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Abstract R. Feynman’s “heretical” approach (Dyson in Am. J. Phys. 58:209–211, 1990;
Dyson in Phys. Today 42(2):32–38, 1989) to deriving the Lorentz force based Maxwell
electromagnetic equations is revisited, the its complete legacy is argued both by means of
the geometric considerations and its deep relation with the vacuum field theory approach
devised (Prykarpatsky et al. in Int. J. Theor. Phys. 49:798–820, 2010; Prykarpatsky et al.
in Preprint ICTP, 2008, http://publications.ictp.it). Being completely classical, we reanalyze
the Feynman’s derivation from the classical Lagrangian and Hamiltonian points of view and
construct its nontrivial relativistic generalization compatible with the vacuum field theory
approach.

Keywords Feynman’s approach · Lorentz force · Relativistic electrodynamics · Least
action principle · Lagrangian and Hamiltonian analysis

“A physicist needs that his equations should be mathematically sound and that in
working with his equations he should not neglect quantities unless they are small”

(P.A. M. Dirac)
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1 Introduction

In 1948 R. Feynman presented but did not published [1, 2] a very interesting, in some as-
pects “heretical”, quantum-mechanical derivation of the classical Lorentz force acting on a
charged particle under the influence of an external electromagnetic field. His result was an-
alyzed by many authors [3–9, 11, 24] from different points of view, including its relativistic
generalization [10]. As this problem is completely classical, we reanalyze the Feynman’s
derivation from the classical Hamiltonian dynamics point of view on the coadjoint space
T ∗(N),N ⊂ R

3, and construct its nontrivial generalization compatible with results [15, 16]
of Sect. 1, based on a recently devised vacuum field theory approach [15, 18]. Having further
obtained the classical Maxwell electromagnetic equations we supply the complete legacy of
Feynman’s approach to the Lorentz force and demonstrate its compatibility with the rela-
tivistic generalization presented in [15–18, 20].

Consider the motion of a point particle with a charge ξ ∈ R and located at point q ∈ R
3

on time t ∈ R, which is under the influence of an external smooth vector magnetic potential
A ∈ C∞(R × R

3;R
3
) measured, respectively, subject to the reference frame K(t, q). For its

geometrical description, following [14, 21, 22], it is convenient to introduce a trivial fiber
bundle structure π : M → N, M = N × G, N ⊂ R

3, with the Abelian structure group G :=
R\{0}, equivariantly acting [12] on the canonically Poissonian coadjoint space T ∗(M), and
to endow it with a general connection one-form A : M→T ∗(M) × G as

A(q;g) := 〈A(q, g), ξ〉G + g−1dg (1.1)

on the phase space M, where q ∈ N and g ∈ G. If l : T ∗(M) → G∗ is the related momentum
mapping, one can construct [12] the reduced phase space M̄ξ := l−1(ξ)/G 	 T ∗(N), where
ξ ∈ G 	 R, is taken to be fixed, possessing the reduced canonical symplectic structure

ω
(2)
ξ (q,p) = 〈dp,∧dq〉 + ξd〈A(q), dq〉 (1.2)

on T ∗(N), where we put, by definition, that A(q;g) := 〈A(q), dq〉 ∈ T ∗
q(N). From (1.2)

one finds easily the respectively reduced Poisson brackets on T ∗(N):
{qi, qj }

ω
(2)
ξ

= 0, {pj , q
i}

ω
(2)
ξ

= δi
j , {pi,pj }ω

(2)
ξ

= ξFji(q), (1.3)

where for i, j = 1,3

Fij (q) := ∂Aj/∂qi − ∂Ai/∂qj (1.4)

is the so-called reduced electromagnetic tensor with respect to the reference frame K(t, q).

