
Searching Multi-Hierarchical XML Documents: the

Case of Fragmentation

Alex Dekhtyar, Ionut E. Iacob, Srikanth Methuku

Abstract. To properly encode properties of textual documents using XML, mul­
tiple markup hierarchies must be used, often leading to conflicting markup in
encodings. Text Encoding Initiative (TEI) Guidelines[1] recognize this problem
and suggest a number of ways to incorporate multiple hierarchies in a single
well-formed XML document. In this paper, we present a framework for pro­
cessing XPath queries over multi-hierarchical XML documents represented using
fragmentation, one of the TEI-suggested techniques. We define the semantics of
XPath over DOM trees of fragmented XML, extend the path expression language
to cover overlap in markup, and describe FragXPath, our implementation of the
proposed XPath semantics over fragmented markup.

1 Introduction

XML documents are required, by definition, to be well-formed. At the same time, it
has been known for some time that text has a multi-hierarchical structure [2]. Features
from different hierarchies can have overlapping scopes. Two key markup hierarchies for
encoding text, physical text organization (pages, lines) and chapter-paragraph-sentence­
word structure will produce overlapping markup any time a word is split into two lines, a
sentence starts in the middle of one line and ends in the middle of another, or a paragraph
starts on one page and ends on the next. Use of additional feature hierarchies, only
accentuates the problem. Many prominent examples arise from image-based encodings
of manuscripts (Figure 1), where, in addition to folio-line and sentence-word structures,
we are also interested in encoding manuscript condition (damages), visibility of text
under different lighting conditions, and paleographic information (e.g., which scribe
wrote which portions of the manuscript).

The significance of multihierarchical document-centric markup and its proper man­
agement has been recognized by the TEI community fairly early [2, 1]. Two problems
need to be recognized and addressed: (a) storage and representation and (b) querying
and retrieval. TEI Guidelines (P4)[1] propose a number of solutions to the first prob­
lem. Among them is markup fragmentation, a technique that breaks the overlapping
conflicts by fragmenting one of the conflicting XML elements to the degree that al­
lows proper nesting. Fragmentation allows to represent multihierarchical markup in a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19142465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

<w>

<w> (i)

�w�hu�/w�� w��u�/w�� w�me�/w�

�w�hæfst�/w�� w�afrefredne�/w�

�w�æg�er�/w�� w�ge�/w�� w�mid�/w�

�w��inre�/w�� w�smealican�/w�

�w�spræce�/w�, �w�ge�/w�� w�mid�/w�

�w��inre�/w�� w�wynsum nesse�/w�

�w��ines�/w�

(ii)

�line no=”22”�hu �u me hæfst

afrefredne æg�/line�

�line no=”23”��er ge mid

�inre smealican spræ�/line�

�line no=”24”�ce, ge mid �inre

wynsum nesse �ines �/line�

hu �res��restxt��u m�/restxt��/res�e hæfst

afrefredne æg��dmg�er�/dmg� ge �dmg�mid

�/dmg� �inre smealican spr�dmg�æ�/dmg�ce,

�dmg�g�/dmg�e mid

�dmg���/dmg�in�dmg�r�/dmg�e wynsum

nesse �in�dmg�e�/dmg��res��restxt�s

�/restxt��/res�

(iii)

Fig. 1. A fragment of King Alfred’s Boethius manuscript folio [3], the corresponding text, and
different XML encodings.

single XML document. However, this comes at a price. Fragmented XML documents
are no longer easy to query using traditional XML query languages such as XPath. In
fact, certain queries, easily expressible in XPath over regular XML documents, can­
not be expressed in XPath over fragmented XML. While fragmentation is used by a
large number of humanities scholars to represent overlapping markup in their encod­
ings, there is nor available formalism, neither appropriate software for querying such
encodings in a convenient, consistent, and domain-independent manner.

