including freeways, four-lane rural highways, and two-

lane, two-way highways, and data availability.

2.2 Data sources

Collision data from six winter seasons (2000–2006) were

used for collision severity analysis. Detailed description of

each data source can be found in Usman et al. [29] and is

also given below.

2.2.1 Traffic volume data

Hourly traffic data were obtained from two sources: Min-

istry of Transportation, Ontario (MTO) COMPASS system

and permanent data count stations (PDCS). Both COM-

PASS and PDCS use loop detectors for collecting traffic

data such as volume, speed, and density. The raw data from

the sources were screened for any outliers caused by

detector malfunction and then merged into hourly traffic

volume data. In cases where multiple readings are available

for a segment (e.g., from both sources and/or multiple

detectors), average values are used.

2.2.2 Traffic collision data

The Ontario Provincial Police (OPP) maintains a database

of all of the collisions that have been reported on Ontario

highways. A database including all of the collision records

for the study routes was obtained from the MTO. The

database includes detailed information on each collision,

including collision time, location, collision type, impact

type, severity level, vehicle information, driver informa-

tion, etc. One of the important data fields in these data was

related to road surface condition. This variable was con-

verted into a continuous variable—road surface index

(RSI) as per the criteria set in Usman et al. [28]. This data

is person-based data with an inherent multilevel structure

where individuals are nested within vehicles and vehicles

within collisions. The data used in this research contains

13,775 collisions involving 39,564 people in 19,635 vehi-

cles for the six winter seasons on the selected routes.

2.2.3 Environment Canada (EC) data

Weather data from Environment Canada includes temper-

ature, precipitation type and intensity, visibility, and wind

speed. With exception of the precipitation intensity data, all

other data are in hourly format. Most of the EC stations

have missing data. For this reason, EC data were obtained

from 302 stations for the study routes. These data were

processed in three steps: In step 1, a 60 km arbitrary buffer

zone was assumed around each route and all stations within

this boundary were assigned to the particular route. In the

next step using t test, EC stations were identified, which on

average are similar to EC stations near the routes. In the

last step, data from different EC stations around a route

were converted into a single dataset by taking their arith-

metic mean. It was found that arithmetic means provide

better results than weighted averages.

2.3 Data processing

As described above, collision data are hierarchical with

different outcomes possible for a single collision, as shown

in Fig. 2. Collisions are categorized into five distinct injury

severity levels as follows:

1. NI, where no injuries were sustained;

2. Minimal injury, where the victim suffered minor

abrasions and complained of pain but did not go to

the hospital;

3. Minor injury, where the victim was treated in the

emergency room but not admitted;

Collision 

Vehicle 1 

Person 1 

Fatality + 
major injury Minor injury Minimal 

injury + NI 

... Person K 

Vehicle N 

... 

... 

... 

... 

... 

Fig. 2 Hierarchical structure of collision data
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4. Major injury, where the victim was admitted to the

hospital either for treatment or observation;

5. Fatality, where the victim died within 30 days of

collision or on site.

Minimal injury and NI collisions were grouped together

into one category because they are similar in terms of

consequence. Similarly, major injuries and fatalities were

also grouped into a single category. This merging of cat-

egories will also take care of the possible correlation that

could exist between those closely related outcomes of a

collision severity [12, 30]. The hierarchic structure of

collision data is shown in Fig. 2, which shows that for a

given collision, vehicles are nested within the collision and

persons are nested within vehicles and each person could

have a given level of severity.

Data from other sources such as weather and traffic were

merged with the person-based collision data based on date,

time, and location for the 31 patrol routes. A stepwise

aggregation process was followed to convert the data from

occupant-based records to vehicle-based, and finally to

collision-based records. Three datasets were thus formed

for this analysis: occupant-based dataset with three levels

(occupant—vehicle—collision), vehicle-based dataset with

two levels (vehicle—collision), and collision-based dataset

with a single level. For the vehicle- and collision-based

data, collision severity levels were assigned to the

respective vehicles and collisions as per the classification

scheme shown in Fig. 3. Note that this classification

scheme was not used for occupant-based data as each

person has a unique injury severity level.

