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ABSTRACT 

Water quality performance of a reciprocating biofilm reactor  

for treatment of dairy wastewater 

Jason Patrick Kane 

Removal of organic matter and nitrogen from concentrated wastewaters is often a 

complex and costly process that is rarely implemented in animal agriculture, such as the 

dairy industry, despite regulatory pressures and the high cost of land for manure 

application in some regions.  This paper describes results from the first implementation 

for treatment of dairy farm wastewater of the relatively simple ReCip
®
 technology.  

ReCip
®
 typically consists of two basins filled with rock aggregate through which 

wastewater is flowed in series.  One basin is full of wastewater and the other is only 

partially full.  Wastewater is alternately pumped between the basins (reciprocated), which 

exposes biofilm on the aggregate to air and then submerges it, repeatedly creating aerobic 

and then anoxic conditions.   These conditions promote nitrification and denitrification, in 

addition to removal of organic matter through biodegradation.  The present study reports 

on 149 days of operation of a pilot-scale ReCip
®
 system treating anaerobic lagoon 

wastewater at a California flush dairy.  The resulting removals of wastewater constituents 

were 94% of total ammonia nitrogen (TAN), 49% of total nitrogen, 56% of five-day 

carbonaceous biological oxygen demand, and 61% of total suspended solids.  A simple 

mathematical model, which considers influent TAN concentration and temperature, was 

capable of predicting TAN removal.  Preliminary results of air quality emission 

monitoring indicate releases of nitrous oxide, methane, and carbon dioxide from the 
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basins during system operation.  Additional studies are currently underway to further 

quantify air emissions, test various ReCip
®
 operating conditions, and develop scale-up 

cost estimates.  
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1. Introduction 

The California dairy industry faces the challenge of complying with air and water 

quality regulations at the regional, state, and federal levels. Industry-wide on-farm 

environmental compliance costs are estimated to be hundreds of millions of dollars in the 

state of California alone (McKinsey, 2006).  Since 1975, the number of dairy cows in 

California has doubled, while the number of dairy farms has decreased by a half (SJVP, 

2005).  The resulting high density of dairy cattle and encroaching urban populations have 

led to many dairies having insufficient access to cropland for agronomic application of 

manure nutrients (SJVP, 2005).  In the San Joaquin Valley, home to 75% of California’s 

dairy cattle, each dairy is required to apply manure according to a regulatory agency-

approved Nutrient Management Plan (NMP), which addresses the transport of nutrients 

(nitrogen, potassium, and phosphorus) in water through runoff into surface and 

groundwater aquifers (Moss, 2007).  Farms that have inadequate cropland acreage must 

invest in alternatives to meet current and future regulations.  Alternatives such as 

exporting manure off-farm, herd reduction, and land acquisition are often economically 

unfavorable (SJVP, 2005).  Other options are to develop and implement better manure 

treatment systems (SJVP, 2005) or methods to recover nutrients in concentrated forms, 

which can be exported as fertilizer (USDA, 2008).  Although requiring initial investment 

for research, development, and implementation, dairies with wastewater treatment 

systems may benefit financially in the long-term by avoiding larger environmental 

mitigation costs (McKinsey, 2006).  An existing simple technology, already shown 

effective for removal of organic matter and ammonium from high strength anaerobic 

wastewater, is the so-called reciprocating sub-surface flow constructed wetland or 
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biofilm reactor (ReCip
®
; US Patent No. 5,863,433, Behrends 1999).  ReCip was 

developed at the Tennessee Valley Authority in the 1990s originally as an alternative way 

to improve performance of subsurface-flow constructed treatment wetlands.  Since that 

time, ReCip has been shown to be effective in the treatment of swine lagoon water (Rice 

and Humenik, 2004), as well as industrial and municipal wastewaters (Behrends et al., 

2003).  For dairies that collect manure with a water flushing system (as opposed to solids 

scraping), ReCip may be a desirable option for managing nitrogen and excess dissolved 

organic matter. 

ReCip consists of at least two paired basins filled with a rock aggregate substrate.  

At the start of a “reciprocation” cycle, one basin is mostly empty.  Wastewater from the 

full basin is pumped into the empty basin, and then after a specific pause, the direction of 

pumping is reversed, completing the cycle.  In addition to reciprocation, influent 

wastewater is pumped into the first basin (Basin 1), usually continuously.  During the 

Basin 1-to-Basin 2 reciprocation pumping, the wastewater influent is mostly transferred 

to Basin 2.  Effluent leaves Basin 2 by overflowing a weir.  Reciprocation causes biofilm 

on the aggregates to be alternately exposed to air and to wastewater which creates cyclic 

aerobic and anoxic environments promoting oxidation of organic matter, nitrification, and 

denitrification.  Other treatment mechanisms operating in the ReCip system include 

sedimentation of solids, anaerobic digestion, and minor ammonia volatilization.   

ReCip overcomes the oxygen limitation on nitrification that is common in 

traditional subsurface flow constructed wetlands (Crites and Tchobanoglous, 1998; 

Kadlec and Knight, 1996; USEPA, 1993).  With ReCip, recurrent drain cycles resulting 

from reciprocation draw atmospheric oxygen into the basin, exposing the liquid films 
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surrounding the biofilms to atmospheric oxygen (Behrends et al., 1993).  During this 

phase, oxygen diffuses into the biofilm where microorganisms compete for oxygen as 

their electron acceptor, oxidizing organic matter or nitrifying ammoniacal nitrogen into 

nitrate (Halling-Sørensen and Jørgensen, 1993).  According to biofilm theory, an oxygen 

gradient, with lower oxygen concentrations closer to the rock substrate, develops in the 

biofilm.  Nitrate, which becomes the favored electron acceptor in the anoxic layer 

adjacent to the rock substrate, is denitrified.  Simultaneously, the biofilm in the adjacent 

basin is submerged and the oxygen dissolved in its biofilm is partially transferred into the 

pore water.  While dissolved oxygen is present, organic matter removal and nitrification 

are promoted, followed by denitrification once the pore water becomes anoxic.  

Reciprocation is programmed to occur multiple times each day depending on the 

pollutant loading, treatment objectives, and temperature (Behrends et al., 2001).   

In animal production settings, barn flush water could be mixed with ReCip 

effluent in a lagoon, promoting denitrification and odor oxidation.  Most lagoon water 

would be disposed of by irrigation.  Alternatively, ReCip effluent could be collected in a 

segregated reservoir for barn flushing, resulting in more sanitary conditions in the barns 

compared to conventional lagoon water flushing.   