If now to introduce a new momentum variable p̃ := p+ ξA(q) on T ∗(N) � (q,p), it is easy
to verify that ω

(2)
ξ → ω̃

(2)
ξ := 〈dp̃,∧dq〉, giving naturally rise to the following “minimal

coupling” canonical Poisson brackets [13, 21, 22]:

{qi, qj }
ω̃

(2)
ξ

= 0, {p̃j , q
i}

ω̃
(2)
ξ

= δi
j , {p̃i , p̃j }ω̃

(2)
ξ

= 0 (1.5)

for i, j = 1,3 with respect to the “shifted” reference frame Kf (t, q − qf ), characterized by
the phase space coordinates (q, p̃) ∈ T ∗(N), iff the corresponding not dynamical Maxwell
field equations

∂Fij /∂qk + ∂Fjk/∂qi + ∂Fki/∂qj = 0 (1.6)

for all i, j, k = 1,3 with curvature tensor (1.4) are satisfied on N.
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This result means, in particular, that the corresponding dynamical system related with a
charged particle, which is considered with respect to the reference frame K(t, q) and un-
der the influence of the smooth external electromagnetic field A ∈ C2(R × R

3;R
3
), can

be equivalently treated as the one with respect to canonical Poisson bracket (1.5) in the
“shifted” reference frame Kf (t, q − qf ). The latter property appears to be important for an-
alyzing the related dynamics of a charged particle ξ subject to another charged particle ξf ,

moving with a velocity uf with respect to the reference frame K(t, q).

2 The Lorentz Type Force and Maxwell Electromagnetic Field
Equations—The Lagrangian Analysis

The Poisson structure (1.5) makes it possible to describe a charged particle ξ ∈ R, located
at point q ∈ N ⊂ R

3,moving with a velocity q ′ := u ∈ Tq(N) with respect to the reference
frame K(t, q), being under the electromagnetic influence of an external charged particle
ξf ∈ R located at point qf ∈ N ⊂ R

3 and moving with respect to the same reference frame
K(t, q) with a velocity q ′

f := uf ∈ Tqf
(N), where, by definition, d

dt
(. . .) := (. . .)′ is the

temporal derivative with respect to the temporal parameter t ∈ R. Really, consider a new
reference frame Kf (t, q − qf ) moving with respect to the reference frame K(t, q) with
the velocity uf . With respect to the reference frame Kf (t, q − qf ) this point particle with
charge ξ ∈ R moves with the velocity u − uf ∈ Tq−qf

(N) and, respectively, another point
particle with charge ξf ∈ R stays in rest. Then one can write down the standard classical
Lagrangian function of the charged particle ξ with a constant mass m ∈ R+ subject to the
“shifted” reference frame Kf (t, q − qf ) :

Lf (q, q ′) = m

2
|q ′ − q ′

f |2 − ξϕ, (2.1)

and the scalar potential ϕ ∈ C2(N;R) is the corresponding potential energy. On the other
hand, owing to (2.1) and the Poisson bracket relationships (1.5) the following equality for the
canonical momentum of the charged particle ξ with respect to the reference frame Kf (t, q −
qf ) holds:

p̃ := p + ξA(q) = δLf (q, q ′)/δq ′, (2.2)

or, equivalently,

p + ξA(q) = m(q ′ − q ′
f ), (2.3)

expressed in the light speed c = 1 units. Taking into account that the charged particle ξ

momentum with respect to the reference frame K(t, q) equals p := mu ∈ T ∗
q (N), one can

easily obtain from (2.3) the important relationship

ξA(q) = −muf (2.4)

for the magnetic vector potential A ∈ C2(N;R
3), which was before obtained in [17, 18, 23]

within a recently devised vacuum field theory approach. Taking now into account (2.1) and
(2.4) one finds the following Lagrangian equations:

d

dt
[p + ξA(q)] =∂Lf (q, q ′)/∂q = −ξ∇ϕ, (2.5)
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giving rise to the following charged particle ξ dynamics:

dp/dt = −ξ∂A/∂t − ξ∇ϕ − ξ 〈u,∇〉A
= −ξ∂A/∂t − ξ∇ϕ − ξ 〈u,∇〉A + ξ∇〈u,A〉 − ξ∇〈u,A〉
= −ξ(∂A/∂t + ∇ϕ) + ξu × (∇ × A) − ξ∇〈u,A〉. (2.6)

