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Abstract Brittleness of rock plays a significant role in

exploration and development of shale gas reservoirs.

Young’s modulus and Poisson’s ratio are the key param-

eters for evaluating the rock brittleness in shale gas

exploration because their combination relationship can

quantitatively characterize the rock brittleness. The high-

value anomaly of Young’s modulus and the low-value

anomaly of Poisson’s ratio represent high brittleness of

shale. The technique of pre-stack amplitude variation with

angle inversion allows geoscientists to estimate Young’s

modulus and Poisson’s ratio from seismic data. A model

constrained basis pursuit inversion method is proposed for

stably estimating Young’s modulus and Poisson’s ratio.

Test results of synthetic gather data show that Young’s

modulus and Poisson’s ratio can be estimated reasonably.

With the novel method, the inverted Young’s modulus and

Poisson’s ratio of real field data focus the layer boundaries

better, which is helpful for us to evaluate the brittleness of

shale gas reservoirs. The results of brittleness evaluation

show a good agreement with the results of well

interpretation.

Keywords Brittleness � Shale gas � Amplitude variation

with angle � Basis pursuit � Bayesian framework

1 Introduction

Shale gas is a very important type of unconventional

resource. The term refers to the unconventional gas stored

in shale reservoirs. With the development of seismic

exploration, a large amount of practice in unconventional

shale reservoirs indicated that rock brittleness is one of the

critical parameters to be taken into consideration in the

evaluation of hydraulic fracturing. The study of shale

brittleness is very important for shale gas exploration and

development. An empirical brittleness cut-off is defined

based on Young’s modulus and Poisson’s ratio (Grieser

and Bray 2007; Rickman et al. 2008) as they control the

relationship between stress and strain given by Hooke’s

Law (Sena et al. 2011). A high-value anomaly of Young’s

modulus and a low-value anomaly of Poisson’s ratio can be

used to evaluate the rock brittleness and to infer ‘‘sweet

spots’’ of shale gas reservoirs (Harris et al. 2011; Zong

et al. 2013). Seismic inversion is the fundamental scientific

tool used to obtain parameters concerning lithology and

physical properties (Yin et al. 2015). Therefore, the esti-

mation of Young’s modulus and Poisson’s ratio from pre-

stack seismic data is a helpful guide for evaluating the

brittleness of shale.

Amplitude variation with angle (AVA) inversion can be

used to estimate the subsurface elastic properties from pre-

stack seismic reflection data. However, the geophysical

inversion problem in nature is an ill-conditioned problem

because slight noise contained in the observed data will

lead to enormous changes in the estimated parameters.

Another problem of AVA inversion is that there are many

models adequately fitting the data because the seismic data

are band limited. It is common to add additional constraints

to stabilize the inversion process and to reduce the number

of solutions. This is generally referred to as regularization.
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The regularization method was proposed by Tikhonov

(1963), and the L-curve (Hansen 1992) was presented for

selecting the regularization parameters which balance the

data fitting term and trade-off function. A Bayesian

approach is another method for stabilizing the inversion

performance that treats the model parameter as a random

variable with a probability distribution (Duijndam 1987;

Buland and Omre 2003; Tarantola 2005; Yuan and Wang

2013; Yin and Zhang 2014). We seek the parameter esti-

mates with a maximum posterior distribution combined

with prior information of model parameters and the like-

lihood function. The prior information can be the proba-

bility distribution of the model parameters and the

geological information. In special cases, the regularization

function is equivalent to the prior information in the

Bayesian method.

The sparse solutions are full band; therefore, the sparse

estimations are often viewed as high-resolution estimations

(Levy and Fullagar 1981; Sacchi 1997; Alemie and Sacchi

2011). The inversion results via l2 norm regularization

(Tikhonov 1963) or assumption of Gaussian probability

distribution (Downton 2005) do not lead to high resolution

because the estimates lack sparsity. The sparse reflection

coefficients generate the blocky layer elastic parameters

which suppress the side lobes. The development of the

theory of sparse representation promotes the sparse inver-

sion method. Theune et al. (2010) investigated the Cauchy

and Laplace statistical distributions for their potential to

recover sharp boundaries between adjacent layers. Based

on the reflection dipole decomposition described by Cho-

pra et al. (2006), Zhang et al. (2009, 2011) studied the basis

pursuit inversion (BPI) of post and pre-stack seismic data,

respectively, and got the sparse reflection coefficients and

blocky layer elastic parameters, which is a high-resolution

inversion method. Pérez et al. (2013) proposed a hybrid

Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

least-squares strategy that inverts the location of reflection

by the FISTA algorithm (Beck and Teboulle 2009) first and

then reevaluates the sparse (high resolution) reflection

coefficients. However, this lacks the low-frequency infor-

mation if we only use the seismic data and sparse regu-

larization. The low-frequency information should be

incorporated into the objective function to enhance the

meaning of the inversion results and meanwhile promote

the stability of the inversion implementation (Yin et al.