The goal of this research was to determine the effectiveness of ReCip for 

oxidizing ammoniacal nitrogen and removing total nitrogen and organic matter from 

dairy lagoon water.  A pilot-scale ReCip system was constructed at the dairy farm of the 

California Polytechnic State University, San Luis Obispo (Cal Poly), becoming 

operational in November 2009.  The lagoon water was recycled repeatedly for barn 

flushing.  Weekly water quality analyses of influent and effluent samples determined 
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treatment effectiveness of the ReCip process.  A nitrogen mass balance to analyze 

nitrogen removal was calculated using water quality results and monthly sludge 

compositional analysis.  The rate and spatial pattern of sludge accumulation was 

monitored to analyze the potential impacts of sludge accumulation in the system.  If 

proven effective in the treatment of nitrogen and organic matter, ReCip could be 

implemented on dairy farms with flush manure collection and storage systems, thereby 

reducing the cropland acreage needed for irrigation at agronomic rates. 
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2. Materials and Methods 

2.1 Dairy and ReCip configurations 

Lagoons at the Cal Poly dairy provided influent water for the ReCip pilot plant.  

The lagoons are mostly drained during summer irrigation and are refilled over the course 

of the year, primarily with clean water used to flush the milking parlor and storm water.  

During the study, the free-stall barns housed an average of about 325 animal units (1,000 

lbs each) consisting of lactating cows, dry cows, heifers, and calves.  Flush water from 

the free-stall barns passed through pretreatment steps:  a sand trap settling basin, an 

elevated inclined screen, and a second settling basin before entering one of the two 

storage lagoons (Figure 1).  Composted solids from the inclined screen were used as 

bedding in the free-stall barns.  Clean water entering the wastewater flow of the dairy was 

comprised of 91 m
3
/d (24,000 gal/d) for flushing the milking parlor and about 30 m

3
/d 

(8,000 gal/d) used in the free-stall barns.  Winter rainfall was also collected from the 

exercise pens and directed to the lagoons.  Four times per day, 57 m
3
 (15,000 gal) of 

lagoon water were used to flush the free-stall barns.   

Lagoon water was pumped into Basin 1 of the ReCip using a Flex-i-liner
®
 rotary 

peristaltic pump (Vanton Pump and Equipment Corp., Hillside, New Jersey) housed on 

the lagoon shore.  The pump inlet connected to a 15-m long, 3-cm diameter tube that was 

suspended 0.3-m below the lagoon water surface from a raft enclosed in a coarse plastic 

screen. 
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Figure 1.  Simplified schematic of the recirculation of wastewater at the Cal Poly 

dairy.  Anaerobic storage lagoon wastewater was used to flush the free-stall barns.  

A pump delivered influent to the ReCip pilot plant, and effluent was discharged 

back into lagoon.  

2.2 Description of the ReCip pilot plant  

The ReCip was comprised of two adjacent vertical-wall concrete basins each with 

the dimensions of 11.0 m x 6.1 m x 1.3-m deep (36 ft x 20 ft x 4.3 ft).  On the floor of 

each basin, five rows of arched plastic chambers, typically used in septic tank leach fields 

(BioDiffuser
TM 

Model 1600BD, Advanced Drainage Systems, Inc., Hillard, Ohio), were 

laid out in channels connected to ports in the basin walls.  The arched chambers had 

horizontally slotted walls.  These channels and ports will allow accumulated sludge to be 

flushed out in the future.  Three 10-cm diameter standpipes were installed along each 

channel for monitoring of sludge depth and composition.  The standpipes were spaced 1.5 

m from the wall and 4.0 m from each other.  Between each channel, standpipes were 

spaced 0.8 m from the wall and 1.1 m from each other.  The standpipes were supported 

on thin legs, which allowed the sludge blanket to pass under them. 

A 30-cm thick layer of greywacke cobblestone (15- to 25-cm diameter) was 

installed around the floor channels.  The next layer was 23 cm of crushed granitic rock 
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(5- to 10-cm diameter).  The top layer was 64 cm of crushed granitic rock (2- to 4-cm 

diameter).  The water level cycled between 15 and 91 cm from the floor (Figure 2a). 

Weir boxes (Agri Drain, Adair, Iowa) for water level control were installed in 

Basin 2 near the sump and at the effluent pipe (Figure 2b).  The weir box near the sump 

(not shown) had its inlet connected through the central wall to the Basin 1 sump.  The 

outlet of this weir box opened into Basin 2.  Effluent was discharged from the system 

though the weir box (Box C) connected to the effluent pipe. 

 

Figure 2a.  Cross sectional view of a portion of the ReCip basins, showing the cross 

section of a leach field chamber.  The dashed lines indicate high and low water levels 

at 91 and 15 cm, respectively.  Solid lines indicate the boundaries of the rock layers.  

Layer thickness, rock type, and rock diameter are listed next to each layer.  

Chambers collected sludge and provided ports for sludge monitoring through 

standpipes (not shown). Note: Full-scale installations could use lined earthen basins 

instead of concrete basins. 
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Figure 2b.  Simplified plan view of the ReCip basins.  (A) Influent standpipe 

location; (B) Sumps that housed the reciprocation pumps; (C) Effluent weir box that 

controlled the water level in Basin 2.  

2.3 Reciprocation schedule, influent flow, and precipitation 

Each of the two ReCip sumps housed a 0.5-HP high-flow, low-head propeller 

pump (Aquatic Eco-Systems, Apopka, Florida) that reciprocated water between the 

basins.  A two-hour pumping schedule was repeated twelve times per day.  A partial-day 

example is shown in Table 1.  The pumping duration of 30 minutes was the time needed 

for drawdown of the water elevation from 91 cm to 15 cm (36 in to 6 in) within each 

basin.  
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Table 1.  Reciprocation pumping schedule, which was repeated every two hours. 

Pump Location 
Example Timing 

0800 0830 0900 0930 

Basin 1 On Off Off Off 

Basin 2 Off Off On Off 

Pumping by the Basin 1 sump pump drained Basin 1 and filled Basin 2, 

discharging treated effluent over the effluent weir.  The pumping schedule as well as high 

and low water elevations were constant throughout the study.  Approximately 38 m
3
 

(10,000 gal) of water was contained in the basins based on the void space of the as-built 

rock layers, including the leach field chambers.  Influent was loaded into Basin 1 for one 

hour, every four hours (totaling 8.7 m
3
/d; 2,300 gal/d).  Based on the volume of water in 

the pores and the daily hydraulic loading rate, the theoretical hydraulic retention time 

(THRT) was determined to be 4.4 days.  All residence times provided in this paper are 

based on pore volume. 

Rainfall entering the ReCip basins diluted the wastewater being treated.  Over the 

course of the 149 days of operation described herein, 42.2 cm of precipitation directly 

entered the ReCip.  Daily precipitation was >0.5 cm/d (equivalent to 0.7 m
3
 or 8% of the 

daily influent flow) during 22 days (Table 2).   
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Table 2. Dates of precipitation events (>0.5 cm/d) during 149-d period. Volume of 

rainfall entering basins, percent of influent flow during precipitation event, and 

affected sampling dates due to dilution caused by precipitation are shown.  