As a result of (2.6) we obtain the modified Lorentz type force

dp/dt = ξE + ξu × B − ξ∇〈u,A〉, (2.7)

which slightly differs from the classical Lorentz force expression

dp/dt = ξE + ξu × B (2.8)

by the gradient term

Fc := −∇〈u,A〉, (2.9)

and which was obtained in [17, 18] and simultaneously in [19]. Here we put, by definition,

E := −∂A/∂t − ∇ϕ, B := ∇ × A, (2.10)

Note that the Lorentz type force expression (2.7) can be naturally generalized to the
relativistic case by taking into account that the Lorenz condition

∂ϕ/∂t + 〈∇,A〉 = 0 (2.11)

is imposed on the electromagnetic potential (ϕ,A) ∈ C2(N;R × R
3).

Indeed, from (2.10) one obtains the Lorentz invariant field equation

∂2ϕ/∂t2 − �ϕ = ρf , (2.12)

where � := 〈∇,∇〉 and ρf : N → D′(N) is the generalized density function of the external
charge distribution ξf . Following now by the calculations from [17, 18] we can easily find
from (2.12) and the charge conservation law

∂ρf /∂t + 〈∇, Jf 〉 = 0 (2.13)

the next Lorentz invariant equation on the magnetic vector potential A ∈ C2(N;R
3):

∂2A/∂t2 − �A = Jf . (2.14)

Moreover, relationships (2.10), (2.12) and (2.14) easily yield the true classical Maxwell
equations

∇ × E = −∂B/∂t, ∇ × B = ∂E/∂t + Jf ,

〈∇,E〉 = ρf , 〈∇,B〉 = 0
(2.15)

on the electromagnetic field (E,B) ∈ C2(N;R
3×R

3).
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Consider now the Lorenz condition (2.11) and observe that it is equivalent to the follow-
ing local conservation law:

d

dt

∫

t

ϕd3q = 0, (2.16)

giving rise to the important relationship for the magnetic potential A ∈ C2(N;R
3)

A = q ′
f ϕ (2.17)

with respect to the reference frame K(t, q), where 
t ⊂ N is any open domain with the
smooth boundary ∂
t , moving jointly with the charge distribution ξf in the region N ⊂ R

3

with the corresponding velocity q ′
f . Taking into account relationship (2.4) one can easily

find the expression for our charged particle ξ ‘inertial’ mass:

m = −W̄ , W̄ := ξϕ, (2.18)

coinciding with that in [17, 18, 23], where we denoted by W̄ ∈ C2(N;R) the corresponding
potential energy of the charged particle ξ with respect to the reference frame K(t, q).

3 The Modified Least Action Principle and the Hamiltonian Analysis

3.1 A Moving Charged Point Particle Lagrangian Analysis

Based on the representations (2.17) and (2.18) one can rewrite the determining Lagrangian
equation (2.5) as follows:

d

dt
[−W̄ (u − uf )] = − ∇W̄ , (3.1)

which is completely equivalent to the Lorentz type force expression (2.7) calculated with
respect to the reference frame K(t, q). Indeed, making use of (2.4), the left hand side of
relationship (3.1) can be identically rewritten as

d

dt
[−W̄ (u − uf )] = d

dt
(−W̄u)+ d

dt
(ξA)

= dp

dt
+ ξ

∂A

∂t
+ ξ 〈u,∇〉A. (3.2)

Taking into account the condition (2.18) and the identity

∇〈a, b〉 = 〈a,∇〉b + 〈b,∇〉a + b × (∇ × a) + a × (∇ × b), (3.3)

holding for any smooth vector-functions a, b ∈ C2(N;R
3), we derive from (3.2)

dp/dt = ξ

(
−∇ϕ − ∂A

∂t

)
+ ξu × u × (∇ × A) − ξ∇〈u,A〉

= ξE + ξu × B − ξ∇〈u,A〉, (3.4)

that is exactly the Lorentz type force (2.7), obtained above.
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Remark 3.1 It is interesting to remark here that (3.1) does not allow the Lagrangian repre-
sentation with respect to the reference frame K(t, q) in contrast to that of (2.5).

