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Abstract
Aims/hypothesis The genetic risk of type 1 diabetes has been
extensively studied. However, the genetic determinants of age at
diagnosis (AAD) of type 1 diabetes remain relatively unex-
plained. Identification of AAD genes and pathways could pro-
vide insight into the earliest events in the disease process.
Methods Using ImmunoChip data from15,696 cases, we aimed
to identify regions in the genome associated with AAD.
Results Two regions were convincingly associated with AAD
(p < 5 × 10−8): the MHC on 6p21, and 6q22.33. Fine-mapping
of 6q22.33 identified two AAD-associated haplotypes in the
region nearest to the genes encoding protein tyrosine phospha-
tase receptor kappa (PTPRK) and thymocyte-expressed mole-
cule involved in selection (THEMIS).We examined the suscep-
tibility to type 1 diabetes at these SNPs by performing a meta-
analysis including 19,510 control participants. Although these
SNPs were not associated with type 1 diabetes overall
(p > 0.001), the SNP most associated with AAD,
rs72975913, was associated with susceptibility to type 1 diabe-

tes in those individuals diagnosed at less than 5 years old
(p = 2.3 × 10−9).
Conclusion/interpretation PTPRK and its neighbour
THEMIS are required for early development of the thymus,
which we can assume influences the initiation of autoimmu-
nity. Non-HLA genes may only be detectable as risk factors
for the disease in individuals diagnosed under the age 5 years
because, after that period of immune development, their role
in disease susceptibility has become redundant.
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gMPPI Group marginal posterior probability of
inclusion

GRID Genetic Resource Investigating Diabetes
GWAS Genome-wide association study
IDDMGEN Tyypin 1 Diabetekseen Sairastuneita

Perheenjäsenineen
LD Linkage disequilibrium
NI Northern Ireland
T1DGC Type 1 Diabetes Genetics Consortium
T1DGEN Tyypin 1 Diabeteksen Genetiikka

Introduction

Since the introduction of genome-wide association studies
(GWAS), over 50 regions in the genome have been associated
with susceptibility to type 1 diabetes [1–6], but less research has
examined the genetic determinants of age at diagnosis (AAD) of
type 1 diabetes. One study, limited to specific SNPs in regions
associated with type 1 diabetes, identified that the MHC, IL-2
(IL2) and renalase (RNLS) gene regions showed evidence of
association with AAD [7, 8]. However, the question has never
been examined in a genome-wide fashion. Identification of
genes associated with the initiation of the anti-islet autoimmuni-
ty, which is in most cases established by the age of 3 years [9],
could help to establish the earliest events in the disease process.

Here we aimed to identify genetic determinants of AAD in
a more powerful approach using data from an extensive SNP
panel, the custom array ImmunoChip [4], by combining data
from independent cases and affected sib-pairs (ASPs) to in-
crease sample size and improve the genetic map through
imputation.

Methods

We analysed data from six cohorts, independent cases from the
UK Genetic Resource Investigating Diabetes (GRID) cohort
[2], the Northern Irish GRID (NI) cohort (used here for the first
time), and the Finnish IDDMGEN (Tyypin 1 Diabetekseen
Sairastuneita Perheenjäsenineen) and T1DGEN (Tyypin 1
DiabeteksenGenetiikka) cohorts [10], in addition to ASPs from
the Type 1 Diabetes Genetics Consortium (T1DGC) cohort
[11] (from north America, Europe, Asia and the UK) and the
UK Warren cohort [12]. The majority of individuals were di-
agnosed in childhood, with 92% diagnosed at less than 20 years
of age. Genotyping (see electronic supplementary material
[ESM]Genotyping) was performed on 16,015 affected individ-
uals, 8683 (54%) independent participants and 7332 (46%)
ASPs (Table 1). Quality control was performed prior to analysis
to minimise the risk of reporting false-positive results (ESM
Quality control, ESM Figs 1–3).

