

Parsing Concurrent XML

Ionut E. Iacob, Alex Dekhtyar and Kazuyo Kaneko

ABSTRACT
Concurrent markup hierarchies appear often in document-centric XML documents, as a result

of different XML elements having overlapping scopes. They require significantly different
approach to management and maintenance. Management of XML documents composed of
concurrent markup has been mostly studied by the document processing community and has
attracted attention of computer scientists only recently. In this paper we discuss the architecture
of an XML parser for concurrent XML. This parser uses a GODDAG data structure in place of
traditional DOM Tree to store concurrent markup on top of the document content and provides a
DOM-like API that allows software developers of tools working with concurrent XML
documents to use it instead of parsing each individual component with a traditional DOM XML
parser. The paper describes the architecture of the parser, data structures and algorithms used and
the DOM-like API.

1. INTRODUCTION
Concurrent XML markup is almost inevitable in any serious text encoding endeavor, be it

medieval English manuscripts [12], biblical texts [9], or any modern printed text that needs to be
marked up [14]. Even the most simple document-centric markup involving sentence boundaries
and physical line boundaries produces elements with overlapping scopes: sentences start and end
at mid-line, preventing proper nesting of line and sentence markup.

This problem had been known to the humanities community for years, having originally
been brought up in the context of SGML [13]. Proposed approaches to dealing with concurrent
markup were mostly structural, most well-known of them being SGML's CONCUR syntax, and
a variety of suggestions on how to use milestones (emtpy XML elements) and element
fragmentation to avoid overlapping markup found in Text Encoding Initiative (TEI) Guidelines
[14]. These approaches however all suffer from two major drawbacks: (a) reliance on human
editors and stemming from it (b) hard-to-query XML.

Database research in the past few years has been mostly concentrated on data-centric XML,
where the problem of concurrent markup does not occur. At the same time, the new wave of
approaches to management of concurrent XML, pioneered by Durusau and O'Donnell [9, 8]
started to rely implicitly on computer scientists to provide adequate software support.

In a nutshell, concurrent XML markup considered in this paper can be thought of as a
collection of XML documents sharing the same content and the same root element. The
documents are not independent, they are merely facets of the same complex encoding of the
content, which would not yield a well-formed XML document if put together. At the same
time, the editor' has to treat this entire collection of markup as a single document. To be able to
do this, the editor must be helped by the software capable of processing and managing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19142469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

concurrent XML.
In our prior work, we have started addressing these needs. In [6, 7] we have formally

introduced the notion of a distributed XML document over a concurrent XML hierarchy and
considered the algorithms for automatically constructing single XML documents from
distributed XML documents and vice versa. In [11] we have extended XPath to process path
queries over distributed XML documents and showed that query evaluation in our Extended
XPath remains efficient. In [5] we have looked at data structures to store document-centric
XML both in main memory and in secondary storage.

This paper addresses another aspect of processing of concurrent XML data: parsing. The
attraction of XML is in the availability of standardized, powerful tools for dealing with it:
XML DOM parsers take as input text representation of an XML document and produce a
DOM tree - an internal model of an XML document that is suitable for the use of a wide range
of software applications. To facilitate the use of DOM trees, a standard DOM API[4] is used in
all XML DOM parsers.

We draw an immediate parallel between the state-of-the-art in XML processing, and the
desired features of concurrent XML processors. Just as standard XML, distributed XML
documents have a text representation: a collection of XML documents that share content and
root element. Sperberg-McQueen and Huitfield proposed a data structure called GODDAG
[15], that can serve as the DOM tree analog for concurrent XML (we have successfully used it
as the underlying data model for Extended XPath in [11]). Finally, the ARCHWay project[12]
at the University of Kentucky provides us with a wide array of application programs that
require access to the concurrent XML documents in order to fully support the work of human
editors on the preparation of electronic editions of medieval English manuscripts. The
contributions of this paper are, thus, threefold:

� We introduce SACX, Simple API for Concurrent XML: an event-based parser that
combines SAX events from the components of the distributed XML document into a single
SAX stream.

� We introduce the GODDAG parser for concurrent XML. Built on top of SACX, it
converts the event stream into a GODDAG data structure.