3 Model development

Different approaches can be used for collision severity

analysis: (a) incorporating severity into the collision fre-

quency models by modeling collisions classified by

severity types [31–34]; and (b) modeling the conditional

probability of each severity level for a given collision [14,

15, 17, 35, 36]. In this research, we adopted the second

approach for three reasons: (i) different factors could have

different effects on collision occurrence and severity (e.g.,

seat belt use has nothing to do with collision occurrence,

but is an important factor in severity analysis); (ii) data that

could be used for joint models are limited in nature because

most of the data are collected after the collision has hap-

pened [12]; and, (iii) consequence outcomes and injury

data are at the individual, vehicle, or accident level. Three

different model structures were considered for the condi-

tional probability of a collision for each of the three

datasets discussed previously.

Multilevel framework is used to account for the corre-

lation between vehicles in a collision or persons in a

vehicle. In a multilevel setting, correlation at a sub-level is

taken care of by inclusion of random parameters which are

constant within the sub-level but are allowed to vary at the

upper levels [18, 20, 37].

3.1 Multilevel logistic regression models

The first modeling structure considered is the multilevel

multinomial logit model. In this model, a base category is

selected out of the different outcomes and other categories

are estimated with respect to the base category. Many

researchers have used multinomial logit models for acci-

dent severity analysis [1–10]. If the three severity levels are

represented by 0, 1, and 2 with 0 as the reference or base

category then the model structure for a three-level data

structure (occupant-based data) is given by Eq. (1). The

resulting models are called multilevel multinomial logit

models (MML).

ln
P Y ¼ 1=Xð Þ
P Y ¼ 0=Xð Þ

� �
¼ b10 þ

PN
n¼1

b1nX1ijkn þ Ujk þ Vk;

ln
P Y ¼ 2=Xð Þ
P Y ¼ 0=Xð Þ

� �
¼ b20 þ

PN
n¼1

b2nX2ijkn þ Ujk þ Vk;

9>>=
>>;

ð1Þ

where P represents the probability of severity level (either

0, 1 or 2); i, j, and k represent occupant, vehicle, and

collision levels, respectively; Ujk and Vk denote the second

level (vehicle) and the third level (collision) random effect

factors which are assumed to follow a logistic distribution;

b is a model coefficient to be estimated; and Xijk represents

a set of explanatory variables at the individual level. Ujk

remains constant for occupants within a vehicle but varies

across vehicles and collisions. Similarly, Vk is constant for

vehicles in a collision but varies across collisions. Ujk and

Vk are obtained by considering the intercept as a random

parameter.

The second modeling structure is the sequential binary

logistic model. Collision data were divided into two

mutually exclusive injury outcomes for a given collision at

a given level, and binary logit models were specified at

Collision 
classification

Fatality + major 
injury Others

Minor injury Minimal injury + NI

Fig. 3 Data classification scheme (vehicle- and collision-based data)
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each level such as shown in Fig. 2. Many researchers have

used binary logit models for accident severity analysis [5,

11, 13–21].

For multilevel data, the resulting model is called the

multilevel sequential binary logit model (MBL). The

mathematical form of the model for a three-level data

structure (occupant-based data) is shown in Eq. (2):

ln
P Y ¼ 1ð Þ
P Y ¼ 0ð Þ

� �
¼ b0 þ

XN
n¼1

bnXijkn þ Ujk þ Vk; ð2Þ

where P represents the probability of severity level (either

0, or 1).