Date(s) of event 
Precipitation Volume % of influent 

flow during event 

Sampling date(s) 

affected (cm) (m
3
) 

13 Jan 2010 1.2 1.6 19% 13 Jan 2010 

17-22 Jan 2010 14.4 19.3 37% 20, 27 Jan 2010 

26 Jan 2010 1.5 2.0 23% 27 Jan 2010 

5-6 Feb 2010 4.1 5.5 32% 10 Feb 2010 

9 Feb 2010 1.4 1.9 22% 10 Feb 2010 

24 Feb 2010 1.3 1.7 20% 24 Feb 2010 

26-27 Feb 2010 5.4 7.2 42% Sampling cancelled 

2-3 Mar 2010 2.6 3.5 20% 10 Mar 2010 

6 Mar 2010 0.6 0.8 9% 10 Mar 2010 

4-5 Apr 2010 2.5 3.4 19% 7 Apr 2010 

11-12 Apr 2010 2.7 3.6 21% 15 Apr 2010 

20 Apr 2010 1.3 1.7 20% 22 Apr 2010 

Affected sampling dates are given because precipitation entering basins diluted the water 

sampled. 

2.4 Tracer study methods 

Two fluorescent dye tracer studies were performed to characterize the hydraulics 

of the pilot plant.  Fluorometric analysis (Trilogy Laboratory Fluorometer, Turner 

Designs, Sunnyvale, California) using Rhodamine WT dye was selected with procedures 

adopted from the Techniques of Water-Resources Investigations of the United States 

Geological Survey (1986).  Upon introduction of Rhodamine WT fluorescent dye into the 

pilot plant, sump (Basin 2) and effluent samples were taken every 20 minutes.  Dye 

concentration was plotted against time for both the sump and effluent samples.  Sump 

sampling concluded after sump dye concentrations were equivalent to effluent dye 

concentrations.  Effluent sampling concluded after approximately two days, and an 

exponential decay curve was fitted to the effluent dye concentration data to predict the 
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remaining effluent dye concentrations.  Predictions were made because the remaining dye 

had not yet washed out of the system upon conclusion of sampling.  The area under the 

extended curve of the actual and predicted effluent dye concentrations was integrated 

with respect to time, providing the estimated exiting mass of dye.  The elapsed time for 

half of the dye to exit the system was calculated and represents the mean hydraulic 

residence time (MHRT).  

The first study commenced on 28 September 2009 and concluded on 2 October 

2009, prior to any loading of lagoon water.  In lieu of lagoon water, the pilot plant was 

filled to operational volume with tap water.  Unlike the pulse loading of lagoon water, 

during the first tracer study, tap water was continually loaded into the pilot plant at a rate 

of 3.8 L/min (1.0 gpm), resulting in a 7.0-d THRT. The reciprocation schedule was 

identical to that employed during the subsequent performance monitoring.  

A second tracer study was performed from 23 June 2010 to 25 June 2010.  

Although commencing after the completion of the 149-d time frame of the experiment, 

identical influent loading rates and reciprocation rates were employed during the second 

tracer study.  Unlike the first tracer study, the pilot plant both contained and was loaded 

with lagoon water.  

2.5 Water quality analyses 

This paper reports influent and effluent water quality data from 13 January 2010 

to 10 June 2010, referred to as the 149-d period.  Within a subset of that period, more 

detailed water quality analyses were conducted during a 9-week (65-d) period from 24 

February 2010 to 29 April 2010.  A nitrogen mass balance using sludge accumulation and 
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composition was developed from this 65-d period to indicate the fate of nitrogen entering 

the system.  ReCip’s potential for nitrogen and organic matter removal in dairy lagoon 

water was analyzed, with biological nitrification and denitrification studied as the 

primary treatment mechanisms.  During the study, the HRT was held constant (4.4 days), 

as was the reciprocation schedule (Table 1).  Influent water quality and weather were the 

uncontrolled variables (see Section 2.3 for precipitation data).  Weekly water quality 

sampling and analysis was performed per Standard Methods (APHA, 2005).  Influent 

grab samples were taken from the influent pipe directly before entering the system at 

0900 on sampling days.  Effluent grab samples were taken from water spilling over the 

effluent weir at 0855 on sampling days.  Duplicates of influent and effluent were 

collected to ensure consistent grab sampling.  Non-purgeable organic carbon (NPOC) and 

dissolved non-purgeable organic carbon (DNPOC) was analyzed using a Shimadzu TOC-

V CSH Total Organic Carbon Analyzer.  The same analyzer was used in conjunction 

with the Shimadzu TNM-1 Total Nitrogen Measuring Unit to measure total nitrogen (TN) 

and dissolved nitrogen (DN).  A large-bore sampling needle (800-µm inner diameter) was 

installed to accommodate larger particulates.  However, any particles larger than the 

sampling needle would have been excluded.  For DN, DNPOC, nitrite and nitrate 

analyses, filtered samples were prepared with 0.45-µm Express Plus
®
 membrane filters 

(Millipore, Billerica, Massachusetts).  Then, filtered samples were preserved using 

concentrated sulfuric acid and stored, per APHA guidelines.  A Dionex DX 120 ion 

chromatograph was used to measure nitrite and nitrate (NO2 and NO3).  Due to the 

sample acidification, NO2 was oxidized to NO3 to some extent and, thus, oxidized 

nitrogen (NO2 + NO3 as N) is reported.  However, even in occasional fresh, unacidified 
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samples, NO2 was <2.5 mg/L.  During both NPOC/TN and NO2 + NO3 analysis, 

sample blanks, matrix spikes, duplicates, and splits were performed within each sample 

batch to assure and control quality.  Additionally, a spinach leaf standard reference (SRM 

1570a, National Institute of Standards and Technology) was analyzed by the NPOC/TN 

analyzer to further assure data quality. 

2.6 Sludge monitoring and analysis 

Sludge accumulation on the floor of the ReCip pilot plant basins was monitored 

monthly through the standpipes that passed through openings in the top of the chambers 

and protruded above the rock surface.  For consistent and reproducible monitoring of the 

sludge layer thickness, a peristaltic pump with a flow rate of approximately 500 mL/min 

with 1.0-cm diameter vinyl tubing was used for sampling.  The vinyl intake tubing was 

attached to a rigid pipe calibrated with length markings (1-cm intervals) and lowered into 

each standpipe at a rate of 1 cm/sec.  Upon the appearance of dark sludge particles in the 

intake tube, the depth to the sludge was recorded and subtracted from the known depth to 

the bottom of the tank to determine the sludge thickness in the 15 standpipes of each 

basin.  See Section 2.2 for description of standpipe locations.  During sampling, sludge 

was collected from the entire thickness of the sludge layer to provide an accurate 

representation of the total solids and elemental composition.  The mean sludge thickness 

in each basin was determined by averaging the calculated depths in the 15 standpipes.  