� We introduce GODDAG API, the programmer's interface to GODDAG. It includes all
the standard features of DOM API. In addition, it provides some functionality, that is specific
to the processing needs for distributed XML documents.

The rest of the paper is organized as follows. Section 2 briefly recaps the definitions of
distributed XML [6] and GODDAG [15]. In Section 3 we introduce the parsing algorithms for
the SACX and GODDAG parsers, and describe briefly the GODDAG API. Finally, Section 4
provides an initial evaluation of the performance of our GODDAG parser.

2. BACKGROUND 2.1 Concurrent XML
A concurrent XML hierarchy as defined in [6] is a collection of DTDs sharing the same

root element. Using a concurrent markup hierarchy (CMH), a large, complex schema can be

broken down into a number of smaller, schemas of lesser complexity. However, the most
important benefit of using CMHs is the ability to define and use logical hierarchies of XML
elements with no conflicts between markup tags inside the same hierarchy.

Before proceeding, we introduce some notation used throughout the paper. First, all XML
document instances in this paper (which we refer to as documents) are considered to be well-
formed, unless explicitly specified otherwise. For a DTD T we let elements(T) be the set of
element type names as they appear in Element Type Declarations in T[3]. For a document d we
let elements(d) be the set of element types (tag names) in d [3]. It follows that, a necessary
condition for a document d to be valid[3] w.r.t. some DTD T is elements(d) ⊆ elements(T).

For a document d we define functions start, end (which describe the position of a node
relative to the document textual content) as

start, end : nodes(d) � {10, 1, ... ,|string—value(d)|} where, ∀x ∈ nodes(d):
� start(t) is the character position in string—value(d) where string—value(t) begins; if

string—value(t) = ε, then start(t) = start(p) where p ∈ nodes(d) is the first node (in reverse
document order) that precedes t such that string-value(p) ≠ ε or start(t) = 0 if no such node p
precedes t;

� end(t) is the character position in string-value(d) before which string-value(t) ends; if
string—value(t) = ε, then end(t) = end(f) where f ∈ nodes(d) is the first node (in document
order) that follows t such that string—value(f) ≠ ε or end(t) = | string—value(d) | if no such
node f follows t. For instance, start(root(d)) = 0 and end(root(d)) = |string—value(d) |.

An example of concurrent markup hierarchy is shown in figure Figure 1.

A distributed XML document (see Figure 1; The text fragment is from Alfred the Great's
Boethius manuscript [2]) allows us to distribute conflicting markup into separate documents.
However, D is not an XML document itself, rather it is a virtual union of the markup contained
in d1,... ,dk. The problem of creating well-formed XML document instances that incorporate all
information in a distributed document has been addressed in [6]. The focus of this paper is on

�
���

building the data structure representation of a distributed XML document, which is used for
querying the distributed document [11].

Our next step is to define the abstract data model for distributed XML documents, which
plays the same role as DOM trees do for regular XML. For a distributed XML document
D=<d1, ..., dk>, we will use set notation di ∈ D to specify that di is a component document of D.
Similarly, we will slightly abuse notation and write D—d to represent a distributed XML
document that consists of all components of D except for d. We also let nodes(D) denote the set
⋃ �����(��). Given a node x ∈ nodes(D), we let docD(x) denote the document d ∈ D, such
that x ∈ nodes(d). Given a string s, we denote by |s| the length of the string (number of
characters in s). We also let substring(s,i1,i2) denote the substring of s from position i1 up to but
not including position i2 (here positions start from 0 up to position |s| - 1), and we let ε denote
the empty string.