The third modeling structure considered in this research

is multilevel ordered logit model. Ordered logit models are

Table 1 List of variables used in the analysis

Category Variable Definition

Road characteristics Road classification Freeway = 1, kings highway multilane = 2, kings highway two

lanec = 3

Road alignment Straight on levelc = 1, straight on hill = 2, curve on level = 3, curve on

hill = 4

Number of lanes Number of lanes

Collision location Intersections = 1, segmentc = 2, bridges/underpasses = 3

Speed limit km/h

Weather and environment

conditions

Light Light ? dawn = 1, dark ? duskc = 2

Precipitation type Otherc = 0, freezing rain/snow = 1

Hourly precipitation Precipitation intensity in ‘‘cm’’

Temperature Measured in �C
Wind speed km/h

Visibility km

Road surface condition Road surface condition in winter i.e., icy, snow covered, etc. represented

by RSI

Day Weekdays = 0, weekendsc = 1

Vehicle Vehicle typeb SUVs/car/station wagonc = 1, van = 2, large trucks etc. = 3

Vehicle conditionb Otherwise = 0, defectivec = 1

Vehicle ageb In years

Driver/person Driver ageb In years

Driver sexb Male = 1, femalec = 2

Driver condition at time of

collisionb
Otherwisec = 0, normal = 1

Position in vehiclea Front = 1, rearc = 2

Safety equipment useda Used safety device = 0, not used or bad usec = 1

Traffic Hourly traffic volume ln(Hourly traffic volume)

a Used for occupant-based data only
b Used for vehicle- and occupant-based data only
c Base category

Table 2 Collision count by severity and percent change in collision severity distribution due to data aggregation

All sites Minimal injury ? NI Minor injury Fatality ? major injury Total

Collision count by severity

Occupant-based data 30,246 7,733 1,585 39,564

Vehicle-based data 12,698 5,905 1,032 19,635

Collision-based data 7,349 5,531 895 13,775

Percent change in collision severity distribution due to data aggregation

Occupant-based data 76.45 % 19.55 % 4.00 %

Vehicle-based data 64.67 % 30.07 % 5.26 %

Collision-based data 53.35 % 40.15 % 6.50 %

Injury severity analysis: comparison of multilevel logistic regression models and effects of… 77

123J. Mod. Transport. (2016) 24(1):73–87



extensions of multinomial logit models to account for the

inherent ordering of severity levels in collisions, such as,

from no injury to injury and to fatal [10, 38–44]. The

mathematical form of a multilevel ordered logit model

(MOL) for a three-level data structure (occupant-based

data) is shown in Eq. (3):

log
Ss
ijk

Sr
ijk

" #
¼ b0 þ b1Xijk þ Ujk þ Vk; ð3Þ

where severity (represented by ‘‘S’’) with superscript ‘‘r’’

represents the base severity against which other severity

levels, denoted by superscript ‘‘s,’’ are compared at the

occupant level. The reference category could be either the

least or most severe one. If Y denotes the observed severity

level, Y* the unobserved injury severity level from Eq. (3),

and l1, l2,…, lj the cut-off points or threshold values for

the injury severity levels, then

Y ¼ 1 if Y� � l1;
Y ¼ 2 if l1\Y� � l2;

..

.

Y ¼ j if lj�1\Y�:

ð4Þ

The probability of a particular injury severity level

Y = j can be estimated using Eq. (5) [45]:

PðY ¼ jÞ ¼ Pðlj�1\Y�\ljÞ

¼
expðlj �

P
bkxkÞ

1 þ expðlj �
P

bkxkÞ
�

expðlj�1 �
P

bkxkÞ
1 þ exp(lj�1 �

P
bkxkÞ

;

ð5Þ

where bk are model coefficients to be estimated and

X1; X2; . . .Xkf g represents a set of explanatory variables.

An important aspect of ordered logit models is the pro-

portional odds (or parallel slopes) assumption, where the

variables are assumed to have the same slope across all

levels of severity/outcome [46–48] with the exception of

the intercept [49]. Results of ordered logit models are

therefore unidirectional (show either an increase or

decrease in severity) and are thus very easy to interpret.

