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Abstract The simple concept of a SIC poses a very deep problem in algebraic number
theory, as soon as the dimension of Hilbert space exceeds three. A detailed description
of the simplest possible example is given.

Keywords Equiangular lines · SIC-POVMs · Number theory

1 Introduction to the SIC Existence Problem

Physicists rarely care about numbers; that is to say, they rarely care about the nature
of numbers. Indeed, they routinely and unquestioningly rely on the real number sys-
tem. Still, doubts are sometimes expressed. Thus, Schrödinger referred to quantum
mechanics as a “makeshift”, because it seemingly does not at all challenge the notion
of the continuum [1]. Be that as it may, there is an easily formulated quantummechan-
ical question forcing us to come directly to grips with a major unsolved problem
concerning numbers.

The question arose very naturally in the context of quantum state tomography,where
an informationally complete and symmetric POVMwould be a desirable thing to have
[2], and even earlier from a highly original mathematical perspective on quantum
theory [3]. It also appears in classical signal processing; in fact there is an engineering
side of the question, althoughwhy this is sowill not bemade evident here. The question
is: in a complex Hilbert space of d dimensions, can one find d2 vectors |ψI 〉 such that
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|〈ψI |ψJ 〉|2 =
{
1/(d + 1) if I �= J
1 if I = J

? (1)

Such a collection of vectors, if it exists, is known as a SIC [4]. SICs are also known as
maximal equiangular tight frames, as minimal complex projective 2-designs, and—no
doubt—under many other names.

Numbers can be added and multiplied to form new numbers. Indeed they form
sets, known as fields, that are closed under addition, subtraction, multiplication, and
division. A standard example is the field of rational numbers Q, which is generated
from the integers by applying thefield operations. Everyfield having an infinite number
of elements containsQ as a subfield. Examples include the real number fieldR (against
which Schrödinger expressed his reservations) and the complex number field C. The
ancient Greeks (in particular, Eudoxos) gave a definition of the real numbers, but they
also payed particular attention to a smaller extension of Q, consisting of numbers
that can be geometrically constructed using ruler and compass. Algebraically this
corresponds to the requirement that all the numbers that occur are given in terms of
nested square roots of rational numbers. This number field turned out to be too small
for some purposes, for instance one needs the cube root 3

√
2 in order to duplicate the

cube. More generally we can consider fields built using nested radicals, including
cube roots, quartic roots, and so on. During the Italian Renaissance there was a race to
express the solutions of polynomial equations in terms of radicals, but it was eventually
shown by Abel and Galois that this is not possible in general. The lesson learned from
this brief excursion into history is that the choice of the number field depends on the
particular task one is facing.

The question is: what number field is needed to construct SICs? A conjectural,
but precise and highly remarkable, answer is now available [5]. Our purpose here is
to describe this answer using the simplest non-trivial example, where almost all the
calculations can be done with pencil and paper.

2 Introducing the Weyl–Heisenberg Group

If d = 2 the SIC existence question is trivial. Moreover, the vectors being sought
are then always fully determined by a complete set of mutually unbiased bases, in a
geometrically natural way. Although it is considerably harder to see (one will have
to read several papers in order to patch a proof together [6–9]), this statement holds
also when d = 3. Numerically, SICs have been found in every dimension where they
have been looked for (this includes all dimensions d ≤ 121, and a few more [10,11]),
but no existence proof has been found, and beyond three dimensions it is very hard to
see an underlying pattern in the solutions. Yet closer inspection reveals that there is
a pattern also when d ≥ 4. This pattern, so far as it is understood, resides in number
theoretical properties of exact solutions for SICs [5,12], and the simplest non–trivial
example occurs when d = 4.

To see how exact solutions can be obtained, we first take note of the fact that all
known SICs (with one exception) form orbits under the Weyl–Heisenberg group, a
discrete group first brought into quantum mechanics by Weyl [13]. For d ≤ 3 it has
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been proved that every SIC arises in this way [7,8], and for all prime d that the Weyl–
Heisenberg group is the only possible group [14]. (The exception is generated, when
d = 8, by another group. Like so many exceptional structures it is related to octonions
[15], and here we will assume that it can be left aside as a curiousity.)