Sludge volumes were calculated based on the dimensions of each basin, ignoring the 

sumps.  Sludge accumulated in the rock pores was not measured.  Samples were analyzed 

for total solids (TS) and volatile solids (VS).  Additionally, the Dumas combustion 

method (Vario MAX CNS Macro Elemental Analyzer, Elementar Americas Inc., Mt. 
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Laurel, New Jersey) was used to analyze samples for total carbon (TC) and total nitrogen 

(TN).  A tomato leaf standard reference (SRM 1573a, National Institute of Standards and 

Technology) was tested with each batch of samples along with blanks and splits for 

quality assurance and control.  Sludge volumes were multiplied by the total solids and 

elemental percentages to determine the mass of solids, nitrogen, and carbon in the sludge 

layer of each basin. 

2.7 Air quality monitoring 

Preliminary air emissions measurements were performed near the conclusion of 

the 149-d experiment on 5 June 2010 to 7 June 2010 by Dr. Yongjing Zhao of Dr. Frank 

Mitloehner’s group at the University of California, Davis.  Flux chambers buried 30-cm 

into the rock layer collected gas emitted from the pilot plant over the course of a 

complete two-hour pumping cycle.  The flux chambers were 20-L plastic pails with their 

bottoms cut away.  The pails were sealed with air-tight lids with gas transfer tubing 

attached with stainless steel tank adapter fittings.  Three analyzers connected to the flux 

chambers measured various gases.  An INNOVA Multi-gas Analyzer (LumaSense 

Technologies Inc., Santa Clara, California) measured ammonia (NH3), nitrous oxide 

(N2O), carbon dioxide (CO2), methanol, and ethanol.  A hydrogen sulfide (H2S) and 

sulfur dioxide (SO2) analyzer (Model 450i, Thermo Fisher Scientific, Waltham, 

Massachusetts) and a direct methane (CH4) and non-methane hydrocarbon analyzer 

(Model 55c, Thermo Fisher Scientific, Waltham, Massachusetts) were also used.  

Additionally, the previously mentioned analyzers were used to measure gas volatilization 

from influent and effluent samples stored in 20-L plastic pails with lids fitted with gas 
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flushing and sample collection tubing.  This gas sampling was conducted over the course 

of two hours. 

2.8 Regression model development 

 Linear and nonlinear models of ammonium removal were prepared and analyzed 

for best fit to the data.  SigmaPlot
®
 software (Version 11, Systat Software Inc., San Jose, 

California) was used to fit model parameters to model equations using least-squares 

routines.  The variables deemed most significant for use in the models were influent 

TAN, theoretical hydraulic residence time (THRT), and effluent temperature.  Effluent 

temperatures were incorporated into an Arrhenius-type adjustment factor and were only 

included in the nonlinear models.  The linear model formulated to describe TAN removal 

was as follows: 

∆N/θ = αN + β        (Equation 1) 

where 

∆N/θ = TAN removal rate based on theoretical hydraulic residence time (mg/L-d)  

N = Influent TAN concentration (mg/L)  

α, β = Fitting parameters 

TAN concentrations in the effluent did not decrease to levels thought to be limiting to 

nitrification based on typical ammonium half-saturation constants of 0.1 - 5.0 mg/L 

NH4
+
-N (15 - 25°C) (Halling-Sørensen and Jørgensen, 1993).  Thus, dissolved oxygen 

was more likely to be the substance that limited nitrifier growth rate.  Nonetheless, the 

TAN removal rate was assumed to be first-order with respect to TAN, hence a 
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concentration parameter, α, was used.  The intercept parameter, β, accounts for any zero-

order TAN removal mechanisms.  For model testing, four nonlinear models were 

formulated to describe TAN removal, as follows: 

 ∆N/θ = [αN + β] x kT
T-20

  and  ∆N/θ = [αN + β] x kT
T-16.3

 (Eqs. 2 & 3)  

∆N/θ = [αN x kT
T-20

] + β and ∆N/θ = [αN x kT
T-16.3

] + β (Eqs. 4 & 5)  

where 

 kT = Arrhenius-like temperature adjustment factor 

 T = Effluent temperature (°C)  

 The differences among the equations are the value of the constant in the 

temperature adjustment and whether β received the temperature adjustment.  Equations 3 

and 5 use 16.3 instead of 20 in the Arrhenius-type adjustment exponent because 16.3
o
C is 

the mean temperature in the data set, which centers the model.  Models were judged for 

their ability to describe as well as predict the data set. For description testing, calculated 

TAN removal rates provided by each model were plotted against measured TAN removal 

rates.  For prediction testing, best-fit model parameters were determined using only the 

first half of the 149-d data set (13 January 2010 to 24 March 2010).  The models, with the 

best-fit parameters, were then used to predict TAN removal during the second half of the 

data set (31 March 2010 to 10 June 2010).  The predicted second half of the data set was 

then plotted against the measured second half of the data set to assess the accuracy of the 

predictions. 
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3. Results and Discussion 

3.1 TAN removal during 149-d period 

Average influent and effluent water quality results and removal efficiencies from 

the entire 149-d sampling period (13 January 2010 to 10 June 2010) are displayed in 

Table 3.  

Table 3.  Influent and effluent water quality results from weekly grab samples 

during the 149-d experiment (mean +/- standard deviation; n = 20).   

    Influent Effluent   

  Units Mean +/- Mean +/- % Removal 

Temperature °C 16.7 3.15 16.3 2.49 - 

Dissolved Oxygen mg/L 0.2 0.17 1.4 0.68 - 

pH - 7.5 0.10 8.1 0.12 - 

Total SS mg/L 1,408 163.0 591 131.9 58% 

Volatile SS mg/L 1,150 127.2 467 101.5 59% 

Total Ammoniacal N mg N/L 221 31.5 15 7.0 93% 

NPOC mg C/L 673 97.2 213 56.5 68% 

Total BOD5 mg/L 370 63.2 192 45.5 48% 

Notation:  SS is suspended solids; NPOC is non-purgeable organic carbon; BOD5 is five-

day biochemical oxygen demand.  

 

Total and volatile suspended solids were similarly removed.  Although some settling 

occurred on the basin floors, particulate solids likely decomposed into soluble products 

on the surface of the biofilm (Halling-Sørensen and Jørgensen, 1993). Carbon was well 

removed, as indicted by the removal of NPOC.  The most significant result of the 149-

period was the high removal percentage of TAN (93%) while influent TAN 

concentrations averaged over 200 mg N/L.  TAN removal through biological nitrification 

requires the presence of adequate dissolved oxygen (DO).  Dissolved oxygen was 

consistently elevated in effluent samples in comparison to the anoxic lagoon water 

influent, as indicated by the average influent and effluent DO concentrations in Table 3.  
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Increased DO in the biofilms promotes nitrification and TAN removal and is a direct 

result of the novel reciprocation process (Leonard et al., 2003). 

3.2 Detailed water quality analyses and nitrogen removal during 65-d period 

More comprehensive water quality testing was performed from 24 February 2010 

to 29 April 2010 (65-d period) compared to the full 149-d period (Table 3) to analyze 

concentration changes in nitrogen species and provide a nitrogen balance over the 65-d 

period (Table 4).  