2.2 The GODDAG data structure
For representing a distributed XML document we use a General Ordered-Descendant

Directed Acyclic Graph (GODDAG) data structure proposed in [15]. Informally, a GODDAG
for a distributed XML document D = <d1, ... , dk> can be thought of as the graph that unites the
DOM trees of individual components of D, by merging the root node and the text nodes.
However, because of possible overlap in the scopes of XML elements from different component
documents, GODDAGs will feature one more node type, that we call here leaf node, not found in
DOM trees. In a GODDAG, leaf nodes are children of the text nodes, and they represent a
consecutive sequence of content characters that is not broken by an XML tag in any of the
components of the distributed XML document. While each CMH component will have its own
text nodes in a GODDAG, the leaf nodes will be shared among all of them. Given a distributed
XML document D = <d1, ... , dk>, we can compute the set of leaf nodes using the following
algorithm:

for each d ∈ D
for each t ∈ 0

i = start(t)
while i < end(t)

m=min{j| j>I Ʌ ∃d ∈ D
∃x ∈ text-nodes(d)
(j = start(x) V j = end(x))}

create leaf node parented by t and
with textual content substring(S, i, m)

i=m
In other words, leaf nodes are obtained by projecting each start tag and end tag from all

component documents of D on the string-content (D), at corresponding positions, then taking
largest contiguous sequences of content characters not separated by markup to be the scope of
individual leaf nodes. For a distributed document D we let leaf —nodes(D) represent the set of

all leaf nodes in D and we extend the domain of functions string—value, start, and end over the
leaf—nodes(D) set. For leaf nodes these functions are defined in the same way as for text nodes.
We define two new functions, first—leaf, last—leaf : nodes(D) � leaf—nodes(D). Given an
element, or text node x, these functions return the leftmost and the rightmost (respectively) leaf
nodes in the subtree of x. If string—value(x) = ε, then first—leaf (x), last—leaf(x) return the first
following (respectively the first preceding), in reverse document order, leaf node for x (or NIL if
such nodes do not exist). We enumerate below some useful properties of leaf nodes.

A GODDAG of D, basically, joins at the root level and leaf level, of all tree models (DOM
trees) of documents in D. Consequently, each node in nodes(D) has root(D) as an ancestor, and
each leaf node in leaf—nodes(D) has exactly k parents, one for each document in D. Hence, for a
leaf l ∈ leaf—nodes(D) we denote as parent(di, l), 1 ≤ i ≤ k, the parent of leaf l in nodes(di).

The GODDAG of the distributed XML document in Figure 1 is given in Figure 2. Each node
of the GODDAG in Figure 2 has a label (a number appended to the node name), solely for the
purpose of ease of identification. Leaf nodes are represented as bounding boxes around the
content sub-strings and are labelled with numbers 1, 2,...,11. We identify them as "l1",...,"l11".
All other nodes are represented as circles. Text nodes are labelled t1, t2, ..., t17, other nodes are
labelled by their node name and a number (to make distinction between multiple occurrences of
the same node name). In order to make the figure clear, we draw the root node twice, at the top
and bottom of the figure.

3. CONCURRENT XML PARSER
The concurrent XML markup management framework we propose is summarized in Figure

3. In [7] the management of concurrent XML hierarchies is described and in [11] a language and
efficient algorithms for querying distributed XML documents represented by a GODDAG data
structure are given. This section describes the algorithms for parsing the components of a
distributed XML document: the SACX parser, the GODDAG parser, and the GODDAG API.

The concurrent XML parser (SACX) takes as an input a distributed XML document D =
<d1,... , dk>, materialized as a set of distinct XML files d1, d2, ... , dn sharing the same root
element and the same textual content (cf. Definition 2).

The SACX Parser.. Figure 4 shows the general architecture of SACX. The SACX
architecture is based on a pull SAX parser architecture(A classical SAX parser implements a
push model: as the
parser advances in parsing the input, events are generated) : all input documents are parsed in
parallel in the sense that all events are generated for a given position in the input documents
before moving on to the next position. The types of events generated by the SACX parser, at the
external processor request, are as follows (represented as call-back functions):

startDocument (docID) — is generated, for each input document, before parsing the
document content starts;

endDocument(docID) — is generated when parsing of the document identified by docID is
finished;

startElement(docID, position, tag) —is generated by parsing a start-element tag in document
docID at position position;

endElement (docID, position, tag) — similarly as for startElement(), but for an end-element
markup;

characters (docID, position, text) — is generated for parsing a textual content text in
document docID at position position;

leaf (start, end) — is generated right after the parser finishes parsing all elements and text
starting at position start and moves the current parsing position at position end in the input
documents.