The remark above is a challenging source of our further analysis concerning the rela-
tivistic generalization of the Lorentz type force (2.7). Namely, the following proposition
holds.

Proposition 3.2 The Lorentz type force (2.7), in the case where the charged particle ξ mo-
mentum is defined owing to (2.18) as p = −W̄u, is the exact relativistic expression allowing
the Lagrangian representation with respect to the charged particle ξ rest reference frame
Kr (τ, q − qf ), connected with the reference frame K(t, q) by means of the classical rela-
tivistic proper time relationship:

dt = dτ(1 + |q̇ − q̇f |2)1/2, (3.5)

where τ ∈ R is the proper time parameter in the rest reference frame Kr (τ, q − qf ) and, by
definition, the derivative d/dτ(. . .) := ( ˙. . .).

Proof Take the following action functional with respect to the charged particle ξ rest refer-
ence frame Kr (τ, q − qf ) :

S(τ) := −
∫ t2(τ2)

t1(τ1)

W̄dt = −
∫ τ2

τ1

W̄ (1 + |q̇ − q̇f |2)1/2dτ, (3.6)

where the proper temporal values τ1, τ2 ∈ R are considered to be fixed in contrast to the
temporal parameters t2(τ2), t2(τ2) ∈ R depending, owing to (3.5), on the charged particle ξ

trajectory in the phase space. The least action condition

δS(τ) = 0, δq(τ1) = 0 = δq(τ2), (3.7)

applied to (3.6), yields the dynamical equation (3.1), which is equivalent to the relativistic
Lorentz type force expression (2.7).

Indeed, compute first the least action variational condition (3.6) with the corresponding
Lagrangian function

L := −W̄ (1 + |q̇ − q̇f |2)1/2. (3.8)

For the generalized particle momentum one finds

p̃ := ∂L/∂q̇ = −W̄ (q̇ − q̇f )(1 + |q̇ − q̇f |2)−1/2

= −W̄ q̇(1 + |q̇ − q̇f |2)−1/2 + W̄ q̇f (1 + |q̇ − q̇f |2)−1/2

= mu + ξA := p + ξA (3.9)

and the corresponding dynamical equation with respect the rest reference frame Kr (τ, q −
qf ) is then given as

d

dτ
(p + ξA) = −∇W̄ (1 + |q̇ − q̇f |2)1/2. (3.10)

Taking into account that dτ = dt (1 − |u − uf |2)1/2 and (1 + |q̇ − q̇f |2)1/2 = (1 − |u −
uf |2)−1/2, we obtain finally from (3.10) exactly the dynamical system (3.1), finishing the
proof. �
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3.2 A Moving Charged Point Particle Lagrangian Analysis—A Dual to the Classical
Alternative Electrodynamic Model

It is easy to observe that the action functional (3.6) is written taking into account the classical
Galilean transformations of the corresponding reference frames. If we now consider this
action functional (3.6) for a charged point particle ξ, moving with respect the reference
system K(t, q), and take formally into account its interaction with an external magnetic
field, generated by the vector potential A : M

4 → E
3, defined on the Minkowski space

M
4 := R × R

3, it can be artificially generalized as

S :=
∫ t2

t1

(−W̄dt + q〈A,dq〉) =
∫ τ2

τ1

[−W̄ (1 + q̇2)1/2 + q〈A, q̇〉]dτ, (3.11)

where we accepted here that dτ = dt (1 − u2)1/2 subject to the corresponding rest reference
frame K(τ, q).