Table 4.  Influent and effluent water quality results from weekly grab samples 

during the 65-d experiment (mean +/- standard deviation; n = 9). 

    Influent Effluent   

  Units Mean +/- Mean +/- % Removal 

Temperature °C 16.6 1.57 16.1 1.42 - 

pH - 7.5 0.06 8.0 0.10 - 

Dissolved Oxygen mg/L 0.3 0.19 1.8 0.80 - 

Total SS mg/L 1,349 79.5 533 64.0 61% 

Carbonaceous BOD5 mg/L 261 52.6 115 29.9 56% 

NPOC mg C/L 634 67.9 196 69.2 69% 

Dissolved NPOC mg C/L 238 21.1 151 21.9 37% 

Total Alkalinity mg CaCO3/L 2,611 754 1178 494 55% 

Total N mg/L 316 21.2 160 14.4 49% 

Dissolved N mg/L 213 16.8 144 9.9 32% 

Total Ammoniacal N mg N/L 214 18.8 13 8.5 94% 

NO3 mg N/L 0.2 0.07 88 22.4 - 

NO2 mg N/L <0.1 - 1.2 0.47 - 

 

 Removal of nitrogenous and carbonaceous constituents is evident in all 

parameters except NO3 and NO2, which show significant increases in concentration 

(Table 4).  Dissolved carbon (as dissolved NPOC) remains prevalent, suggesting carbon 
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is not limiting as an electron donor for denitrification assuming it is biologically 

available.  

The consumption of alkalinity and sensitivity to pH inherent to nitrification 

provided concern prior to pilot plant operation (Spierling et al., 2009).  During the 65-d 

period, an average of 7.0 mg alkalinity was destroyed per mg TAN removed.  However, 

effluent alkalinity levels and significant TAN removal suggest no alkalinity 

supplementation (e.g., caustic soda) would need to be added to the influent to allow 

nearly complete TAN removal.  

Total nitrogen (TN) was assumed to be composed of TAN, NO3, and organic 

nitrogen (ON).  Although ON was not directly measured, it was calculated as the 

remainder of TN after TAN and NO3 were subtracted. An insignificant amount of NO2 

(1.2 mg/L) was measured in the effluent and therefore omitted from total nitrogen 

composition analysis and mass balance.  The composition of TN in the influent and 

effluent, based on the three assumed constituents, was analyzed (Figures 3a, 3b).  
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Figure 3a (above).  Influent nitrogen composition from 24 Feb 2010 to 29 Apr 2010. 

Figure 3b (below).  Effluent nitrogen composition from 24 Feb 2010 to 29 Apr 2010. 
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Before conclusions could be made on nitrification and denitrification, sludge 

accumulation and analysis was performed to determine how much total nitrogen was 

removed by settling (Section 3.5).  

3.3 Tracer Study Results 

 In order to evaluate hydraulic performance of the pilot plant, the theoretical 

hydraulic residence time (THRT) was compared with the mean hydraulic residence time 

(MHRT) as determined in two tracer studies.  Peak effluent dye concentrations in both 

studies were observed approximately three hours after the introduction of dye, followed 

by a gradual decrease of concentration as the dye was flushed out of the pilot plant.  

Figures B.1 and B.2 in the Appendices provide plots of effluent Rhodamine 

concentrations-versus-time.  The first tracer study was performed during constant 3.8 

L/min loading of tap water, giving a 7.0-d THRT, and determined the MHRT to be 2.9 

days.  It is estimated that 55% of the fluorescent dye was attenuated in the pilot plant, 

presumably adhering to the rock substrate and/or due to the conclusion of sampling 

before the decay curve reached the asymptote.  The second tracer study, performed under 

conditions identical to those of the 149-day experiment (4.4-d THRT), revealed the 

MHRT to be 1.8 days. Only 26% of the injected dye mass was estimated to have exited 

the pilot plant during the sampling of the second tracer study.  The dye retained in the 

pilot plant is assumed to have been absorbed by organic matter or was unaccounted for 

due to the short sampling period.  The MHRT-to-THRT ratio of both tracer studies was 

0.42-to-1 despite the differences in flow and loading schedule (continuous vs. pulsed).  

Sampling in the intermediate sump revealed large oscillations in dye concentration due to 

the reciprocation pumping.  The early, sudden peak and ensuing gradual decay of dye 
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concentration in both studies revealed that the pilot plant hydraulics were similar to a 

continuous-flow stirred tank reactor (CSTR), but with substantial short-circuiting 

indicated by the high MHRT-to-THRT ratios. 

3.4 TAN removal model selection 

 For each model shown in Table 5, the coefficient of determination (R
2
) of each 

calculated-versus-observed correlation was first used to determine the best descriptive 

model (equations listed in Section 2.8). 

Table 5.  Coefficient of determinants (R
2
), fitting parameters (α, β), and Arrhenius-

type adjustment factors of TAN removal models for the 149-d period.  R
2
 values 

from calculated-versus-observed correlation.  P-values for each equation are 

corrected for mean of observations. 

Eqn Model R
2
 P-value α β kT 

1 ∆N/θ  = αN + β 0.90 <0.001 0.237 -4.818 - 

2 ∆N/θ  = [αN + β] x kT
T-20

  0.90 <0.0001 0.246 -7.341 0.996 

3 ∆N/θ  = [αN + β] x kT
T-16.3

 0.90 <0.0001 0.250 -7.451 0.996 

4 ∆N/θ  = [αN x kT
T-20

] + β 0.30 0.046 -0.008 54.591 0.729 

5 ∆N/θ  = [αN x kT
T-16.3

] + β 0.90 <0.0001 0.249 -7.358 0.997 

Notation: ∆N is change in TAN concentration between influent and effluent; θ is 

theoretical hydraulic residence time; α and β are first and zero order fitting parameters, 

respectively; kT is Arrhenius-like temperature adjustment factor. 

Excluding Equation 4, the best-fit parameters for the nonlinear (temperature dependent) 

models were nearly identical, as well as the R
2
 values for the calculated-versus-observed 

correlations.  The linear (not temperature dependent) model produced only a different β 

value.   

For prediction testing, the best-fit parameters were determined from only the first 

half of the data set (13 January 2010 to 24 March 2010).  These calibrated models were 

used to predict the TAN removal rate during the second half of the data set (31 March 
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2010 to 10 June 2010). In general, the TAN removal rates of the second half of the data 

set were higher than the first half of the data set.  Much like the descriptive comparison, 

the predictive capabilities of Equations 2, 3, and 5 were similar.  The R
2
 correlation value 

of the linear Equation 1 predictions (Figure 4) was 0.93, compared to 0.90 for the 

nonlinear models predictions.  

 

Figure 4.  Fitted and predicted periods using the linear TAN removal model (Eq. 1).  