In this paper, we resolve this problem by providing the semantics of the XPath
queries over fragmented XML documents. Because XPath is not expressive enough for
querying multihierarchical markup, we enhance it with new features, which, in partic­
ular, capture overlapping content for elements from different hierarchies. Our contribu­
tions are summarized as follows: (i) we formally define multiple hierarchies for XML
documents with markup fragmentation (Section 3); (ii) we give new semantics for com­
puting XPath axes for fragmented XML documents with multiple hierarchies (Section
4); (iii) we propose and implement efficient algorithms for computing XPath axes for
XML documents with fragmentation; (iv) we present some preliminary experimental
results (Section 5).

2 Overlapping Markup in Text Encoding

Overlapping markup occurs in a large number of text encoding tasks. Figure 1 shows
a fragment of a tenth century Old English manuscript [3] and the encodings of this
fragment in three different markup hierarchies: physical location, sentence structure
and condition. Features from these three hierarchies overlap: <rstxt> (restored text)
overlaps <w> in line 22; the word æg�er is split between lines 22 and 23 and the word
spræce is split between lines 23 and 24.

TEI Guidelines (P4)[1] suggest a number of ways for representing multihierarchical
markup in a single document. In this paper, we consider one such solution, fragmen­

tation, which works as follows. Whenever the scope of two elements overlaps, one of
the elements is broken into parts in a way that allows the inclusion of both elements in
the same XML document while preserving proper nesting. For example, one can resolve
the conflict between <w> and <line no="23"> elements as shown in Figure 2 Here,
the original element <w>spræce</w> had been split into two parts: <w id="W1"
next="W2">spræ</w> and <w id="W2" prev="W1">ce</w>. The first frag­
ment nests properly inside the <line no="23"> element, while the second - inside
the <line no="24"> element. The fact, that these two are the fragments of a single
word, rather than two separate words is facilitated by the use of id, prev and next
attributes for <w> which form a double-linked list of fragments. Markup fragmentation
is a simple way of combining conflicting markup in a single XML document. However,
[1] leaves open the question of querying the data stored in fragmented form.

<line no="23">�er ge mid �inre smeali­
can
<w id="W1" next="W2">spræ</w></line>
<line no="24"><w id="W2"
prev="W1">ce</w>, ge mid �inre

wynsum nesse �ines </line>
next w4

Id w4
prev w3

col

line no 22 line no 23 line no 24

w w w w w w ww

next w2 id w2 prev w1

n1 n2

n3 n4 n5 n6

n7 n8

Id w3 Id w1

Fig. 2. Fragmentation and the DOM tree for fragmented markup.

Example 1. Figure 2 shows a (part of the) DOM tree of the document that uses frag­
mentation to include <line> and <word> elements. Consider the following query:
Find all words that are located completely in line 23.

For a non-fragmented XML document, we can convert this request into XPath:
/descendant::line[@no="23"]/descendant::w.

When applied to the DOM tree in Figure 2, this expression evaluates to the nodeset
���� � �� � �� � �� � �� � ��. However, this is not the right answer to the original informa­
tion request — nodes �� and �� represent fragments of words, not complete words, in
line 23. Thus, we need to reformulate the query. The new version is: Find all <w> ele­
ments inside the scope of the <line no="23"> element, such that they are either not
fragmented, or all their peer fragments are inside the scope of the <line no="23">
element.

This information request cannot be expressed as a single XPath 1.0 query. It states
that whether or not a node is included in the answer set is dependent on whether or
not other nodes are included in the answer set (in fact, evaluation of this request is
equivalent to building a transitive closure for each <w> node by following the prev
and next links). At the same time, in XPath 1.0, decision on whether to include a node
in the answer set is made independent of decisions for other nodes.

We note, however, that while expressing the query above in XPath 1.0 is impossi­
ble, there is a simple and straightforward procedure for producing the desired result:
search the DOM subtree rooted at <line no="23">, and include in the answer
set each non-fragmented <w> node and all fragmented <w> nodes that form a sin­
gle word. The latter can be determined during a single tree traversal by verifying that

once a <w ID="x" next="y"> element (first fragment) is discovered, the match­
ing <w ID ="z" prev="u"> element (last fragment) is also in the scope of <line
no="23">.