The SACX algorithm is given in Figure 5. All positions in the input documents, where start
tag, end tag, or text are starting, are scanned in increasing order; for each position all events,
corresponding to the elements starting at the respective position, are generated. A "leaf" event is
generated each time the scan is moves to the next position. This ensures that each "leaf" event is
produced after all "character" events containing the start and end positions of the "leaf" event are
produced.

Table 1 shows an excerpt of the sequence of SACX events for parsing the distributed XML
document in Figure 1. The example contains the events generated while parsing completely all
tokens at position 0 in the documents d1 and d2. After generating the corresponding events at
position 0 in the documents d3 and d4, a "leaf" event is generated for the range of the word

"gesceaftum" (that is, 0 — 10) and 10 becomes the next scanning position.

The GODDAG Parser and API. The events generated by the SACX parser are used by the
GODDAG parser in creating the data structure. A GODDAG data structure extends the standard
DOM [4] in the following ways:

(i) 	 the root node has more that one "first child" node: there is one first child node in each
hierarchy;

(i i) 	 there is a new type of node, "leaf" node, which is a child of a text node;
(i i i) 	a leaf node has multiple parent nodes, a parent node within each hierarchy;
(iv) 	 each node contains starting and ending position information.

Property (iii) gives the fundamental difference between DOM [4] and GODDAG: the former
is a tree while the latter is a graph. A GODDAG data structure is more formally described by an
abstraction of the graph node data structure, the IDDNode interface (distributed document node
interface: see Figure 6). The data structure fields and methods names are rather verbose. There is
a new node type (LEAF) and the data fields and methods specific to GODDAGS's root and leaf
nodes allow navigation between distributed document's components.

As exemplified in Figure 2 a GODDAG is a union of DOM trees (one tree for each
component of the distributed document) united by the root node and the leaf nodes. The root
node and the leaf nodes are bridges between individual tree structures and therefore they play an
essential role in navigating from one document structure to another. It is of implementation
choice how fast to navigate from a given node N in a document structure to the leaf nodes it
spans. One option is for N to maintain a pointer to the first leaf on N. This would give 0(1) access
to the leaf and from there the navigational paths to the other documents structures is open. The
price of this option would be an expensive structure for updates. Another option would be to
navigate through a path from N down to its first leaf node. This structure would be easier to
update but the navigation of the GODDAG structure may be slower.

The algorithm for the parser for the GODDAG structure is shown in Figure 7. It takes as
input the output stream of the SACX parser and outputs the GODDAG structure. Informally, the
GODDAG is built by concurrent construction of all of its DOM components. Given an element
event from the SACX stream, the parser traverses the current state of the DOM tree for the
corresponding component of the distributed XML document and sets up the appropriate element
node there. When the GODDAG parser observes a leaf event, it creates a new leaf node and
determines its parents in each component of the distributed XML document. For simplicity, the
algorithm skips the details of checking whether or not the first child node for a given node was
set. The method setChild() should be interpreted as setting the first child of the respective node if
the first child node was not already set.

We note here that when the GODDAG parser is run on a distributed XML document that
consists of only one component, its output will, virtually, be the DOM tree for that component.
More formally,

4. EXPERIMENTAL RESULTS
In this section we describe some preliminary experiments on our implementations of SACX

and GODDAG parsers. We have implemented SACX and GODDAG parsers in Java using
Xerces Java 2.6.2 XML SAX parser [1] to generate individual SAX streams for the SACX
parser.

In our experiments, we have set out to compare the performance of the GODDAG parser to
the performance of a standard XML DOM parser on a comparable workload. The dependent
variable in our experiments was time. We used two independent variables: size of the distributed
XML document and number of components in a distributed XML document. Size was measured
in terms of the total number of SAX events (tokens) generated during parsing. For the study of
the dependence of time on the document size, we have generated a total of 50 distributed XML
documents (we used the same dataset as in [7]), each document consisting of five components.
The document sizes ranged from 5000 tokens up to 50000 tokens, with five documents for each
size (The actual document sizes varied slightly, and have been averaged over the five documents
in the graphs). To test the dependence of performance on the number of components we have
generated 25 distributed XML documents of size 50,000 tokens, five documents for each of the
number of components from one to five. The individual component sizes were smaller with the
increase in the number of components, but the overall "workload" was kept at 50,000 tokens.