The best-fit model parameters were determined using first half of data set, with 

fitted-versus-measured correlation plotted.  The calibrated model and influent TAN 

concentrations from the second half of the data set were used to predict TAN 

removal rates.  

The predicted period trendlines of the predictive linear and nonlinear models had 

intercepts greater than zero yet predicted TAN removal rates that were lower than 

measured, indicating that the predictive capability of each model is influenced by TAN 

removal rate.  In comparison to the nonlinear models, the predicted period trendline 

intercept of the linear model was closer to zero signifying the linear model is less affected 
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by variations in TAN removal rates.  As a result, Equation 1 (linear model) is the best 

model to represent the Cal Poly ReCip.  However, a temperature dependent model may 

be useful in the future for sites with greater seasonal temperature variation because of the 

temperature dependency of nitrification (Halling-Sørensen and Jørgensen, 1993), and in 

turn TAN removal.  The Cal Poly, San Luis Obispo temperature data does not range 

widely and leads to a near-unity, negative value of kT for all nonlinear models.  

Contrasting to Equation 2 and 3, Equation 5 does not correct the intercept (β) with 

temperature and therefore seems more likely to accurately account for temperature 

dependent nitrification by only adjusting the first order influent TAN concentration 

parameter (α).  Equation 5 is then selected as the model most likely to be useful in 

regions with greater seasonal temperature variations than San Luis Obispo.  Entering the 

previously listed parameters determined through regression, Equation 5 becomes: 

∆N/θ = [0.249N x 0.997
T-16.3

] - 7.358     (Equation 6) 

Although temperature was not important in this study due to the minor observed seasonal 

variation in temperature, it is likely to be a significant factor upon additional data 

collection and operation in locations with more extreme temperature variations.  

Additionally, Equation 5 uses the mean temperature in the Arrhenius-type adjustment 

factor, differing from Equation 4 which uses 20°C. 

 

3.5 Sludge accumulation and analysis 

Sludge accumulation in each basin is the byproduct of settled solids and biofilm 

sloughing.  Monthly monitoring was performed on four dates over the course of the 149-

d experiment and an additional date after the end of the period (Table 6).  
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Table 6. Sludge accumulation monitoring data. Based on average sludge depths of 

15 standpipes.   

 
Basin 1   Basin 2   

Date Depth Volume Depth Volume 

 (cm) (m
3
) (cm) (m

3
) 

22-Feb-2010 8.4 5.62 1.8 1.20 

10-Mar-2010 4.5 3.01 1.7 1.14 

8-Apr-2010 5.3 3.55 1.9 1.27 

6-May-2010 9.1 6.09 3.0 2.01 

7-Jul-2010 10.0 6.69 3.0 2.01 

 

Excluding the first sludge sampling date, each basin showed an increase in sludge 

depth during the course of the experiment.  In the Basin 1, sludge levels were higher 

nearest the influent pipe and along the walls furthest away from the sump.  Basin 2 

sludge was highest close to the sump and decreased spatially closer to the effluent weir 

(refer to Figure 2b for plan view of basins).  In conjunction with sludge height 

monitoring, sludge was sampled from the standpipes nearest the influent pipe and 

effluent weir.  Samples were analyzed for total solids (TS) and volatile solids (VS) as 

well as carbon and nitrogen percentage (Table 7).  Average sludge volume was calculated 

from average thickness of the sludge layer accumulated on the basin floors.   

Table 7.  Average sludge levels and composition (%N and %C of TS) in each basin 

during 149-d experiment. 

Location 
Depth Volume TS VS %N %C 

(cm) (m
3
) (g/L) (g/L)     

Basin 1 6.8 4.57 39.4 22.7 2.8 28.0 

Basin 2  2.1 1.40 42.0 20.2 3.3 21.3 

 

The actions of sludge layer consolidation and anaerobic degradation (Nelson et 

al., 2004) are expected to lead to a declining rate of sludge accumulation over time.  At 
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some point, it is expected that sludge removal via the basin ports will be required in order 

to maintain the porosity and function of the aggregate beds.  

3.6 Nitrogen mass balance 

A nitrogen mass balance (Figure 5) was conducted using influent and effluent 

water quality data from the detailed 65-d analysis (24 February 2010 to 29 April 2010) 

and nitrogen in the accumulated sludge (Table 7).  Influent and effluent TAN, NO3, and 

ON concentrations comprised the nitrogen entering and leaving the pilot plant in the 

water column. 

 

Figure 5.  Nitrogen mass balance based on the detailed water quality analyses 

during 24 February 2010 to 29 April 2010.  TN removed, shown as difference 

between IN and OUT, is presumed to have been released as N2O and/or N2 gas.  The 

NO3
-
 discharged with the effluent to the anaerobic lagoon was presumably 

denitrified in the anoxic lagoon. 

NO2 was not included in the mass balance due to a negligible influent concentration and 

minor effluent concentration in comparison to NO3.  Sludge TN is included under mass 

out to account for nitrogen settled in the system as biomass or as nonvolatile solids.  
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Nitrogen unaccounted for in the effluent water and settled sludge is assumed to have left 

the system primarily as N2 gas. 

3.7 Preliminary air quality results 

Preliminary air emissions measurements were performed from 5 June 2010 to 7 

June 2010 at five locations in the pilot plant using flux chambers.    Results averaged 

between three sampling spots near the influent, sump, and effluent locations, 

respectively, indicate concentrations of 2.4 ppm N2O, 968 ppm CO2, and 3.0 ppm CH4 

during the draining and ensuing rest stages of the reciprocation pumping cycle.  During 

reciprocation biofilms were exposed to air, transferring these metabolic gases from the 

liquid film to the bulk air of the pore spaces of the ReCip aggregate beds.  Biological 

nitrogen removal processes release N2O during both aerobic and anoxic phases (Ahn et 

al., 2010).  Comparison of the emission rates from influent and effluent samples indicated 

significantly lower emission rates for NH3, H2S, and CH4 in the effluent sample.  

Additional air emissions measurements will be conducted at the Cal Poly ReCip site in 

the near future. 

3.8 Comparison of results to previous studies 

  Water constituent removal by the Cal Poly dairy ReCip pilot plant was compared 

with two other ReCip systems installed at swine farms (Table 8) because of the similar 

expected values for influent lagoon water constituents (NRCS, 1992).  Water in both 

swine lagoons was pretreated with solids removal systems incorporating solids screens, 

similar to the Cal Poly dairy.   
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Table 8.  Percent removal of selected constituents of three ReCip systems.  For the 

Cal Poly dairy results are from 24 February 2010 to 29 April 2010.  