Thus, the corresponding common particle-field momentum looks as follows:

p̃ := ∂L/∂q̇ = −W̄ ṙ(1 + |q̇|2)−1/2 + ξA

= mu + ξA := p + ξA, (3.12)

satisfying the dynamical equation

dp̃/dτ := ∂L/∂q = −∇W̄ (1 + |q̇|2)1/2 + ξ∇〈A, q̇〉
= −∇W̄ (1 − u2)−1/2 + ξ∇〈A,u〉(1 − u2)−1/2, (3.13)

where

L := −W̄ (1 + |q̇|2)1/2 + ξ 〈A, q̇〉 (3.14)

is the Lagrangian function with respect to the rest reference frame K(τ, q). Taking now into
account that W̄ := ξϕ and dτ = dt (1 − u2)1/2, one easily finds from (3.13) that

dp̃/dt = ξ(−∇ϕ − ∂A/∂t) + ξ∇〈A,u〉. (3.15)

Upon substituting (2.10) into (3.15) and making use of the identity (3.3) we finally obtain
from (3.15) the expression for the classical Lorentz force

dp/dt := ξE + ξu × B, (3.16)

acting on the moving charged point particle ξ ∈ R.

The result obtained we formulate as the next proposition.

Proposition 3.3 The classical relativistic Lorentz force (3.16) allows the least action formu-
lation (3.11) with respect to the “rest” reference frame, where Lagrangian function is given
by expression (3.14). Nonetheless, its electrodynamics, described by the classical Lorentz
force expression (3.16), is not equivalent to the classical relativistic moving point particle
electrodynamics, described by means of the Lorentz force expression (3.16), derived from
the classical least action functional

S :=
∫ τ2

τ1

dτ [−m0 + ξ 〈A, q̇〉 − ξϕ(1 + |q̇|2)1/2], (3.17)
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with respect to the rest reference frame K(τ, q), where m0 ∈ R+ is the Lorentz invariant
“rest” mass of a point charged particle.

Making use of the relationships between the reference frames K(t, q) and Kr (τ, q − qf )

at case when the external charge particle velocity uf = 0, we can easily derive the following
corollary.

Corollary 3.4 Let the external charge distribution ξf be in the rest, that is the velocity
uf = 0. Then (3.1) reduces to

d

dt
(−W̄u) = −∇W̄ , (3.18)

allowing the following conservation law:

H0 = W̄ (1 − u2)1/2 = −(W̄ 2 − p2)1/2. (3.19)

Moreover, (3.18) is Hamiltonian with respect to the canonical Poisson structure (1.5),
Hamiltonian function (3.19) and the rest reference frame Kr (τ, q) :

dq/dτ := ∂H0/∂p = p(W̄ 2 − p2)−1/2

dp/dτ := −∂H0/∂q = −W̄ (W̄ 2 − p2)−1/2∇W̄

}
⇒ dq/dt = −pW̄−1

dp/dt = −∇W̄

}
. (3.20)

In addition, if the rest particle mass m0 := −H0|u=0, the “inertial” particle mass quantity
m ∈ R obtains the well known classical relativistic form

m = −W = m0(1 − u2)−1/2, (3.21)

depending on the particle velocity u ∈ R
3.

As for the general case of (3.1) results analogous to the above results hold, as described
in detail in [15–18]. We need only mention that the Hamiltonian structure of the general
equation (3.1) results naturally from its least action representation (3.7) with respect to the
rest reference frame K(τ, q).

4 Conclusion

We have demonstrated the complete legacy of the Feynman’s approach to the Lorentz force
based derivation of the Maxwell electromagnetic field equations. Moreover, we have suc-
ceeded in finding the exact relationship between Feynman’s approach and the vacuum field
approach devised in [17, 18]. Thus, the results obtained confirm the deep physical back-
grounds lying in the vacuum field theory approach, based on which one can simultaneously
describe the physical phenomena both in electromagnetic and gravity terms. The latter is
physically related with the particle ‘inertial’ mass expression (2.18), naturally following
both from Feynman’s approach to the Lorentz type force derivation and from the vacuum
field approach.
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