The example above suggests that the problem is in the fact that the semantics of
XPath 1.0 over DOM is incompatible with the semantics of DOM trees for fragmented
XML. In the rest of this paper, we show how this can be rectified.

3 Background

We start this section by briefly describing the Document Object Model and the XPath
query language for XML together with some notation we use in the rest of the paper.

In Document Object Model (DOM) [4], an XML document is represented as a la­
beled, unranked tree. We denote by ������ the set of nodes in the DOM of �, by
������� � ������ the root node of �, by ������� the set of node labels (tags) in �.
In this paper we consider only element and text nodes in ������. We let ������� to
return the type of the argument node: “element” or “text”. For a node � � ������ the
function ������ returns the label of � for element nodes and ���� for text nodes. For
two nodes �� � � ������, � � � or � � � denotes that � is before � in the document
order[5]. We denote by ��
�������� ��� the set of ancestor nodes of � in DOM. For
an element node � we use �
������ to denote the document content interval from the
start tag of � to the end tag of �.

XPath is a language for addressing parts of an XML document [6]. XPath is used
as the means of accessing XML documents in XQuery. It can be used to query XML
documents by itself. XPath uses a tree of nodes model to represent an XML document.
The main syntactical construction of XPath is expression and the nodes of a document
are located using the location path (a special kind of expression). A location path is
composed of one or more steps, at each step a set of nodes is selected based on their
relationship (specified in step) to each node in a current set of context nodes. The node
set result of a step evaluation is the current set of context nodes for the next step in the
location path. The core syntax of XPath can be summarized as follows:

locationPath := step�/step�/.../step�
step := axis::node-test predicate*

predicate := [expression]

The main syntactical construction for a step evaluation is axis. XPath uses 13 axes
to address nodes in a document: ancestor, ancestor-or-self, attribute, child, descen­
dant, descendant-or-self, following, following-sibling, namespace, parent, preceding,
preceding-sibling, and self. Formal semantics of XPath axes is given in[6]. The set of
nodes from axis evaluation is filtered by the node-test (basically a node type test or a
name test for element nodes) and by the expression, which is either an location path
(evaluated to true if the result node set is not empty), or a boolean expression involving
functions from the core function library of XPath[6].

3.1 Multiple Hierarchies for XML documents with fragmentation

We define a multiple hierarchy over an XML document as a mapping of node names
(tags, or elements) onto a finite set of labels (hierarchy names). In any multi-hierarchical

document, an element node belongs to a single hierarchy (except for the root node,
which belongs to all hierarchies) whereas any text node belongs to all hierarchies. Usu­
ally, each hierarchy encompasses a specific set of markup features (e.g., in Figure 1 the
three hierarchies are physical position of text, sentence structure and manuscript con­
dition). The key syntactic condition is that document markup restricted to any single
hierarchy is well-formed. We formally define hierarchies and fragmented XML repre­
sentations as follows.

Definition 1 (muti hierarchies). Let � be a set of labels (strings). A multi-hierarchy
is a function � � ������� � �� so that
(a) if � is the root node or ������� � � ����� then ���� � �
(b) if � is an element node, not root node, then ���� � ��� for some � � � .

Definition 2 (fragmented representation). Let � be a multi-hierarchy over the set
of labels � . Let �� � ��� � � be XML documents encoding the same content string �,
having the same label for the root node, and with markup from different hierarchies. An
XML document � is called a fragmented XML representation of � � � ���� � � iff (a) � is
well-formed; (b) for each node � � �� there exists a set of nodes ���� � � � � � �� all with
the same label as � such that �
������ � �������
�������; (c) for any attribute ����
or ���� there exists a unique �� attribute with the same value; no �� attribute value can
appear in two ���� or two ���� attributes.