ReCip System 
Flow HRT Percent Removal 

(m
3
/d) (d) CBOD5 TAN TSS 

Dairy farm, Cal Poly 8.7 4.4 56% 94% 61% 

Swine farm, AL (Behrends et al., 2004) 208 4.5 77% 91% - 

Swine farm, NC (Rice and Humenik, 2004) 76 6.0 - 57% 95% 

  

The Cal Poly pilot plant achieved the greatest TAN removal efficiency of the three 

comparable systems, but also had the lowest TAN influent concentration.  Because ReCip 

is primarily a nitrification/denitrification system, the production of NO3 is prevalent with 

the oxidation of TAN.  The two swine systems showed dramatic increases in NO3 

production (Behrends et al., 2004; Rice and Humenik, 2004) as was observed in the 

current study with dairy lagoon water.  Temperature data could not be compared to either 

swine study because it was not provided in the literature.  Cycle timing was not 

mentioned by Behrends et al. (2004), although the Rice and Humenik (2004) study 

employed 10 daily cycles every 1.5 hr, with a 9-hr nighttime rest period when water 

levels in each basin equilibrated.  Additionally, the North Carolina ReCip system 

(Behrends et al., 2004) had four basins operated in series, while the Alabama ReCip 

system had two basins in series (Rice and Humenik, 2004).  During the 65-d period from 

24 February 2010 to 29 April 2010 at the Cal Poly ReCip, 178 kg N and 90 kg N entered 

and exited the pilot plant, respectively.  7.0 kg N was found to have been retained in the 

system as sludge through sludge monitoring and compositional analysis. Based on the 

mass of the total nitrogen removed, the plan area of both basins, and the 65-d period of 

the nitrogen mass balance, 0.01 kg N/m
2
-d was removed from the influent flow.  
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4. Conclusions 

CBOD5 and N removal were characterized for a ReCip pilot plant operating with 

a 30-min:30-min reciprocation pattern and loadings of 2.7 kg N/d and 2.3 kg CBOD5/d.  

Under these conditions, nitrification of ammonium was nearly complete, but 

denitrification was incomplete.  Preliminary air emissions results comparing the influent 

lagoon water to the treated ReCip effluent suggest a decrease in the potential emissions of 

ammonia, hydrogen sulfide, and methane. 

Similar to other biological wastewater treatment systems, the significant removal 

mechanism was the conversion of nitrogen and organic matter into metabolic gases by 

biofilms growing on rock substrate.  Dissolved oxygen supplied to the biofilms through 

reciprocation led to strong TAN removal through nitrification.  Total nitrogen removal 

was documented, presumably through denitrification during the anoxic period of each 

reciprocation cycle. Under the reciprocation pattern studied, nitrification was extensive, 

as indicated by the high average nitrate concentration in the effluent (88 mg N/L).  If 

longer rest periods during the reciprocation pattern are implemented to promote longer 

anoxic periods, the relative amounts of nitrate denitrified might be increased.  A less 

significant treatment mechanism was solids settling, as documented by the sludge 

accumulation rate in both basins. Over time, consolidation and degradation of solids is 

expected to lead to declining accumulation rates, but the accumulation of sludge may 

impact treatment performance.  

The current study indicates that the ReCip technology is suitable for treatment of 

dairy lagoon wastewater and that ReCip may be useful for flush dairies that have 
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difficulty maintaining a whole-farm nutrient balance due to insufficient cropland for 

manure application at agronomic rates. 

4.1 Future research 

  In the future, operational adjustments utilizing different hydraulic residence 

times, influent loading rates, and/or reciprocation cycles should be explored for 

increasing nitrate removal.  The current operational setup discharges nitrate-rich water 

back into the same storage lagoon that provides the influent, presumably denitrifying the 

nitrate in the carbon rich storage lagoon.   

Soluble carbonaceous biochemical oxygen demand data should be compiled to 

further investigate how biologically available the carbon in the recirculated flush water is 

for denitrification.  If the biodegradable carbon is found to be limiting under the current 

operational regime or after operational adjustments are made, adaptations to the system 

process train could be made to introduce fresh, carbon-rich influent to nitrified water.  

The potential for clogging of the ReCip media bed should be considered for this 

intervention.  

  Research using multiple smaller ReCip units is beginning at Cal Poly currently.  

These studies will allow for controlled experiments on loading, reciprocation pattern, and 

media type.  Future research should study alternative substrates to rock aggregate in order 

to potentially reduce capital costs.  Alternates may include recycled concrete, plastic, and 

geotextile fabric. 

Frequent sampling should be performed over the course of multiple weeks to 

analyze if average daily temperature influences influent TAN and/or effluent NO3.  

Seasonal temperature variation over the course of a year can be used to reassess the 
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accuracy of both the non-temperature and temperature dependent TAN removal models.  

Seasonal variations in influent and effluent water quality can also be assessed following 

one year of system operation and water quality analysis.  Additional air quality 

monitoring should be performed to analyze gas emissions from both the treatment system 

and the influent and effluent water.  Air emissions should be compared to those of other 

wastewater treatment technologies and of croplands fertilized with manure.  Finally, 

continued sludge monitoring can determine if accumulation has an impact on treatment 

performance and effluent water quality. 
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6. APPENDICES 

APPENDIX A: Detailed Methods 

Suspended Solids 

Total suspended solids (TSS) and volatile suspended solids analysis was conducted 

according to APHA Method 2540 D and E, respectively.  Prewashed and ashed 1.2 µm 

G4 glass fiber filters (Fisher Scientific) were used for analysis.  Duplicates, splits, and a 

TSS standard were used for quality control. 

Biochemical Oxygen Demand 

Total, carbonaceous, and nitrogenous 5-day biochemical oxygen demand testing was 

conducting according to APHA Method 5210 B.  Dilution water was prepared with Hach 

BOD Nutrient Buffer Pillows.  For CBOD5, Hach Nitrification Inhibitor Formula 2533 

was used. Standards, prepared using Hach BOD Standard Solution for Dilution Method, 

and blanks were analyzed with each batch of samples. 

Total Ammoniacal Nitrogen 

Total ammoniacal nitrogen analysis was conducted per APHA Method 4500-NH3 D 

(Ammonia-selective electrode method).  Five point calibration curves were employed, 

ranging from 1-2500 mg/L NH3.  Matrix spikes and splits were analyzed for quality 

control. 

Ion Chromatograph 

Nitrite and nitrate (NO2/NO3) were analyzed using a Dionex DX 120 Ion 

Chromatograph with the following setup (all parts manufactured by Dionex): 

• IONPAC AS22 Analytical Column 
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• IONPAC AG22 Guard Column 

• DS4-1 Detection Stabilizer 

• SRS 300 Self-Regenerating Suppressor 

• AS40 Autosampler 

Elluent was prepared with Grade 1 deionized (DI) water and contained 4.5 mM and 1.4 

mM of sodium carbonate and sodium bicarbonate, respectively.  The elluent was 

degassed for 30 minutes using ultra high purity helium.  The ion chromatograph was 

supplied with ultra high purity helium at a pressure of 60 psi, with an internal pressure 

reading between 2300 and 2500 psi.  Elluent flow rate was maintained at 1.20 mL/min 

and allowed to run for at least one hour prior to any analysis of samples.  Four point 

calibration curves ranging from 0.20 – 20.30 mg/L NO2-N and 0.16 – 16.48 mg/L NO3-N 

were prepared for each batch of samples using Dionex Seven Anion Standard II.  