SNP imputationWhere mentioned, we used IMPUTE2 soft-
ware (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html)
[13, 14], using 1000 Genomes Project data [15] (version III)
as the reference dataset (https://mathgen.stats.ox.ac.uk/
impute/1000GP_Phase3.html) to perform SNP imputation.
We excluded SNPs with a minor allele frequency of less
than 0.01 or an imputation information score less than 0.8 as
a quality control measure (an imputation score of 0 indicates
no certainty in the imputed genotype, whereas a score of 1
indicates no uncertainty in the imputed genotype).

Association discovery using ImmunoChip data As we had
a population that comprised related and independent cases,
from a variety of cohorts containing individuals frommultiple
countries between and within cohorts, it was crucial to account
for population structure, to avoid reporting spurious associa-
tions.We did this by performing an inverse-variance weighted
meta-analysis [16], in which we stratified the samples by co-
hort and examined the effect of each SNP on loge AAD (as-
suming an additive mode of inheritance), adjusting for sex and
the top five principal components within the cohort to account
for population structure.

However, in cohorts with related individuals, standard prin-
cipal components analysis may not correctly identify the pop-
ulation structure, as the population-level clusters are con-
founded by the relatedness between individuals. Therefore,
in these cohorts, we used principal components analysis
in related-samples, PC-AiR [17], which estimates principal
components by identifying a subset of genetically dissimilar
individuals and performs principal components analysis on
this subset, before using these principal components to esti-
mate the ancestry of the remaining individuals in the cohort.
This was performed using the GENESIS R package (https://
www.bioconductor.org/packages/devel/bioc/html/GENESIS.
html, version 2.2.7) [18]. We applied a variance-components
model using the GenABEL R package (http://www.genabel.
org/packages/GenABEL, version 1.8-0, Grammar-Gamma
method) [19] to analyse the effect of each SNP in cohorts of
related individuals, which takes into account relatedness be-
tween individuals. ESM Fig. 4 provides a schematic overview
of the association discovery meta-analysis procedure.

We also performed the association discovery analysis using
an alternative approach. First, we fitted a linear mixed model
[20] with the loge AAD as the outcome, adjusting for sex as a
fixed effect and including random effects for cohort, country
and family identifier. We then used the residuals from the
linear mixed model as the outcome variable and tested the
association of each SNP using a linear regression model. We
called this approach the ‘residual-based model’, and it has
been proposed by Aulchenko et al [21] to make genome-
wide analysis for related individuals possible. Since our aim
was eventually to fine-map statistically significant regions, the
advantage of the residual-based model is that the residuals can
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also be used as the outcome variable in a fine-mapping anal-
ysis for continuous traits. ESM Fig. 5 illustrates the steps of
this second approach used for variants discovery.

SNPs were declared to be associated with AAD if the p
value was less than a genome-wide significance threshold of
5 × 10−8. We also highlight regions associated with a false
discovery rate (FDR) [22] of less than 0.05, to identify the
regions next most likely to influence AAD. In this analysis,
we used a stringent definition, removing the MHC region
before calculating the FDR, as including all the highly asso-
ciated SNPs from the MHC can inflate the threshold below
which SNPs are declared to be associated, increasing the prob-
ability of reporting false-positive results.

To add further evidence to the detected associated SNPs, we
combined cases with 19,510 control individuals (ESM Table 1)
and performed an inverse-variance weighted meta-analysis
across cohorts, examining the effect of the SNPs on risk of type
1 diabetes overall and in those who were diagnosed at less than
5 years of age. Cohorts of independent individuals were
analysed by fitting a logistic regression model adjusting for
the top five principal components and examining the effect of
the SNP of interest on risk of type 1 diabetes. Cohorts of related
individuals were analysed using a generalised linear mixed
model association test [23], using the GMMAT R package
(https://www.hsph.harvard.edu/han-chen/software/, version 0.
7-1), adjusting for the top five principal components as fixed
effects, and using a kinship matrix to define the covariance
structure of the random effect included in the model. We
present ORs for the SNPs associated with AAD for their
association with type 1 diabetes overall and for those
diagnosed at less than 5 years of age, to compare the direction
of effect between analyses, with a consistent direction of effect
adding further evidence that the association was genuine.