2008, 2014; Zong et al. 2012a; Yuan et al. 2015).

The ultimate goal of pre-stack inversion is to obtain the

elastic information that can be used for evaluating hydro-

carbon potential and the brittleness of the reservoir and to

infer ideal drilling locations of ‘‘sweet spots’’ (Sena et al.

2011). Different linear approximations (Aki and Richards

1980; Gray et al. 1999; Russell et al. 2011) of the Zoeppritz

equation introduced by Zoeppritz (1919) help us to directly

estimate the elastic parameters (e.g., P-wave velocity,

S-wave velocity, Lamé parameters, bulk modulus, density)

in which we are interested. The Young’s modulus and

Poisson’s ratio can be calculated from the P-wave velocity,

S-wave velocity, and density which can be inverted directly

via Aki-Richards approximation. The density is difficult to

invert, which will have a deleterious influence on the

estimation of Young’s modulus. Parameters estimated

indirectly will bring in more uncertainty in the inversion

results (Zhang et al. 2009). In order to estimate the

Young’s modulus (Y), Poisson’s ratio (P) and density

(D) directly, Zong et al. (2012b) derived the linear

approximation equation based on Young’s modulus, Pois-

son’s ratio, and density and inverted the elastic parameters

by Bayesian framework via Cauchy distribution as prior

information. The approximation can be named as the YPD

approximation. Zong et al. (2013) reformulated the elastic

impedance equation in terms of Young’s modulus, Pois-

son’s ratio and density based on the YPD approximation,

and introduced a stable inversion method named elastic

impedance varying with incident angle inversion with

damping singular value decomposition (EVA-DSVD)

inversion. In this study, we propose a model constrained

basis pursuit inversion method to estimate the Young’s

modulus, Poisson’s ratio, and density with the YPD

approximation. The model constraint term is added into the

objective function through a Bayesian framework. We also

take a decorrelation of model parameters before inversion.

The introduced model constraint promotes the stability of

the inversion. Basis pursuit ensures the sparsity of reflec-

tion coefficients and the blocky structure of layer param-

eters. Model synthetic gather data with different signal-to-

noise ratios are studied to test the proposed inversion

method. The application on real data from shale reservoirs

shows that Young’s modulus and Poisson’s ratio inverted

by the proposed inversion method are reasonable for brit-

tleness evaluation. The result of brittleness evaluation fits

well with well interpretation.

2 Theory and method

2.1 YPD approximation

Young’s modulus and Poisson’s ratio are the central

parameters in predicting the brittleness of the subsurface

layers. Young’s modulus can characterize the rigidity or

brittleness of rocks, and Poisson’s ratio can be regarded as

a kind of fluid factor which can be used for pore fluid

identification. The reflection coefficients approximate

equation was derived in terms of Young’s modulus, Pois-

son’s ratio, and density (YPD approximation) with the

hypothesis of planar incident wave by Zong et al. (2012c):
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where h is the incident angle; R(h) is the reflection coef-

ficients; k stands for the square of the average S-to-P

velocity ratio; and DE/E, Dr/r, and Dq/q represent the

reflection coefficients of Young’s modulus, Poisson’s ratio,

and density, respectively.

In order to perform the inversion for Young’s modulus,

Poisson’s ratio and density, we should firstly build the

forward model. Combining the convolution model and

YPD approximation, we can get the pre-stack data in angle

domain shown as Eq. (2).
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where W hið Þ represents the wavelet matrix and CE hið Þ,
Cr hið Þ , and Cq hið Þ represent the weighting coefficients of

Young’s modulus reflectivity vector rE, Poisson’s ratio

reflectivity vector rr, and density reflectivity vector rq,

respectively. The product of the wavelet matrix and

weighting coefficients makes up the kernel matrix G. Set-

ting the reflectivities as model vector r, the forward model

equation can be written in a linear equation as d = Gr.