Fragmentation allows to store multi-hierarchical markup in a single well-formed
document by breaking elements into fragments. Fragments represent the semantics of
the original encoding only when combined. For example, <w>spræce</w> is broken
into two fragments, <w id="W1" next="W2"> spræ</w> and <w id="W2"
prev="W1">ce</w>, but if we are interested in recovering the full word, we must
join these two fragments together. Functions ����������� and ��� (Logical Markup
Unit), defined below, recover the actual range of the markup corresponding to a given
document node by collecting all fragments “related” to the node and constructing the
appropriate content respectively.

� �������Definition 3 (fragment). ��������� � ������ is defined recursively:
(i) � � � ��� � ��������; (ii) if � � ������ and there exists � � ������������

such that ���� or ���� attribute of � has the same value as the �� attribute of �, then
� � ������������.

Basically, the fragments are element nodes, in a double linked list (using prev, next,
and id attribute values), which are covering a continuous range of document content.

Definition 4 (logical markup unit). The logical markup unit (LMU) of the markup
corresponding to a node � is the set of all text nodes covered by markup corresponding
to each node in ������������:

������ �� �� � ���
��������� ��� � ������� � � ������.

Recall that fragmentation is a workaround for representing overlapping markup in a sin­
gle well-formed XML document. Markup conflicts are not immediately visible within
the fragmented XML document, but using LMUs, we can “discover” them: markup are
in conflict if their corresponding LMUs overlap.

We slightly abuse notation and use ���� in lieu of ��������� to denote the hierar­
chy of node �. We say that two document nodes �� � � ������ are in the same hier­
archy, denoted ���� � � � ��� or ���� � � ���. We use ������� ��� ���� if ����

�� � ������ � ��� �� � ����� to denote the nodes in ������ in the same hierarchy as
�. It is clear now that the root node and any text node are in the same hierarchy with any
other node in a document. The intuition behind this approach is simple: the root node
or a text node have no overlapping range with any other logical markup unit.

4 XPath queries over multi-hierarchical XML documents

As suggested in the examples in Section 1, a natural handling of XPath queries over
multi-hierarchical XML documents with fragmentation would require each query eval­
uation result to be expressed as a set of logical markup units. To avoid expensive joins
and, most importantly, query reformulation problems, we extend the XPath axis seman­
tics to handle queries for multi-hierarchical XML with fragmentation.

4.1 XPath axis semantics for fragmented multi-hierarchical XML

The purpose of the new semantics for XPath over fragmented documents is two-fold: (a)
restore the proper meaning of XPath axes and (b) extend the expressive power to capture
new relationships between nodes from different hierarchies. To achieve (a), we define
the semantics of self, child, parent, descendant, descendant-or-self, ancestor, ancestor­
or-self, following-sibling, preceding-sibling, following, and preceding axes over frag­
mented XML. For goal (b), we define new axes, specific to multi-hierarchical XML doc­
uments: xdescendant, xancestor, preceding-overlapping, following-overlapping, and over­
lapping. For each Extended XPath axis � , we define the corresponding evaluation func­
tion � � ������ � �������, where � ��� evaluates axis � for the context node �. The
evaluation functions for XPath axes are defined as follows:

���� ��� �� ������������

������� �� ����������
�� � �������

��� � � � ���
��������� ����

���� � �������
��� � � � ���
��������� ����

� � ��
�������� �����

��������� �� �� � ���� ��� � � � ��
�������� ��� � �������
����

���� � �������
��� � � � ��
�������� ����

� � ���
��������� �����

���
��������� �� ����������
�� � �������

��� � � � ���
��������� ����

���
�������������� ��� �� ���� ��� � ���
���������

��
�������� �� �� � ���� ��� � � � ��
�������� ��� � �������
����

��
������������� ��� �� ���� ��� � ��
��������

� ����� �� � ����������� �� �� � �������
��� � � � � � � �� ���� ����

��������� � ����������

���
���������������� �� �� � �������
��� � � � � � � �� ���� ����

��������� � ����������

� ����� �� � ��� �� �� � �������
��� � � � � � � �� ���� ����

� �� ���
����������

���
�������� �� �� � �������
��� � � � � � � �� ���� ����

� �� ��
���������

The extended XPath axes are defined below:

����
��������� �� �� � ������ � �������
��� � � � � ���
����������

������� � � ������� � ���
�����������

���
�������� �� �� � ������ � �������
��� � � � � ���
����������

������� � � ������� � ���
�����������

� ����� �� � ��������������� �� �� � ������ � � � � ���
����������������� � � ������

� � ���
���������� � � � � ���
���������

�� � ���
����������������� � � ������

� � � � � � � � ���
����������� � ���
���������

�������� � � ����� � � � � ��

���
�������������������� �� �� � ������ � � � � ���
����������������� � � ������

� � ���
���������� � � � � ���
���������

�� � ���
����������������� � � ����� � � � � ��

�� � ���
����������� � ���
���������

�������� � � ����� � � � � ��

���������������� �� ���
�����������������������

��������������������������

The following theorems establish the basic properties of the Extended XPath over
fragmented XML: (a) all fragments are included in the result of evaluation .and (b) with
only one hierarchy present, our definitions are equivalent to those in [6] 1.

Theorem 1. [7] Let � be an XPath axis evaluation function for multi-hierarchical
XML. Let � � ������ and let � � � ���. Then for any � � �������, � � � ���.

Theorem 2. [7] For any XML document with a single markup hierarchy, �� � � �,
for any axis � defined for both XPath and Extended XPath, the evaluation of � using
XPath semantics yields the same results as the evaluation of � using Extended XPath
semantics, for any node in �.

4.2 Searching XML documents using Extended XPath

Let us return to the query from Example 1: Find all words that are located completely
in line 23. We consider the set of hierarchies shown in Figure 1: “location” (box (i)),
“structure” (box (ii)) and “condition” (box (iii)). Because <line> and <w> are in dif­
ferent hierarchies and we want words completely inside lines (relationship represented
by the xdescendant axis), the correct Extended XPath expression is: /descen­
dant::line[@no="23"]/xdescendant::w.According to the Extended XPath
specifications, the query is evaluated to the node set: ���� � �� � �� � �� (see the DOM
tree in Figure 2).

Consider now the following query for the same document: Find all words that are
located partially in line 23. This query concerns markup overlap. The correspond­
ing Extended XPath query is /descendant::line[@no="23"]/ overlap-
ping::w. It evaluates to the node set: ���� � �� � �� � ��. To retrieve all words that

1 The latter result is important from the practical point of view: an Extended XPath processor
yields correct results when evaluating XPath expressions for any XML document with a single
markup hierarchy.

mailto:dant::line[@no="23"]/xdescendant::w.According

Algorithm 2: xancestorAlgorithm 1: Extended XPath axis evaluation
XANCESTOR(��� � � � � � � � ������)Input: �� ������ (1) �� � ��� ��� �

Output: � � (2) �� � �� ���� �

(3)	 ��� � � � �� � ������� � �� -EVALUATION(�)
��
�������� ��� � � ������� ����(1)	 �� � �

(4)	 ��� � � � �� � ������� � �(2)	 foreach � � �
��
�������� ��� � � ������� ����(3) �� � � � � � ��������� ��� ����

(5)	 � � ��� � � � ��� � �
(4)return ��

(6) return �

Algorithm 3: xdescendant Algorithm 4: following- overlapping
XDESCENDANT(��� � � � � � � � ������) FOLLOWING-OVERLAPPING(��� � � � � � � � � �� ���)
(1)	 �� � ��� ��� � (1) �� � ��� ��� �
(2)	 �� � ��� ��� � (2) �� � �� ���� �
(3)	 ��� � � � �� � ������� � � (3) �� � ��� ��� �

��
�������� ��� � � ������� ���� (4) ��� � � � �� � ������� � �
(4)	 ��� � � � �� � ������� � � ��
�������� ��� � � ������� ����

��
�������� ��� � � ������� ���� (5) ��� � � � �� � ������� � �
(5)	 ��� � � � ������

������ ��� � ��
�������� ��� � � ������� �����

���
�������� ��� � ���
��������� ���� � (6) ��� � � � �� � ������� � �
������� ����	 ��
�������� ��� � � ������� ����

(6)	 � � ��� � � � ���� � � � ��� � �� (7) � � ���� � � � ��� � �� � ��� � �

(7)	 return � (8) return �

Fig. 3. Algorithms for evaluation of Extended XPath axes.

occur in line 23, the following Extended XPath query can be used: /descendant::w

[xancestor::line[@no="23"] or overlapping::line[@no="23"]].

4.3 Algorithms for XPath axis evaluation

Polynomial time evaluation algorithms for XPath queries, using DOM representation of
an XML Document, are given in [8, 9]. An algorithm that evaluates XPath axes in linear
time (in the size of nodes in the input XML document) is also given in [9]. Similar tech­
niques can be used for evaluating the Extended XPath axes child, parent, descendant,
descendant-or-self, ancestor, ancestor-or-self, following-sibling, preceding-sibling, fol­
lowing, and preceding. The only difference is a node filtering operation, that is, selecting
only nodes in a given hierarchy. This can be easily implemented using a hash function,
so the overall evaluation is still linear. We also point out that evaluation of self can
be directly carried out using the id reference (ID and IDREF) mechanism provided by
XML [5] and the DOM API [4].

In Figure 3 we give the algorithms for evaluating xancestor, xdescendant, and following-
overlapping. Note, that the semantics of the Extended XPath axes as described in Sec­
tion 4.1 is given for a single DOM node. In reality, when evaluating an XPath query
(see Section 3), at each location step a node set is computed and this node set is used as
the the context for the next location step.

1

2

4 Ex ended XPath axes evaluat on: xdescendant and overlapping x 10
2 5 Extended XPath evaluation for dif erent query lengths

1 000

12000

10000
1 5

8000

6000

0 5

000

0
0 50 100 150 200 250 300 2000350 00 50 500 1 2 3 5 6 7 8

F le size [thousand nodes] XPath locat on steps

Fig. 4. Results of testing FragXPath.

5 Experiments

Using the semantics described in the paper, we have fully implemented and Extended
XPath processor for fragmented XML document (FragXPath). FragXPath is a main-
memory processor. Below we show the results of a few tests we used to test FragX-
Path. The tests were run on a Dell GX240 PC with 1.4Ghz Pentium 4 processor and
256 Mb main memory running Linux. We generated XML files with multple hierarchies
(we use 2,4, and 6 hierarchies). In Figure 4 we report the results of two tests.

The first graph shows the results of testing xdescendant and overlapping
axes, which extend traditional XPath, over fragmented XML documents with 4 hierar­
chies. We used fragmented XML documents with sizes ranging from 50,000 to 500,000
nodes and from 1MB to 45MB size on disk. We used the following Extented XPath
queries in our experiments: /descendant::page//overlapping::* and
/descendant::page/xdescendant::*.

The second graph shows the dependence of evaluation time on the number of lo­
cation steps in the query (each query consisted of /overlapping::* location step
repeated for 1,2,. . . 8 times) and on files with 2,4, or 6 hierarchies and 50,000, 65,000,
and 80,000 nodes respectively. As expected, the graph presented in Figure 4 shows
linear time complexity on the query size.

Finally, we compared the work of FragXPath with the work of two widely available
XPath processors, Xalan and Dom4j on comparable workloads. While direct compar­
ison of FragXPath to XPath processors is not possible – the expressive power of the
languages is different, we should expect FragXPath to spend about the same time as an
XPath processor searching for comparable information in the same DOM tree.