Association discovery: imputed dataA subset of 1768 cases
from the GRID cohort had data that had been genotyped using

the Affymetrix GeneChip Mapping 500K, and 3833 had been
genotyped using the Illumina 550K Infinium microarray plat-
form [3], both of which are GWAS chips and cover a broader
spectrum across the genome than the ImmunoChip. We strat-
ified the GRID cohort into strata, one containing cases who
had been genotyped using Affymetrix technology, and the oth-
er containing cases who had been genotyped using Illumina.
We imputed in 1Mb blocks across the entire genome, and then
tested the association of each SNP with loge AAD for both
strata using SNPTEST software (version II, using the
frequentist option, https://mathgen.stats.ox.ac.uk/genetics_
software/snptest/snptest.html) [24], before combining results
by an inverse-variance weighted, fixed-effects meta-analysis.
Owing to an uncertain genotype call, we used the expectation
maximisation option to estimate the association of each SNP
while performing the imputation of the missing genotypes.

Fine-mapping In AAD-associated regions (p < 5 × 10−8), we
imputed SNPs to obtain the densest SNP set possible in that
region, and performed fine-mapping to identify groups of can-
didate causal SNPs. We used GUESSFM (https://github.com/
chr1swallace/GUESSFM version 1.0.1), [25] a fine-mapping
algorithm [26, 27] that allowsmore than one causal SNP in the
region to be identified. Briefly, GUESSFM identifies models,
that is, combinations of SNPs, with high posterior support
given the likelihood and the priors, by carrying out a stochas-
tic search. Models are ranked by the frequency with which
they appear in the search. The SNPs included in the most
visited models are most likely to be causally associated with
AAD. In contrast to other fine-mapping methods that use
summary statistics, GUESSFM makes use of raw genotype
data. One output from GUESSFM is the group marginal pos-
terior probability of inclusion (gMPPI), which groups SNPs in
tight linkage disequilibrium (LD) and can be thought of as the
posterior support that exactly one of the SNPs in the group is
causal.

Table 1 Baseline characteristics
and inclusion in the primary AAD
analysis after quality control

Cohort Country Type Genotyped Included AAD: median (IQR) SNPs after QC

GRID UK Independent 6799 6736 8 (4, 11) 164,953

IDDMGEN Finland Independent 1111 1073 9 (5, 12) 156,343

NI NI Independent 524 509 7 (4, 10) 156,343

T1DGEN Finland Independent 249 249 16 (10, 24) 156,343

Warren UK ASP 907 839 10 (5, 15) 156,343

T1DGC Asia ASP 960 919 10 (5, 14) 167,537

T1DGC Europe ASP 2521 2485 11 (6, 17) 167,537

T1DGC USA ASP 2593 2544 8 (4, 13) 167,537

T1DGC UK ASP 351 342 8 (4, 11) 167,537

Total All All 16,015 15,696 9 (5, 12) 150,381

The intersect of the SNPs that passed QC across genotype batch were included in the analysis. Total SNPs after
QC refers to the common set of SNPs across all collections

QC, quality control
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The outcome variable was the same set of residuals used in
the association discovery analysis residual-based model, so
population and family structure had been accounted for. Our
primary analyses used the default prior for the expected num-
ber of causal variants in the region to be three. For reproduc-
ibility of the results, we examined also the effect of changing
the expected number of causal SNPs to two or six. For com-
parison, we fitted stepwise linear regression models in each
region of interest (with the same set of residuals as the out-
come), initially including the most significant SNP in the re-
gion, followed by the most associated SNP conditional on the
initial SNP. We repeated this process until one of the SNPs in
the model fell below a commonly used [25, 28] significance
threshold of p = 5 × 10−6.