This unidirectional effect can sometimes lead to undesir-

able effects where a variable could cause the probability of

high or low severity collision to increase at the cost of the

other [38].

The presence of correlation is confirmed by calculating

the intra-class correlation (correlation among observations

within the same cluster). Intra-class correlation, denoted by

q, is a coefficient with values ranging from 0 to 1 and is

calculated as the ratio of the variance at the sub-level to the

total variance [23, 50, 51] as given in Eq. (6):

q ¼ r2
sub�levelP

r2
: ð6Þ

The higher the value of q, the greater the correlation is

and the higher the consequences of ignoring it will be [30].

For details on how q can be calculated, readers are referred

to e.g., Jones and Jørgenson [18].

3.2 Exploratory data analysis

There are a large number of factors that influence the

severity of collisions under winter conditions [52, 53]. The

main factors can be grouped into three categories, namely

road driving conditions, vehicle characteristics, and driver

attributes. Road driving conditions include road geometry,

environment, and pavement surface conditions. The latter

are affected by weather and maintenance operations. Dif-

ferent sets of variables were considered in analyzing the

three datasets as listed in Table 1.

Table 2 provides a summary of collision counts by

severity for the different datasets and the changes in the

proportions of different types of injury severity levels due

to aggregation at each step.

As shown in Fig. 2, a collision may involve several

vehicles and the occupants of an involving vehicle may

experience different levels of injury severity. As a result,

modeling the collision severity at the collision level will

result in a loss of information and misrepresentation of

certain severity levels, as show in Table 2. For example, if

we aggregate data for a collision with three fatal injuries

and two vehicles involved, the fatality count for occupant-,

vehicle-, and collision-based datasets will be three (03),

two (02), and one (01), respectively.

4 Model calibration and results

MLwin1 was used to calibrate the three alternative models

discussed in Sect. 3. Tables 3 through 5 provide the cali-

bration results for collision-based data, vehicle-based data,

and occupant-based data. MLWin uses Quasi-likelihood

for models with discrete dependent variables and thus the

reported likelihood estimates are only approximate leading

to unreliable likelihood ratio tests [54]. A positive sign is

used as an indicator of increase in severity level with

respect to the associated variable. Results from all the

models are consistent in terms of the direction of their

effect on severity; however, effect of the size of coefficient

varies across different models and aggregation levels. For

1 Rasbash, J., Charlton, C., Browne, W.J., Healy, M. and Cameron,

B. (2005) MLwin Version 2.22. Centre for Multilevel Modeling,

University of Bristol.
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evaluating the effect of individual factors, their elasticities

are calculated and given in Table 6. For a continuous

variable Xki, elasticity for a particular collision severity

outcome ‘‘i’’ is computed as

E
P ið Þ
Xki

¼ 1 � P ið Þ½ �bkiXki; ð7Þ

where P(i) is the probability of collision severity outcome

‘‘i,’’ and bki is the coefficient associated with variable Xki.

For categorical variables elasticity is calculated as E ¼
exp b� 1ð Þ=exp b [3, 7, 8]. Table 7 gives values predicted

from the models and the observed severity ratios.

4.1 Comparison of quality of fitting

As explained in the previous section, likelihood estimates

from MLWin are approximate and the usual goodness of fit

criterion such as Akaike Information Criterion (AIC) and

Bayesian Information Criterion (BIC) could not be applied

[54]. AIC [55], defined as -2LL ? 2p, is a test statistics

used to identify the best fit model from a set of models. The

term LL is the log likelihood of a fitted model and p the

number of parameters, which is included to penalize

models with higher number of parameters. A model with

smaller AIC value represents a better overall fit. Similarly,

Bayesian Information Criterion (BIC) [56], defined as

-2LL ? pln(n), which is another test statistics and a

variation of AIC, is used to identify the best fit model from

a set of models. The term ‘‘n’’ represents the number of

observations used to calibrate the model. A model with

smaller BIC value represents a better overall fit. Alterna-

tively, results from the models were compared to the actual

observations and it was found MML models have a better

prediction performance compared to MOL models except

for collision-based fatalities where MOL has a slightly

better prediction. Similarly, MML models have better

prediction results compared to MBL models for occupant-

and vehicle-based data. For collision-based data, MBL

results are slightly better for NI ? minimal injury and

minor injury collisions, whereas for fatality collisions,

MML results are closer to the observed severity ratios.