Samples were filtered through 0.22-µm Millipore Express PLUS
®

 membrane filters, 

diluted by a factor of five, and placed into 5 mL Dionex poly vials and caped with 

Dionex 20 µm filter caps.  A matrix spike using the standard and sample splits were 

analyzed in addition to periodic standard splits to account for any timing drift in the 

chromatography.  Additionally, DI water rinses of the injection needle were performed 

after each sample and DI blanks were analyzed prior to and after sample set to ensure no 

background noise existed prior to sample analysis. 

Organic Carbon 

Non-purgeable organic carbon and dissolved non-purgeable organic carbon (DNPOC) 

was analyzed using a Shimadzu TOC-V CSH Total Organic Carbon Analyzer.  The 

machine sparges each sample, thereby removing inorganic carbon and volatile organic 
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carbon.  The sample was then combusted and the resulting CO2 detected through a gas 

analyzer.  Five point calibration curves ranging from 50 – 500 mg/L were constructed 

prior to each run and samples were diluted by a factor of ten. For DNPOC, samples were 

filtered through 0.45-µm Millipore Express PLUS
®

 membrane filters.  Blanks, standard 

splits, matrix spikes, and sample splits were analyzed for quality control.  

Total Nitrogen 

Total nitrogen (TN) and dissolved total nitrogen (DN) was analyzed using the Shimadzu 

TOC-V CSH Total Organic Carbon Analyzer with a supplemental Shimadzu TNM-1 

Total Nitrogen Measuring Unit.  Like NPOC analysis, each sample was combusted in the 

TOC analyzer.  However for TN/DN analysis the resulting gas from combustion was 

analyzed by the supplemental TNM unit, where nitrogen monoxide is detected.  Five 

point calibration curves ranging from 25 – 200 mg/L were constructed prior to each run 

and samples were diluted by a factor of ten.  For DN, samples were filtered through 0.45-

µm Millipore Express PLUS
®

 membrane filters.  Blanks, standard splits, matrix spikes, 

and sample splits were analyzed for quality control. 

Alkalinity 

Alkalinity of samples was determined per APHA Method 2320 B (Titration Method). 

Temperature and Dissolved Oxygen 

Temperature and dissolved oxygen of samples were measured on site immediately after 

sampling to ensure accuracy. 
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Flow Rate 

Flow rate of the influent pump was measured each week during sampling to monitor the 

hydraulic residence time of the system.  A calibrated five gallon bucket and a stopwatch 

were used to determine the flow rate (gpm) of the influent. 
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APPENDIX B: Supplemental Data 

B.1 Tracer Studies 

 The following (Table B.1 and Figures B.1, B.2) are provided to further detail the 

tracer studies discussed in Sections 2.3 and 3.2.1.  Sump samples were taken from the 

sump in Basin 2.  Rhodamine WT concentration was determined using separate 

calibration curves for each study.  Background fluorescence of influent water, sump 

samples, and effluent samples was noted and accounted for in any calculations of 

residence time.  Recall that although both studies utilize the same reciprocation schedule 

and water volumes in the system, the September 2009 study was performed with tap 

water prior to the introduction of lagoon water and the June 2010 study used lagoon 

water after seven months of operation. 

Table B.1.  Summaries of Rhodamine WT fluorescent dye tracer studies.  

Calculated MHRT based on estimation of time for 50% of dye to exit system based 

on extrapolations of effluent concentration decay. 

  Units Sept 2009 June 2010 

Input solution volume mL 10 20 

Actual dye volume mL 2 4 

Density of dye g/mL 1.19 1.19 

Actual mass of dye G 2.38 4.76 

Dye exiting system G 1.08 1.25 

Percent dye exiting % 45 26 

Percent dye attenuated % 55 74 

THRT Day 7 4.4 

MHRT Day 2.9 1.8 

MHRT-to-THRT ratio - 0.42-to-1.0 0.42-to-1.0 
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Figure B.1.  September 2009 tracer study data.  Oscillation of Rhodamine WT dye 

concentration in sump shows effect of reciprocation.  
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Figure B.2.  June 2010 tracer study data.  Note similar oscillation and increased 

concentrations due to increased input mass of Rhodamine WT dye in comparison to 

Figure B.1. 

B.2 Settleable Solids 

 Settleable solids were be monitored on a monthly basis (Table B.2).  Perhaps a 

relationship between sludge accumulation and influent settleable solids can be 

determined.  Effluent settleable solids data may also provide insight into the treatment 

performance of the system. 
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Table B.2.  Settleable solids data.  Measured using 1-L Imhoff cone after one hour of 

settling. 

Date 
Influent Effluent 

(mL/L) (mL/L) 

7-Apr-10 1.3 0.0 

6-May-10 2.0 0.0 

10-Jun-10 2.0 <0.1 

 

  



 

APPENDIX C: Photos 

 

Figure C.1.  Completed, empty 

View from solids separation screen.

 

Figure C.2.  View of completed 

from ground level.  
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Completed, empty basins.  

View from solids separation screen. 

 

View of completed basins 

Figure C.3.  Sumps with pipe 

penetrations.  Black perforated pipes 

assist in draining basins

right sump is connected to weir box in 

Basin 2. 

 

Figure C.4.  Installation of Biodiffuser 

leach field chambers.  Black and white 

pipes will run along floor and connect 

to aerator manifold.  Black pipes lie 

underneath chambers, white pipes lie 

between chambers. 
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Figure C.5.  Installation of standpipes 

into leach field chambers.  Slots in 

pipe leave room for black aeration 

pipes lying on basin floor. 

 

 

Figure C.6.  Completed leach field 

chamber installation.  Three 

standpipes in each chamber row. 

 

 

 

Figure C.7.  View of leach field 

chamber network from solid 

separation screen. 

 

 

Figure C.8.  Leach field chamber 

network along western wall.  Large 

white pipes along wall house black 

aeration tubes running up from 

underneath chambers.  Small white 

pipes along wall are aeration pipes 

running between chambers.  Large 

white pipe sections connecting 

chambers help drain basin. 
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Figure C.9.  Weir box in south tank 

near sump.  Controls water level in 

north tank.  Pipe on floor connects 

weir box to Basin 1. 

 

Figure C.10.  Effluent pipe connecting 

to effluent weir.  

 

 

Figure C.11.  Pipe penetrations 

connecting leach field chambers to 

outside of basins.  Extend 

approximately 30-cm into chamber 

and provide conduit for sludge 

removal. 

 

 

 

 

Figure C.12.  Basin 2 after installation 

of two rock layers.  Black perforated 

pipe network, installed to assist 

drainage.  
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Figure C.13.  Completed ReCip system.  Aeration manifold installed on near wall 

connecting aeration piping to blower, housed in small green shed in foreground. 

 

 

 

 