Haplotype and diplotype analyses The output from
GUESSFM identifies groups of candidate causal SNPs in LD
that are most likely to be associated with the phenotype. We
examined these groups detected by GUESSFM in a haplotype
analysis to highlight transmission patterns and to visualise hap-
lotype membership of the selected SNPs. We phased SNPs
using SNPHAP software (https://github.com/chr1swallace/
snphap, version 1.3), which generates the posterior
probability of each haplotype for each individual. To capture
the uncertainty of the haplotype phase, we simulated ten
haplotype datasets, where, in each dataset, the haplotype for
every individual was sampled from their haplotype posterior
distribution. The effect size of each haplotype relative to the
most common was calculated in each dataset using a linear
mixed model, with loge AAD as the outcome, adjusting for
haplotype and sex as fixed effects, and family identifier,
cohort and country as random effects. Results were pooled
across the ten datasets using the mice R package (http://www.
jstatsoft.org/v45/i03/, version 2.9) for combining results from
multiply imputed datasets [29]. Once haplotypes had been
estimated, we extended the analysis to examine diplotypes by
combining the haplotypes from the two chromosomes and
using the methods described above to estimate the effect of
each diplotype.

All analyses were carried out using R version 3.3.2.
All samples were collected after approval from the relevant

research ethics committees, and written informed consent was
obtained from the participants.

Results

Association discovery ImmunoChip analysis Results from
the meta-analysis identified two regions that were associated
at p < 5 × 10−8, the MHC region and the 6q22.33 region, the
latter of which contains the genes encoding protein tyrosine
phosphatase receptor kappa (PTPRK) and thymocyte-
expressed molecule involved in selection (THEMIS) (Fig. 1).

The index SNP in theMHCwas rs9273363 (p = 2.16 × 10−35),
which has previously been shown to be associated with type 1
diabetes [30], to tag the HLADQB1*03:02 genotype [31] and
to be located in a potential enhancer region of the major type 1
diabetes gene, HLA-DQB1 [32].

In the chromosome 6q22.33 region, the lead SNP was
rs72975913 (p = 2.94 × 10−10), which is in LD (r2 = 0.99)
with a key SNP associated with coeliac disease (rs72975916)
[33]. Results from the residual-basedmodel were similar, with
the same two regions, and no others, reaching genome-wide
significance. Manhattan and quantile–quantile plots for the
residual-based model can be found in ESM Fig. 6, and resid-
ual plots for this analysis in ESM Figs 7 and 8.

The results from the residual-based model estimate that the
addition of an A allele (the minor allele in controls) at the lead
MHC SNP, rs9273363, is associated with an 11.8% decrease
in AAD, which translates to a decrease of 1.11 years
(13 months). The addition of the major C allele at the lead
6q22.33 SNP, rs72975913, is associated with a younger AAD
by 0.7 years (8 months). If an individual is homozygous for
the AAD risk allele at the lead SNP in both regions, they are
estimated to be diagnosed 4.12 years younger than those who
are homozygous for the non-risk allele at both loci.

Although there were just two regions that reached genome-
wide significance, Table 2 shows that region 1q24.3, which
contains the Fas ligand (FASLG) gene, contains at least one
SNP with some evidence (FDR <0.05) of association with
AAD. It adds weight to the evidence that this SNP might be
truly related to AAD since the type 1 diabetes risk effect di-
rection in those diagnosed at less than 5 years of age is the
same as the AAD effect direction for each SNP, that is, the risk
allele for type 1 diabetes is associated with younger AAD.

Association discovery analysis—imputed data In total,
7,476,246 SNPs were examined for their association with
AAD. Just one region reached genome-wide significance,
the MHC region (ESM Fig. 9), which indicates that there
was not sufficient power to detect associated regions outside
the ImmunoChip due to a smaller sample size in this analysis
(5601 vs 15,696 in the ImmunoChip analysis).

Fine-mapping It is beyond the scope of the current study to
consider fine-mapping of the MHC region, and it is well
established that the HLA-DQB1, HLA-DRB1, HLA-A and
HLA-B genes are the primary determinants of the MHC risk
in type 1 diabetes [30].