Based on the discussion in this section, MML is found to

perform better as a whole than MBL and MOL.

4.2 Effects of data aggregation and correlation

If the collision data are used at a disaggregated level of

analysis such as occupant based or vehicle based, then

efforts should be made to account for the correlation that

exists between occupants in a vehicle or vehicles in a

collision such as shown by the variance terms in Tables 4

and 5. Occupant-based results (Table 5) show that around

79 % of the variation (q = 0.79) is accounted for at theT
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occupant level, whereas the collision level accounts for

19 % of the variation (q = 0.19) and vehicle level for 2 %

(q = 0.02). Similarly, vehicle-based results (Table 4) show

that around 94 % of the variation (q = 0.94) is accounted

for at the vehicle level, whereas the collision level accounts

for 0.06 % of the variation (q = 0.06). This flexibility

offered by multilevel modeling improves the reliability of

the modeling results obtained with such models as com-

pared to single-level models [57–59].

Data used in a collision level severity analysis are,

however, aggregated to the level of a collision. This takes

care of the correlation within the data but can result in

some immediate problems: (i) loss of information by

reducing the number of observations, (ii) miss-specification

of collision attributes resulting in erroneous share of high

severity levels (Table 2), and (iii) the incapability to ana-

lyze different variables related to individual persons or

vehicles at aggregate level such as seat belt use, position in

the vehicle, vehicle age and type, etc. These could result in

biased parameter estimates (see e.g., Mensah and Hauer

[60] for some of these issues in collision frequency mod-

eling). In this research, we utilized the multilevel frame-

work to account for the correlation between occupants in

the same vehicle and vehicles in the same collision.

Treating occupant-based data results as the base case we

compare modeling results from MML models for the three

datasets.

The percent change in parameter estimates for fatality

and major injury collisions show a difference ranging from

-131 % to 214 % (average = 13 %) between occupant-

based (as the base case) and vehicle-based and -9 % to

310 % (average = 62 %) between occupant-based and

collision-based data. The difference between vehicle-based

data (as the base case) and collision-based data is -52 % to

191 % (average reduction in size of the parameter esti-

mate = 28 %). For minor injuries the difference is from

-49 % to 139 % (average = 20 %) between occupant-

based and vehicle-based data and from -29 % to 134 %

(average = 54 %) between occupant-based and collision-

based data, whereas for vehicle-based data (as the base

case) and collision-based data this difference is from -3 %

to 186 % (average = 64 %). This shows that aggregating

the data results in underestimation of the parameters esti-

mates. This could be of grave consequences if the purpose

of the analysis is to evaluate the effects of some policies

through some variables, in which case precise estimation of

the magnitude of the parameter for the variable is of great

importance. Besides data aggregation, another reason for

this is the model setting (Table 1) where it can be seen that

not all the variables used in the occupant-based data model

are used for the other two level of aggregation. This will

also result in parameter estimates for the remaining vari-

ables to be rescaled. This is evident from the results as wellT
a
b
le

5
co

n
ti

n
u

ed

C
at

eg
o

ri
es

V
ar

ia
b

le
M

B
L

fa
ta

l
M

B
L

m
in

o
r

M
O

L
M

M
L

—
fa

ta
li

ty
v

er
su

s
N

I
M

M
L

—
m

in
o

r
v

er
su

s
N

I

C
o

ef
f.