2.2 Model parameters decorrelation

Decorrelation of model space parameters can enhance the

stability of the three-parameter AVA inversion (Downton

2005; Zong et al. 2012b). We took the singular value

decomposition (SVD) for covariance matrix Cr of model

elastic parameters:

Cr ¼
r2E rEr rEq
rrE r2r rrq
rqE rqr r2q

2
4

3
5 ¼ vSvT ð3Þ

where r2E is the variance of Young’s modulus; rEr is the

covariance of Young’s modulus and Poisson’s ratio, and so

on; v is a matrix made up of three eigenvectors; and S is the

diagonal matrix made up of the positive decreasing sin-

gular values.

For N samples, the inverse of the decorrelation matrix

V can be expressed as the Kronecker product of v-1 and an

N-order identity matrix. Therefore, the inverse of decor-

relation matrix V is expressed as Eq. (4):

V�1 ¼ kronðv�1; IÞ ð4Þ

In this case, the kernel matrix G becomes ~G ¼ GV�1,

and the model vector becomes ~r ¼ Vr. Therefore, the

forward modeling equation should be written as

d ¼ Gr ¼ ~GV
� �

V�1~r
� �

¼ ~G~r: ð5Þ

2.3 Dipole decomposition and forward model

Then we used the dipole reflection coefficient decomposi-

tion method to update the forward model of pre-stack BPI

inversion for Young’s modulus, Poisson’s ratio, and den-

sity. The reflection coefficient decomposition method is

shown in Fig. 1. In this case, the vector of reflection

coefficients containing Young’s modulus, Poisson’s ratio,

and density can be written as Eq. (6).
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where D stands for the dipole reflectivity decomposition

operator. mE, mr and mq are the sparse coefficients of

Young’s modulus, Poisson’s ratio, and density, respec-

tively, under the reflectivity decomposition,

mE ¼ ½ aTE bTE �
T
, mr ¼ ½ aTr bTr �

T
, and

mq ¼ ½ aTq bTq �
T
. ~D is a large scale matrix consisting of

three reflectivity decomposition operators. m is the sparse

coefficients vector consisting of mE, mr, and mq.

We can obtain the forward model shown as Eq. (7) by

substituting Eq. (6) into Eq. (5):

d ¼ ~G ~Dm: ð7Þ

2.4 Bayesian inference and model constrained BPI

In this study, we constructed the objective function of the

AVA inversion under the Bayesian framework (Ulrych

et al. 2001). The Bayesian theorem is given by

p mjdð Þ ¼ p djmð Þp mð Þ
p dð Þ ; ð8Þ

where p mjdð Þ is the posterior probability distribution func-

tion (PDF), p djmð Þ is the likelihood function that is the PDF
of noise, p mð Þ is the prior information of the parameter m,
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and p dð Þ is the normalization factor which can be ignored as

it is a constant value. Therefore, the Bayesian theorem is

often expressed as Eq. (9) without the scaling factor:

p mjdð Þ / p djmð Þp mð Þ: ð9Þ

We suppose that the noise obeys a Gaussian distribution;

hence, the likelihood function should be

p djmð Þ / exp ~G ~Dm� d
� �T

X�1
d

~G ~Dm� d
� �� �

; ð10Þ

where Xd is the noise covariance matrix. For simplicity, we

suppose that the noise is uncorrelated, so the covariance

matrix should be Xd ¼ r2dId, where Id is the identity matrix

and r2d is the variance of the Gaussian distributed noise.

In this paper, we assume that the prior distribution is

constructed by two terms:

p mð Þ ¼ pt mð Þpl mð Þ; ð11Þ

where the first term, pt mð Þ, is the probability distribution of
m which represents the sparsity of the coefficients and the

second term, pl mð Þ, is the low-frequency model informa-

tion that can enhance the lateral continuity. The prior

information stabilized the inversion process and provided a

principle to choose the ‘‘best’’ solution that can adequately

fit the observed data.

In order to recover the discontinuity of the layer

properties, the minimum l1 norm that works well in

selecting the sparse solution practically should be taken

into consideration to constrain the inversion. This l1 norm

regularization can be incorporated into the Bayesian

approach as the Laplacian distribution with a mean of

zero:

pt mð Þ / exp � 1

rm

XM
i¼1

mij j
 !