The Weyl–Heisenberg group, and the notation we use for it, need a few words of
introduction. It is generated by two unitary operators that can be represented as

Z |r〉 = ωr |r〉 , X |r〉 = |r + 1〉 . (2)

Thebasis vectors are labelled by integersmodulod, and the phase factorω is a primitive
dth root of unity. It is convenient to introduce yet another phase factor τ = −eiπ/d

[16], and to define the displacement operators

Di, j = τ i j X i Z j , 0 ≤ i, j < d . (3)

An orbit under the Weyl–Heisenberg group is obtained by specifying a fiducial vector
|ψ0〉, and by forming the d2 vectors

|ψi, j 〉 = Di, j |ψ0〉 . (4)

If we require that this orbit forms a SIC, Eq. (1) turn into a set of multivariate polyno-
mial equations for the components of the fiducial vector and their complex conjugates.
With high probability, every solution is known numerically for d ≤ 50 [10], and every
numerical solution is known exactly for d ≤ 21 [10,17]. In addition, some exact
solutions are known in higher dimensions. Beyond three dimensions the solutions are
isolated, which means that the components are given by algebraic numbers, that is by
roots of polynomials with integer coefficients. It is the precise nature of these numbers
that is so surprising.

To get these numbers out into the open, in a representation independent way, we
proceed a little differently. A key property of the Weyl–Heisenberg group is that it
forms a unitary operator basis, which means that any operator on Cd can be expanded
in terms of the displacement operators [18]. In particular, so can the projector |ψ0〉〈ψ0|.
Thus

|ψ0〉〈ψ0| = 1

d

d−1∑
i, j=0

D†
i, jTr

(|ψ0〉〈ψ0|Di, j
) = 1

d

d−1∑
i, j=0

D†
i, j 〈ψ0|Di, j |ψ0〉 . (5)

It follows that the SIC fiducial can be reconstructed, uniquely up to an irrelevant phase,
from the d2 − 1 phase factors

eiθi, j = √
d + 1〈ψ0|Di, j |ψ0〉 , (i, j) �= (0, 0) . (6)

The number of independent phase factors is diminished by the symmetries possessed
by the SIC, and these can be gleaned from the numerical solutions.
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In the simplest non–trivial example, d = 4, the symmetries of the SIC restrict the
overlap phases to be

⎡
⎢⎢⎣

× eiθ0,1 eiθ0,2 eiθ0,3

eiθ1,0 eiθ1,1 eiθ1,2 eiθ1,3

eiθ2,0 eiθ2,1 eiθ2,2 eiθ2,3

eiθ3,0 eiθ3,1 eiθ3,2 eiθ3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

× u −1 1/u
u 1/u −1/u 1/u

−1 −u −1 1/u
1/u u u u

⎤
⎥⎥⎦ . (7)

Thus there is only one independent number u. Once this number is known, the entire
SIC can be reconstructed from Eq. (5). For all d > 4 there are several independent
numbers.

When d = 4 the calculations needed to compute the phase factors eiθi, j , starting
from scratch by solving Eq. (1) for a fiducial vector |ψ0〉, can be done by hand. Quite
easily in fact; this was described in a previous Växjö talk [19]. Here we simply quote
the result, which is that one verifies the claims made so far, and moreover one finds
that

u =
√
5 − 1

2
√
2

+ i
√√

5 + 1

2
. (8)

Now the claim is that there is the beginning of a pattern here, and a connection to a
major unsolved problem in mathematics, that of finding numbers generating certain
interesting number fields. This beginning, and this connection, are revealed once we
understand the nature of the number u.

3 The Number Field of the Example

Our first concern is to determine the smallest number field to which the number u
belongs. Call it Q(u), since it is an extension of the rational numbers. We will freely
use the fact that the number field we are looking for is a subfield of the complex
numbers. This gives the enterprise a concrete flavour, and simplifies some statements
compared to those found in textbooks.

Starting from u, we immediately conclude that −u, 1/u, and −1/u also belong to
the field. So does the number

x ≡ u + 1/u =
√
5 − 1√
2

. (9)

In some ways x is more manageable than u itself, which is related to the fact that
it is symmetric under exchanges u ↔ 1/u. Going on in this way, we notice that

√
5 = 3 − (u + 1/u)2 (10)

√
2 = −1

2
(u + 1/u) (u − 1/u)2 (11)

i

√√
5 + 1 = u − 1/u . (12)
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So these three numbers are in the field Q(u). Clearly u can be obtained
from them, which means that the field can be equivalently written as Q(u) =
Q(

√
5,

√
2, i

√√
5 + 1). Indeed the latter three generators of the field were used in

the early references [10,12]. However, the field is not yet large enough to contain the
number i , or the number τ = −(1+ i)/

√
2 that appears in the reconstruction formula

(5). We definitely want to extend our number field so that the number τ is included.
And we want to do so in a principled way. This means that Galois theory must come
into play.