In the 6q22.33 region (positions 127,952,182 to
128,340,790 on chromosome 6, NCBI build 37, https://
www.ncbi.nlm.nih.gov), we performed SNP imputation with
a concordance of 97.9% (i.e. for each SNP of known
genotype, the imputed genotype matched the known
genotype at least 97.9% of the time). In total, 786 SNPs
were analysed in this region, including 319 imputed SNPs.
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The GUESSFM analysis highlighted three potential signals in
the region (Fig. 2, ESM Table 2). Group 1 comprised 22
SNPs, had a gMPPI of 0.50 and was in LD (r2 = 0.49) with
group 2, which contained 12 SNPs and had a gMPPI of 0.42;
this group contains rs802719, the SNP with the highest
posterior support (SNP marginal posterior probability of in-
clusion = 0.14). Finally, group 3, with the strongest signal,
contained 24 SNPs and had a gMPPI of 0.96, including the
index SNP from the association discovery analysis,
rs72975913. However, the LD between groups 1 and 2
implies that these groups are probably the same signal;
in addition, the fact that the SNP with the highest posterior
probability is contained in group 2 rather than group 1 implies
that the true signal is more likely to be from group 2. The
results were similar when changing the prior number of
SNPs expected in the model to two or six, both showing three
signals in the region. Results from the stepwise linear regres-
sion approach indicated that there were two signals: the lead
SNP once imputed data was included was SNP rs11753289,
which is contained in group 3 from the GUESSFM analysis,
with a borderline second signal, from SNP rs802719
(p = 7.5 × 10−6), which is contained in group 2.

Haplotype and diplotype analyses In the 6q22.33 region, we
examined the 58 SNPs contained in groups 1, 2 and 3 from the
GUESSFM analysis and estimated the effect of each haplotype
relative to the most common, which was the major allele at
each of the 58 SNPs. The minor allele haplotype from the
group 2 SNPs is associated with younger AAD, while the

minor allele haplotype from the group 3 SNPs is associated
with an older AAD (Fig. 3). The LD between groups 1 and 2
can be observed, and the two main signals in the region appear
to be from groups 2 and 3. Extending the analysis to examine
diplotypes showed that being heterozygous at group 2 SNPs
leads to an estimated 3.1% decrease in AAD relative to the
most common diplotype, which translates to an estimated
younger AAD of 3.1 months. Having two copies of the minor
group 2 SNPs leads to an estimated younger AAD of 8.3%,
which translates to 8.1 months. In contrast, individuals with
one copy of the minor group 3 haplotype have an estimated
AAD 6.4% (6.8 months) older than those with the most com-
mon diplotype, which increases to 11.9% (12.9 months) if they
have two copies of the minor group 3 haplotype (Fig. 3). These
results show there are two main risk haplotypes that predispose
to younger AAD in the region: the minor allele haplotype for
group 2 and the major allele haplotype for group 3.

Type 1 diabetes risk analysis We examined one SNP from
each of groups 2 and 3 (rs802719 and rs72975913, respective-
ly) from the fine-mapping analysis and examined the effect of
these SNPs on type 1 diabetes risk in a meta-analysis including
the control participants from ESM Table 1. As expected from
the lack of previously reported associations in this region, nei-
ther of the SNPs was strongly associated with type 1 diabetes
overall (p > 0.001) (forest plots are shown in ESM Fig. 10).

However, owing to the association with AAD, we stratified
each cohort into age group at diagnosis (0–4.99, 5–9.99,
10–14.99, 15–19.99 and ≥20 years) and assessed the