ð12Þ

In the lateral term, we suppose that the error between the

inversion and low-frequency model obeys a normal

distribution.

pl mð Þ / exp
1

2
~C ~Dm� n
� �

X�1
m;nð Þ

~C ~Dm� n
� �� �T

ð13Þ

where X m;nð Þ is the covariance matrix associated with the

three elastic properties: Young’s modulus, Poisson’s ratio,

and density. Here we assume that the parameters at each

sample are independent as we took decorrelation of the

model parameters, and then X m;nð Þ ¼ r2m;nð ÞI m;nð Þ, where

r2m;nð Þ is the variance of the coefficients for estimation, and

I m;nð Þ is the identity matrix. n is the vector made up of the

relevant Young’s modulus, Poisson’s ratio, and density; ~C

is made up of diagonal integrated matrix C ¼
R t
t0
ds. The

expression of n and ~C can be written as Eq. (14):

n =

ln E=E0ð Þ
ln r=r0ð Þ
ln q=q0ð Þ

2
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3
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2
4

3
5: ð14Þ

Under Bayes’ framework, we can estimate the solution

as the maximum a posteriori (MAP) solution. Substituting

Eq. (12) and Eq. (13) into Eq. (11), the prior information

can be written as

p mð Þ / exp � 1
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mk k1þ

1

r2
m;nð Þ

~C ~Dm� n
�� ��2

2

 !" #
ð15Þ

Substituting the likelihood function Eq. (10) and prior

distribution Eq. (15) into the Bayesian theorem Eq. (9), we

get the objective function shown as Eq. (16) under the

Bayesian inference:

J mð Þ ¼ ~G ~Dm� d
�� ��2

2
þk mk k1þl ~C ~Dm� n

�� ��2
2
; ð16Þ

hwhere, k and l are the trade-off factors which balance the

overall impact of the regularization, and

k ¼ r2d=rm; and l ¼ r2d=r
2
ðm;nÞ:

The objective function Eq. (16) can be viewed as the

normal expression for a basis pursuit problem via an aug-

mented matrix:

J mð Þ ¼
~Gffiffiffi
l

p ~C

� �
~Dm� dffiffiffi

l
p

n

� �����
����
2

2

þk mk k1: ð17Þ

Accordingly, utilizing the Gradient Projection for Sparse

Reconstruction (GPSR) method (Figueiredo et al. 2007),

we minimized the objective function J(m) to obtain the

sparse estimates. After that, the reflection coefficients with

isolated spikes can be obtained by Eq. (6). The inverted

results contain low frequencies as the low-frequency trend

model data were added into the objective function as a

penalty function. Therefore, the output Young’s modulus,

Poisson’s ratio, and density with blocky boundaries can be

obtained by Eq. (18):

t

r1

r2

=a +b

Original reflection 
coefficient pair Even pair Odd pair

r re ro

Fig. 1 The reflectivity decomposition (Zhang et al. 2013)
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E tð Þ ¼ E t0ð Þ exp
Z t

t0

rE sð Þ ds

r tð Þ ¼ r t0ð Þ exp
Z t

t0

rr sð Þ ds

q tð Þ ¼ q t0ð Þ exp
Z t

t0

rq sð Þ ds

: ð18Þ

3 Model test

We tested the validity of our proposed inversion method

with well log data. The angle gather data with free noise

(Fig. 2a) were synthesized with Zoeppritz equations in the

time domain by utilizing the real well logs of P-wave
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Fig. 2 a The synthetic seismic angle gather with free noise; b The estimated Young’s modulus; c The estimated Poisson’s ratio; d The estimated

density. b–d the red lines mean the inverted results and the blue lines represent the real model curves
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estimated density. b–d the red lines mean the inverted results, and the blue lines represent the real model curves
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velocity, S-wave velocity, and density and a 35 Hz Ricker

wavelet for incident angles ranging from 0� to 35�. Fig-
ure 2b–d displays the log curves of Young’s modulus,

Poisson’s ratio, and density. The blue curves shown in

Fig. 2b–d are the real models and the red curves are the

inversion results. From Fig. 2b–d, we can clearly see that

the Young’s modulus, Poisson’s ratio, and density can be

inverted reasonably with free noise. The error of the
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estimated density. b–d the red lines mean the inverted results, and the blue lines represent the real model curves
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inverted density is a little bigger than that of the other two

parameters. In order to verify the stability of the inversion

method, we added random Gaussian noise to the synthetic

gather data with different signal-to-noise ratios (SNRs).