Processor/Number of steps 1 4 8

� ����� ��� 1208[ms] 1279[ms] 1284[ms]
� ���� 1590[ms] 1630[ms] 1632[ms]
����� 1336[ms] 1636[ms] 1640[ms]

Table 1. XPath processors comparison.

T
im

e
[m

s]

xdescendant
overlapping

T
im

e
[m

s]

2 h erarchies (50,000−node XML document)
 h erarchies (65,000−node XML document)

6 h erarchies (80,000−node XML document)

Table 1 shows the times for all three processors for queries consisting of 1, 4, and 8
location steps of the form /descendant-or-self::*. FragXPath performs in the
same time range as the XPath processors (it is actually faster, but we emphasize, the it
is incorrect to say that FragXPath works better than Xalan or Dom4j).

6 Conclusions

Processing of XML with multiple hierarchies has attracted the attention of numerous
researchers recently. In [10] we survey the state-of-the-art in the area. Jagadish et al.
have considered similar poblem for data-centric XML and proposed the so-called col­
orful XML to implement multiple hierarchies[11]. In this paper we consider one specific
legacy case, stemming from the text encoding community, when XPath semantics needs
to be redefined and extended, in order to support efficient querying. Our implementation
is faithful to the original XPath semantics, and is immediately applicable to processing
queries over the multitude of legacy text encodings prepared using the fragmentation
technique. Our current and future work is on considering other legacy cases and also on
building a unified framework for processing multihierarchical XML.

References

1. Sperberg-McQueen, C.M., Burnard, L., (Eds.):	 Guidelines for Text Encoding and Inter­
change (P4). http://www.tei-c.org/P4X/index html (2001) The TEI Consortium.

2. Renear, A., Mylonas, E., Durand, D.: Refining our notion of what text really is: The prob
lem of overlapping hierarchies. Research in Humanities Computing (1993) (Editors: N. Ide
and S. Hockey).

3. Boethius, A.M.S.: Consolation of philosophy. (Alfred The Great (translator), British Library
MS Cotton Otho A. vi) Manuscript, folio 36v.

4. Champion, M., Byrne, S., Nicol, G., Wood, L., (Eds.):	 Document Object Model (DOM)
Level 1 Specification. http://www.w3.org/TR/REC-DOM-Level-1/ (1998) World Wide Web
Consortium Recommendation, REC-DOM-Level-1-19981001.

5. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F., Cowan, J., (Eds.): Ex­
tensible Markup Language (XML) 1.1. http://www.w3.org/TR/2004/REC-xml11-20040204
(2004) W3C Recommendation 04 February 2004.

6. Clark,	 J., DeRose, S.: XML Path Language (XPath) (Version 1.0).
http://www.w3.org/TR/xpath (1999) W3C, REC-xpath-19991116.

7. Dekhtyar, A., Iacob, I.E., Methuku, S.: Searching Multi-Hierarchical XML Documents: the
Case of Fragmentation. Technical Report TR 439-05, University of Kentucky, Department
of Computer Science (2005) http://www.cs.uky.edu/�dekhtyar/publications/TR439-05.ps.

8. Gottlob, G., Koch, C., Pichler, R.: XPath query evaluation: Improving time and space efi­
ciency. In: Proceedings of the ICDE, Bangalore, India. (2003) 379–390

9. Gottlob, G., Koch, C., Pichler, R.:	 Efficient algorithms for processing XPath queries. In:
Proc. of VLDB, Hong Kong (2002)

10. Dekhtyar, A., Iacob, I.E.: A Framework for Management of Concurrent XML Markup. Data
and Knowledge Engineering 52 (2005) 185–208

11. Jagadish, H.V., Lakshmanan, L.V.S., Scannapieco, M., Srivastava, D., Wiwatwattana, N.:
Colorful XML: One Hierarchy Isn’t Enough. In: Proc., ACM SIGMOD. (2004) 251–262