As the baseline comparison, we have chosen to use the work of Xerces Java 2.6.2 DOM
parser on the same distributed XML documents. Given a distributed XML document, the DOM
parser was run for each of its components to produce a DOM tree. The goal of the experiment
was not to show that the GODDAG parser outperforms the DOM parser — such statement is not
very meaningful given different nature of the outputs generated. The objective of the study is to
show that the GODDAG parser can be used efficiently by the application programmers to parse
and provide access to distributed XML documents. It is, thus, sufficient for us to show that the
time it takes the GODDAG parser to produce a GODDAG for a distributed XML is comparable,
in general, to the time a standard DOM parser spends on similar workloads (where workload is
measured in the number of SAX tokens processed).

The experiments had been conducted on a Dell Optiplex GX 240 computer with a Pentium

IV 1.2 Mhz processor, 1 Gb of RAM running Linux Operating System. Some of the results
obtained are shown in Figures 8 and 9.

Figure 8 shows the dependence of the performance of the parsers on the size of the
distributed XML documents. The results shown are for the 5-component distributed XML
documents. Each point on the graph represents the averages of size and time for five documents.
As seen from the graph, GODDAG parser is somewhat faster than the DOM parser, with the
difference in the performance shrinking as the size of the XML documents grows. We attribute
most of the difference in performance to two factors:(a) the DOM parser experiment involved
five independent calls to the DOM parser, while the GODDAG parser experiment involved a
single call and (b) the GODDAG parser implementation was "light" - it did not include complete
DOM functionality, concentrating only on XML element support. While XML documents used
in the tests contained only XML elements (no attributes, processing instructions etc), Xerces
DOM parser might still have taken time to check for the presence of those features in the
documents.

Figure 9 shows the dependence of the performance of the parsers on the number of
components. Both DOM tree and GODDAG parsers show exactly the same behavior as the
number of components of distributed XML documents rises from one to five, while the workload
remains at 50,000 tokens: a slight increase in the processing time.

Based on the two experiments conducted, we can conclude that the developed GODDAG
parser is efficient enough to be used as the back-end for processing distributed XML in software
applications and involve real-time communication with users.

5. CONCLUSIONS
The main objective for our research on management of concurrent XML markup is to

develop approaches and build tools for authoring, storage, processing, querying and trans
formation of complex document-centric XML encodings that occur in numerous humanities
(and not only) projects. This paper addresses the heart of our endeavor: the translation of
distributed XML documents representing concurrent markup into a an internal data structure
and the appropriate API for it to be used by applications programmers. We have chosen our
approach to parallel that of standard XML, by providing concurrent XML analogs for SAX and
DOM parsers and the DOM API. Our experiments show, that this approach leads to software
that is efficient and can be used by software applications in the same way DOM parsers are
used.

The work on the full implementation of the GODDAG parser is currently underway. At the
same time, the prototype parser described here has already been successfully used to support a
document-centric XML editor written for the ARCHWay[12] and Electronic Boethius [10]
projects. In [11] we have proposed an extension of XPath for dealing with path expressions over
GODDAG. Implementation of the Extended XPath processor on top of the GODDAG API is
also currently underway.

6. REFERENCES
[1] 	 Xerces2 Java Parser 2.6.2. http://xml.apache.org/xerces2-j/, 2004. Apache XML project.
[2] 	 Alfred. Boethius. British Library MS Cotton Otho A. vi. Manuscript, folio 36v.
[3] 	 T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler(Eds.). Extensible Markup

Language (XML) 1.0 (Second Edition). http://www.w3.org/TR/REC-xml, Oct 2000. W3C,
REC-xml-20001006.

[4] 	 M. Champion, S. Byrne, G. Nicol, and L. Wood(Eds.). Document Object Model (DOM)
Level 1 Specification. http://www.w3.org/TR/REC-DOM-Level-1/, Oct 1998. World Wide
Web Consortium Recommendation, REC-DOM-Level-1-19981001.