The gather traces are displayed in Figs. 3a, 4a and 5a, and

the SNRs are 4:1, 2:1, and 1:1, respectively. The inversion

results in different gather traces are shown in Figs. 3b–d,

4b–d and 5b–d, respectively. It is very clear that the

inversion results estimated by the proposed inversion

method match well with the real models as the low-fre-

quency model enables the inversion results to approximate

the real models. Although the inversion results are

influenced by the noise, especially the density, the Young’s

modulus and Poisson’s ratio can match well with the real

models to some degree so that the inversion results are

helpful for us to evaluate the brittleness of the layer.

4 Real data example

The inversion method was applied to real partial angle

stack seismic data, and the sampling interval of the seismic

data is 2 ms. Figure 6 displays the used three partial angle

stack seismic sections, and the mean angles of the seismic
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Fig. 6 The partial stack seismic profile and initial model of Young’s

modulus, Poisson’s ratio, and density. a Partial stack seismic data

with a small incident angle range, the mean angle is 8�; b Partial stack

seismic data with a medium incident angle range, the mean angle is

16�; c Partial stack seismic data with a large incident angle range, the

mean angle is 24�; d–f The profiles of initial model of Young’s

modulus, Poisson’s ratio, and density, respectively
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data in Fig. 6a–c are 8�, 16�, and 24�, respectively. In

Fig. 6a–c, the green ellipse circles the target reservoir, and

a well is drilled through the target at CDP 156. Figure 6d–f

displays the initial models of Young’s modulus, Poisson’s

ratio, and density, respectively. The initial models are

established by spatial interpolation and extrapolation and

low-pass filtering. The inverted isolated reflectivity spikes

of rE, rr, and rq are shown in Fig. 7a–c, respectively. The

structure of the reflectivity estimates is similar to the partial

angle stack seismic profile and appears to have a better

resolving power for the layer boundaries. The blocky

Young’s modulus, Poisson’s ratio, and density displayed in

Fig. 7d–f are obtained from the estimated sparse reflec-

tivity by using Eq. (18). The blocky results from model

constrained BPI focus on the layer boundaries well, which

is useful for us to interpret the inversion results. To some

extent, the lateral continuity is improved because the low-

frequency trend model is continuous laterally. The calcu-

lated logs of Young’s modulus, Poisson’s ratio and density

are inserted into the sections. Figure 8a–c plot the inverted

Young’s modulus, Poisson’s ratio, and density (red lines) at

the well location, aligning with the well logs (dark lines).

From Fig. 8, we can draw a conclusion that the inverted

results of Young’s modulus and Poisson’s ratio have a
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Fig. 7 The inverted reflection properties of Young’s modulus,
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good fit with the logs, while the density inversion does not

match as well as the other two elastic parameters as the

maximum angle is not large enough for us to invert the

density information. From the inverted results shown in

Fig. 7d–f, we can clearly see that the Young’s modulus

exhibits high anomalous values and Poisson’s ratio shows

low anomalous values in the target circled with dark

ellipses, which means that the brittleness of the circled

target is high. The drilling shows the high brittleness at

2.3 s. Therefore, the brittleness evaluated by the inverted

Young’s modulus and Poisson’s ratio using the proposed

inversion method is consistent with the drilling.

5 Conclusions

In this paper, we presented a novel stable inversion method

to estimate the Young’s modulus and Poisson’s ratio for

brittleness evaluation from pre-stack seismic data with the

YPD approximation. We introduced the low-frequency trend

model into the basis pursuit inversion implementation.

Therefore, we can call this method model constrained BPI.

We derived the objective function of model constrained BPI

by the Bayesian theorem. In the improved method, the low-

frequency trend model as prior knowledge stabilized the

inversion and improved the lateral continuity because the

low-frequency trend model is continuous in the space axis.

The l1 norm of the model parameters and the GPSR algo-

rithm kept the sparsity of inversion results so that we can

obtain the isolated reflectivities and the elastic parameters

with discontinuous jumps in the time axis. The model test

results showed that we can obtain the high-precision

Young’s modulus, Poisson’s ratio, and density. The real data

application is performed to confirm the validity of the pro-

posed method, and it showed that the high anomalous value

of Young’s modulus and low anomalous value of Poisson’s

ratio which mean high brittleness matched well with the

brittleness interpretation of drilling.
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