S
ig

.
C

o
ef

f.
S

ig
.

C
o

ef
f.

S
ig

.
C

o
ef

f.
S

ig
.

C
o

ef
f.

S
ig

.

W
ea

th
er

W
in

d
sp

ee
d

(k
m

/h
)

-
0

.0
0

6
0

.0
0

3
0

.0
0

5
0

.0
1

2
-

0
.0

0
6

0
.0

0
3

V
is

ib
il

it
y

(k
m

)
-

0
.0

0
4

0
.0

4
6

0
.0

0
6

0
.0

0
3

-
0

.0
0

4
0

.0
4

6

H
o

u
rl

y
p

re
ci

p
it

at
io

n
(c

m
/h

)
0

.1
6

9
0

.0
3

9

T
ra

ffi
c

ln
(T

ra
ffi

c)
-

0
.4

1
8

0
.0

0
0

-
0

.1
6

6
0

.0
0

0
0

.2
0

8
0

.0
0

0
-

0
.4

7
4

0
.0

0
0

-
0

.1
6

9
0

.0
0

0

l
1

-
1

.5
6

6
0

.0
0

0

l
2

0
.7

0
2

0
.0

0
1

-
2
9

lo
g

li
k

el
ih

o
o

d
(n

u
ll

)
-

2
4

,0
9

4
.8

3
7

,8
0

6
.7

1
3

,8
9

6
.6

1
3

,8
9

6
.6

-
2
9

lo
g

li
k

el
ih

o
o

d
(f

u
ll

)
-

4
4

,5
5

6
.4

3
3

,3
3

8
.5

-
4

,1
6

6
.5

7
-

1
1

,4
5

0
.9

V
ar

ia
n

ce
at

co
ll

is
io

n
le

v
el

8
.1

7
9

0
.0

0
0

0
.7

8
2

0
.0

0
0

7
.5

6
1

0
7

.8
3

2
0

V
ar

ia
n

ce
at

v
eh

ic
le

le
v

el
0

0
0

.1
0

0
0

0
0

V
ar

ia
n

ce
at

o
cc

u
p

an
t

le
v

el
3

.2
9

0
3

.2
9

0
3

.2
9

0
3

.2
9

0

C
o

ll
is

io
n

le
v

el
o

b
se

rv
at

io
n

s
1

3
,7

7
5

1
3

,3
7

5
1

3
,7

7
5

1
3

,7
7

5

V
eh

ic
le

le
v

el
o

b
se

rv
at

io
n

s
1

9
,6

3
5

1
9

,0
4

6
1

9
,6

3
5

1
9

,6
3

5

O
cc

u
p

an
t

le
v

el
o

b
se

rv
at

io
n

s
3

9
,5

6
4

3
7

,9
7

9
3

9
,5

6
4

3
9

,5
6

4

Injury severity analysis: comparison of multilevel logistic regression models and effects of… 83