[5] 	 A. Dekhtyar, I. Iacob, J. Jarmczyk, K. Kiernan, N. Moore, and D. Porter. Database support
for image-based Electronic Editions. In Proc. Workshop on Multimedia Information
Systems (MIS'04), pages 147156, 2004.

[6] 	 A. Dekhtyar and I. E. Iacob. A Framework for Management of Concurrent XML Markup. In
International Workshop on XML Schema and Data Management (XSDM'03), pages 311322.
LNCS, 2003.

[7] 	 A. Dekhtyar and I. E. Iacob. A Framework for Management of Concurrent XML Markup.
Data and Knowledge Engineering, 2004. accepted.

[8] 	 P. Durusau and M. O'Donnel. Declaring Trees: The Future of the Evolution of Markup? In
Proc. Conference on Extreme Markup Languages, 2002.

[9] 	 P. Durusau and M. B. O'Donnell. Concurrent Markup for XML Documents. In Proc. XML
Europe, May 2002.

[10] K. Hawley and K. Kiernan. An image-based electronic edition of alfred the great's old
english version of boethius's consolation of philosophy. In Proc., Joint International
Conference of the Association for Literary and Linguistic Computing and the
Association for Computers and the Humanities (ALLC/ACH), pages 91-96, 2003.

[11] I. E. Iacob, A. Dekhtyar, and W. Zhao. XPath Extension for Querying Concurrent XML
Markup. Technical Report TR 394-04, University of Kentucky, Department of Computer
Science, February 2004. http://www.cs.uky.edu/—dekhtyar/publications/ TR394-04.ps.

[12] K. Kiernan, J. Jaromczyk, A. Dekhtyar, D. Porter, K. Hawley, S. Bodapati, and I. Iacob. The
ARCHway project: Architecture for research in computing for humanities through research,
teaching, and learning. Literary and Linguistic Computing, 2004. forthcoming.

[13] A. Renear, E. Mylonas, and D. Durand. Refining our notion of what text really is: The
problem of overlapping hierarchies. Research in Humanities Computing, 1993. N. Ide and
S. Hockey, (Eds.).

[14] C. M. Sperberg-McQueen and L. Burnard(Eds.). Guidelines for Text Encoding and
Interchange (P4). http://www.tei-c.org/P4X/index.html, 2001. The TEI Consortium.

[15] C. M. Sperberg-McQueen and C. Huitfeldt. GODDAG: A Data Structure for Overlapping
Hierarchies, Sept. 2000. Early draft presented at the ACH-ALLC Conference in
Charlottesville, June 1999.

T, = <!ELEMENT , (Hne)+ >
<!ELEMENT line (#PCDATA»

T 2 = <!ELEMENT r (vline)+>
<!ELEMENT vline (w)+>
<!ELEMENT w (#PCDATA»

T3 = <'ELEMENT, (#PCDATAI'es)*>
<!ELEMENT ,es (#PCDATA»

T, = <!ELEMENT, (#PCDATAldmg)*>
<!ELEMENT drng (#PCDATA»

CMH =(r,{T, , ... , T.})

d 1 = "<r><line>gesceaftum unawendendne sin</line><1ine>gallice sibbe gecynde IJa</line></r>"

d2 = "<r> <vline> <w>gesceaftum</w><w>unawendendne</w> </vline><vline> <w>singallice</w>
<w>sibbe</w><w> gecynde</w></vline><vline><w>l)a</w></vline></r>"

d 3 = '~<r><res>gesceaftum una</res>wendendne s<res>in</res><res>gallice sibbe gecyn</res>de pa</r>"

d 4 = "<r>gesceaftum una<dmg>w</dmg>endendne singallice sibbe gecyn<dmg>de pa</dmg></r>"

stTing-value(d t } = .. = stTing-value(d4 } = "gesceaftum unawendendne singallice sibbe gecynde pa"

Figure 1: A concurrent XML hierarchy CMH, and a distributed XML document D.

Figure 2: A GODDAG for the distributed document D in Figure 1