Fig. 1 (a) Manhattan plot from the association discovery meta-analysis for AAD of type 1 diabetes. (b) Quantile–quantile plot (excluding the MHC
region). (c) Forest plot for the lead SNP in the MHC region, rs9273363. (d) Forest plot for the lead SNP in the 6q22.33 region, rs72975913
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association of both SNPs with risk of type 1 diabetes within
strata. A strong association was observed in the youngest
AAD category at rs72975913 (p = 2.3 × 10−9, OR 0.78,
n = 3807) and evidence of an association at rs802719
(p = 2.2 × 10−5, OR 1.14, n = 3806), with the forest plots
shown in ESM Fig. 11. The effect estimate was in the same
direction as the AAD analysis, with the minor A allele asso-
ciated with decreased disease susceptibility in those diagnosed
at less than 5 years old at rs72975913, which is associated
with an older AAD, and for rs802719 the minor C allele in-
creases disease susceptibility and decreases AAD. To examine
the sensitivity of our results to the cut-off for which to define
the youngest AAD strata, we repeated the analysis, defining
the youngest age category first as <4 years and then as
<6 years. The results did not change significantly, with
rs72975913 remaining associated on a genome-wide basis
regardless of cut-off and with a similar effect size observed
at rs802719 (ESM Table 3). There is a trend showing how the
effect size on disease susceptibility decreases at both SNPs as
the age group at diagnosis increases, indicating that the genet-
ic effects in this region act in those diagnosed at a young age
(Fig. 4, ESM Figs 12 and 13 for minor allele frequencies).
This may explain why this region has not previously been

associated with type 1 diabetes as, typically, GWAS datasets
include cases who have been diagnosed across a range of ages.

Discussion

In the first ImmunoChip analysis examining the AAD of type
1 diabetes, we found, as expected, that the MHC was the
major genetic influence, while the 6q22.33 region was a sec-
ond associated region. We performed fine-mapping across the
6q22.33 region, which contains the adjacent PTPRK and
THEMIS genes, and has never previously been associated
with AAD [7, 8] or type 1 diabetes, but has been reported to
be associated with susceptibility to other autoimmune diseases
[33–35].

We identified two haplotypes in the region that were asso-
ciatedwith younger AAD. These haplotypes showed evidence
of influencing type 1 diabetes susceptibility in those diag-
nosed at less than 5 years of age but not for other age groups.
This implies that the region impacts on risk of type 1 diabetes
at a young age but not once the immune system is more fully
developed. In an era of increasing sample sizes, this study
highlights the benefit of refining a phenotype in order to

Fig. 2 Output from GUESSFM
fine-mapping the 6q22.33 region.
(a) Location of the PTPRK and
THEMIS genes, the closest genes
to the candidate causal SNPs. (b)
Map of the candidate causal SNPs
to their physical location along
chromosome 6. (c) The dots
depict the strength of association
(marginal posterior probability of
inclusion) for each SNP, while the
height of the shaded region is the
gMPPI, the probability that one of
the SNPs in the group is causal for
AAD. It shows three signals in the
region, termed groups 1 (blue), 2
(red) and 3 (green). (d) LD
between SNPs
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identify SNPs associated with a subset of individuals who
develop a disease. In this case, we highlight a region associ-
ated with early-diagnosed type 1 diabetes, but this approach
can be applied to heterogeneous diseases to more accurately

identify the main genetic determinants in a particular subset.
Analyses of the immunology and pancreas histology of type 1
diabetes do reveal distinct autoimmune features in children
diagnosed under age 5 years [36]. Genetic findings such as

Fig. 3 (a) Haplotype analysis of the 6q22.33 region with respect to the
AAD of type 1 diabetes using SNPs highlighted from the GUESSFM
analysis. SNPs are colour-coded according to GUESSFM group 1 (blue),

2 (red) and 3 (green). Black, major alleles; white, minor alleles. (b)
Diplotype analysis of the same region. Black, major homozygotes; grey,
heterozygotes; white, minor homozygotes
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ours will help to identify the key cells and tissues involved,
pointing, in this case, to the thymus being particularly impor-
tant in early, aggressive disease.

PTPRK and THEMIS are both important for transition of
double-positive (CD4+, CD8+) thymocytes to single-positive
thymocytes [37, 38], and there is a reduction in number of ma-
ture CD4+ Tcells inmice that have both genes knocked out, over
and above the effect that each gene has independently, indicating
that they are both vital to thymopoiesis [39]. Chromosome con-
formation capture analyses have identified the PTPRK promoter
as a target of disease-associated sequences [40], supporting its
candidacy as the causal gene for AAD.