123J. Mod. Transport. (2016) 24(1):73–87



Table 6 Elasticities for the three datasets

Variable MBL fatal MBL minor MOL MML—fatality versus NI MML—minor versus NI

Occupant-based model

Freeways 0.053 0.1 0.012 0.047 0.122

Multilane kings 0.288 0.098 0.089 0.257 0.09

Light/dawn -0.172 -0.055 -0.181

Accident location—intersections -0.163 -0.125 -0.208

Accident location—bridges/underpasses 0.561 0.28 0.582

Road alignment—straight on hill 0.123 0.14 0.125

Road alignment—curve on level 0.165 0.213 0.152

Road alignment—curve on hill 0.18 0.183 0.173

Driver age (years) 0.261 0.122 0.122 0.297 0.121

Driver—male -0.458 -0.28 -0.464

Driver condition—normal -0.752 -0.137 -0.804

Vehicle age (years) 0.072 0.064 0.068

Vehicle type—vans -0.332 -0.231 -0.209 -0.334

Vehicle type—large trucks etc -1.484 -0.546 -0.556 -1.425

Vehicle condition—non-defective -0.508 -0.144 -0.52

Position in vehicle—front 0.214 0.24 0.153 0.217

Safety equipment—used -1.284 -1.081 -0.567 -1.915 -0.935

Speed limit 1.492 0.685 0.608 1.668 0.68

Number of lanes -0.838 -0.443 -0.47 -0.963 -0.434

RSI -0.193 -0.162 -0.198

Wind speed (km/h) -0.079 -0.066 -0.079

Visibility (km) -0.052 -0.078 -0.052

Hourly precipitation (cm/h) -0.01

ln(traffic) -3.282 -1.064 -1.331 -3.699 -1.075

Vehicle-based model

Freeways 0.029 0.152 0.026 0.105 0.164

Multilane kings 0.257 0.03 0.011 0.272 0.036

Light/dawn -0.191 -0.202

Weekdays -0.172 -0.177

Collision location—intersections -0.16 -0.125 -0.255

Collision location—bridges/underpasses 0.486 0.271 0.507

Road alignment—straight on hill 0.183 0.213 0.18

Road alignment—curve on level 0.136 0.172 0.128

Road alignment—curve on hill 0.118 0.103 0.121

Driver age (years) 0.253 0.053 0.079 0.29 0.08

Driver—male 0.13 -0.273 -0.161 -0.274

Driver condition—normal -0.831 -0.185 -0.248 -1.036 -0.194

Vehicle age (years) 0.054 0.05 0.054

Vehicle type—vans 0.175 0.11 0.138 0.195 0.106

Vehicle type—large trucks etc 0.041 -0.844 -0.39 -0.093 -0.813

Speed limit 1.27 0.527 0.529 1.362 0.533

Number of lanes -0.722 -0.385 -0.411 -0.876 -0.389

RSI -0.18 -0.149 -0.176

Wind speed (km/h) -0.068 -0.068 -0.069

ln(Traffic) -2.909 -0.765 -1.111 -3.388 -0.784

Collision-based model

Freeways -0.121 0.017 -0.147 -0.106 0.027
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where the range is wider for the difference between

occupant- and collision-based data than those from occu-

pant- and vehicle-based data.

4.3 Comparison of significant factors

Despite different in quality of fitting and effect sizes of

various safety factors from different models and data

aggregation methods, there were consistent results in terms

of the factors that were found to have statistically signifi-

cant effect on collision severity. This section discusses the

main findings on the contributing factors and the magni-

tude of their effects (Tables 3 through 6).

4.3.1 Driver characteristics and accident impact type

One percent change in driver age will cause an average

increase of 0.297 in the probability of suffering a

fatal/major injury and 0.121 increases in the probability of

having minor injuries. For male drivers, the probability of

suffering minor injuries are 0.46 less compared to female

drivers. Alcohol can increase the probability of fatal-

ity/major injuries by 0.80. Collisions on bridges increase

the probability of fatality/major injuries by 0.58, whereas

those occurring at intersections reduce it by 0.21.

4.3.2 Road characteristics

Multilane-divided highways increase the probabilities of

fatality/major injuries by 0.26 and minor injuries by 0.09,

whereas for freeways these figures are 0.05 and 0.12

compared to undivided two-lane highways. Improvement

in road surface condition causes the probability of minor

injuries to reduce by 0.20. The presence of curves or hilly

terrain increases the probability of minor injuries from 0.12

to 0.17. Increase in number of lanes decreases the proba-

bility of fatal/major injuries by 0.96 and minor injuries by

0.43. Increase in speed limit increases the probability of

fatality/major injuries by 1.67 and minor injuries by 0.68.

4.3.3 Vehicle and individual

Heavy weight and non-defective vehicles decrease the proba-

bility of fatal/major injuries from 0.21 to 0.56 and minor

injuries by 0.33–1.43. Increase in the age of a vehicle increases

the chances of minor injuries by 0.07. Front position increases

the chances of fatal/major injuries by 0.15 and minor injuries by

0.22, whereas the use of safety devices decreases the chances of

fatal/major injuries by 1.92 and minor injuries by 0.94.

Table 7 Prediction results from models versus observed results

Severity type MBL

(%)

MML

(%)

MOL

(%)

Observed

(%)

Occupant-based model

NI ? minimal

injury

78.3 77 80.0 76.4

Minor injury 19.9 20.5 17.5 19.5

Fatal ? major

injury

1.8 2.5 2.5 4.0

Vehicle-based model

NI ? minimal

injury

63.5 64.3 69.1 64.7

Minor injury 31.2 30.4 27.1 30.1

Fatal ? major

injury

5.3 5.3 3.8 5.3

Collision-based model

NI ? minimal

injury

55.1 55.9 56.9 53.4

Minor injury 40.7 39.4 37.9 40.2

Fatal ? major

injury

4.2 4.7 5.2 6.5

Table 6 continued

Variable MBL fatal MBL minor MOL MML—fatality versus NI MML—minor versus NI

Multilane kings 0.249 -0.039 -0.043 0.23 -0.033

Light/dawn -0.23 -0.198

Weekdays -0.218 -0.102 -0.128 -0.28 -0.101

Road alignment—straight on hill 0.17 0.197 0.158

Road alignment—curve on level -0.004 0.014 -0.008

Road alignment—curve on hill -0.021 -0.037 -0.014

Weather—freezing rain, snow -0.081

Speed limit 1.19 0.454 0.544 1.275 0.463

Number of lanes -0.69 -0.345 -0.346 -0.847 -0.348

RSI 0.242 0.235

Wind speed (km/h) -0.036 -0.035 -0.037

ln(Traffic) -2.412 -0.262 -0.604 -2.542 -0.257
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4.3.4 Weather and environment

Increase in wind speed and visibility decreases the proba-

bility of minor injuries by 0.08 and 0.05. The presence of

lighting conditions reduces the chances of fatality/major

injuries by 0.18.

4.3.5 Traffic volume

Traffic volume is the most influential factor of all and an

increase in traffic volume decreases the probability of

fatal/major injuries by 3.70 and minor injuries by 1.08.

Intuitively, a higher traffic volume will lead to more con-

gestion resulting in lower speeds.

5 Conclusions and future research

Three alternative logistic regression models, namely multi-

nomial logit model, sequential binary logit model, and

ordered logit model applied in a multilevel framework, were

compared and evaluated for their performance for predicting

the conditional probabilities of different severity levels of a

given collision. These models were applied to collision data

aggregated at three levels—occupant level, vehicle level,

and collision level. These three levels were used to evaluate

the effects of data aggregation and correlation on collision

severity analysis. Collision data from six winter seasons

(2,000–2,006) and 31 sites containing 13,775 collisions,

involving 39,564 individuals and 19,635 vehicles was used

for this analysis. Based on the modeling results, it was found

that multilevel multinomial logit (MML) has the best overall

fit to the data, and occupant-based data results are more

reliable than vehicle- and collision-based data.

Moreover, it was found that data aggregation affects the

parameter estimates, on the average, by as much as 13 %

for vehicle-based aggregated data and 62 % collision-based

aggregated data compared to occupant-based data. Simi-

larly, from correlation perspective, around 79 % of the

variation is accounted for when using occupant-based data

compared to the 19 % variation accounted for by collision-

based data. This could have significant implications for

evaluating the effects of different safety-related policies

and countermeasures when using, showing the importance

of data analysis at a disaggregate level.

Our future efforts will be directed toward the comparison

of data compiled from winter seasons and snow storm events

using the results from this research. Moreover, other mod-

eling types such as latent class models will also be evaluated

and compared to the modeling results from this analysis.
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