The 6q22.33 region has been associated with other autoim-
mune diseases: the index SNP for coeliac disease is
rs55743914 [33], which is contained in group 2 in our analy-
sis, and the minor allele is associated with increased risk of
coeliac disease and also younger AAD for type 1 diabetes.
The secondary signal for coeliac disease (rs72975916) is
contained in group 3, and the minor allele is associated with
reduced risk of coeliac disease and older AAD for type 1
diabetes, so the directions of effect between AAD of type 1
diabetes and coeliac disease are consistent.

However, the lead SNP for multiple sclerosis, rs802734
[35], which is contained in group 2 in this analysis, has the
opposite direction of effect (the minor allele being protective
against multiple sclerosis). This signal in multiple sclerosis
was not replicated in a larger ImmunoChip analysis [41],
and hence the risk of multiple sclerosis at this SNP may also
depend on another factor, for example age at onset. Just one
signal was detected in the region as associated with Crohn’s
disease, rs9491891 [42], which is contained in group 3, with a
direction of effect also opposite to that for type 1 diabetes and
coeliac disease. The age at onset of multiple sclerosis and
Crohn’s disease in the cohorts in these analyses is older than
the AAD of the type 1 diabetic individuals in our dataset,
while there can be a long delay in coeliac disease between
onset and diagnosis [43], so it may be that the difference in
effect direction could be to do with a changing immune sys-
tem with age.

Another possibility is that the SNPs affecting early-
diagnosed type 1 diabetes are affecting a different pathway,
tissue or cell type from the same SNPs that have the opposite
effect in multiple sclerosis and Crohn’s disease; that is, an
increased level of a protein in one cell type might increase

Fig. 4 (a) Risk of type 1 diabetes
(T1D) at SNPs contained in group
3 (GUESSFM analysis)
rs72975913, stratified by AAD
group. (b) Risk of type 1 diabetes
at the SNPs contained in group 2,
rs802719, stratified by AAD
group. The effect size is for
addition of a minor allele at the
loci, assuming an additive mode
of inheritance on the log-odds
scale
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the risk of type 1 diabetes, while the increase in that same
protein in a different cell type might protect against multiple
sclerosis or Crohn’s disease. There is no evidence that the
6q22.33 region is associated with age at onset of multiple
sclerosis or Crohn’s disease, although there are very few indi-
viduals in these analyses who were diagnosed in childhood
[35, 42] and it is difficult to assess in coeliac disease given the
time between onset and diagnosis [43]. We hypothesise that
there is co-localisation in the region between AAD of type 1
diabetes and coeliac disease, given the similar genetic risk
variants and also the fact that individuals diagnosed with type
1 diabetes at a young age are more likely to have coeliac
disease [44]. Our analysis offers a genetic explanation for this
phenomenon.

There was some evidence (FDR <0.05) of an association
with AAD at one other region, 1q24.3. This region contains
the FASLG gene and has been shown to be associated with
type 1 diabetes itself [5]; therefore it might be involved in a
pathway that acts early in the disease course of type 1 diabetes,
leading to the anti-islet autoimmunity that we now know is
established in most cases by the age of 3 years [9, 45].

A potential limitation of our study is that the majority
(92%) of individuals with type 1 diabetes were diagnosed at
less than 20 years old, and it is unlikely that we have identified
all the variants associated with the AAD of type 1 diabetes.
However, there is scope to perform a similar analysis in a
population with more individuals diagnosed at over 18 years
of age when data are generated in the future. Finally, some
caution should be taken when interpreting the association at
1q24.3 (near FASLG), as the association did not reach a strin-
gent genome-wide significance.

In conclusion, we have identified a novel AAD region at
6q22.33, as well as confirmed the well-established association
of the MHC. The two risk haplotypes at 6q22.33 show evi-
dence of association with type 1 diabetes in individuals diag-
nosed at less than 5 years of age and might thus guide thera-
peutic strategies in those with early-diagnosed type 1 diabetes.
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