Introductions to Galois theory, of book length [20] or less than that [21], are readily
available, but to really appreciate them one should look at a non-trivial example first—
such as the one we are concerned with here. First we ask Mathematica for theminimal
polynomial, with coefficients among the integers, of the algebraic number u. Minimal
polynomials of degree n always have n distinct roots, otherwise they would not be
minimal (that is, have the lowest possible degree). Mathematica gives the minimal
polynomial for u after only a moment’s hesitation. It is of degree 8:

p1(t) = t8 − 2t6 − 2t4 − 2t2 + 1 . (13)

This means that our fieldQ(u) can be regarded as a vector space over the rationals, of
dimension 8, since we will perform our calculations modulo the equation p1(u) = 0.
For instance

1/u = (1 − p1(u))/u = 2u + 2u3 + 2u5 − u7 . (14)

Every element in the field can be expressed as a polynomial in u of a degree not
exceeding seven. In general the dimension of a field, such as Q(u), considered as a
vector space over its ground field, in this caseQ, is called its degree. So the conclusion
so far is that

{Q(u) : Q} = 8 , (15)

where we used standard notation for the degree of an extension field relative to its
ground field. More information about the field can be obtained by studying its auto-
morphisms, that is to say mappings of the field onto itself which respect the field
operations, and which leave the ground field (in this case the rationals) invariant. This
group is known as theGalois group of the field; whenGalois first studied it he regarded
it as the group that permutes the roots of the minimal polynomial. The order of the
Galois group equals the degree of the extension.

The leading coefficient of our minimal polynomial equals 1, and it is a palindromic
polynomial, in an obvious sense. The first property implies that u is an algebraic
integer (by definition), and the second property implies that 1/u is another root of
same polynomial. It follows that both u and 1/u are algebraic integers. Therefore
(again by definition) u is an algebraic unit. Another peculiarity of our polynomial is
that only even powers appear in it, meaning that the phase factors −u and −1/u are
roots of the polynomial too.

To complete the list of phase factors appearing in Eq. (7) we also need the number
−1. It is a root of the polynomial p0(t) = t + 1, whose leading coefficient is again
1. Therefore −1 is an algebraic integer too, and because p0(t) is palindromic it is an
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algebraic unit as well. In this context we call it a ‘baby unit’. Every phase factor in
Eq. (7) is an algebraic unit.

Actually, the observational evidence is that the minimal polynomials of the SIC
phases are always palindromic, for all d [5]. This granted, it is easy to work out the
minimal polynomial p1(t) by hand. First we find the minimal polynomial for the
number x = u + 1/u, namely

px (t) = t4 − 6t2 + 4 . (16)

Thus x is an algebraic integer, but it is not a unit. Now we use the fact that whenever
the minimal polynomial p2n of an algebraic number z is a palindromic polynomial of
degree 2n, it can be obtained as

p2n(t) = tn pn(t + 1/t) , (17)

where pn(t) is the minimal polynomial of the number z + 1/z.
But in defining the field Q(u) we seem to have stopped half-way: we are not able

to express all the roots of the minimal polynomial. We have to resolve this in order to
bring the full power of Galois theory into the play. Thus we are looking for a normal
extension of Q allowing us to split the polynomial, that is to say we need to include
all its roots in a field which will be larger than just Q(u). Because the polynomial is
palindromic and depends only on even powers we know that a full factorization must
take the form

p1(t) = (t − u)(t + u)(t − 1/u)(t + 1/u)(t − r)(t + r)(t − 1/r)(t + 1/r) , (18)

for some algebraic unit r . (It is a unit by construction.)Writing this out leads to a second
degree polynomial equation for r2 with coefficients in the field Q(u), which we can
solve. But we can also simply guess the solution. From Eq. (10) it is evident that

√
5

will be left invariant when we permute the roots that we have so far. This suggests that
it should go to −√

5 under the exchange u ↔ r . If so, r can be obtained by changing
the sign in front of

√
5 in the expression for u. If we perform the replacements

√
5 → −√

5 , i

√√
5 + 1 → −

√√
5 − 1 (19)

we find that

r = −
√
5 + 1

2
√
2

−
√√

5 − 1

2
. (20)

We obtain 1/r by changing the sign in front of the second term. A direct calculation
confirms that r is a root of p1.

It is even easier to show that

(u + 1/u) (r + 1/r) = −2 . (21)

(u − 1/u) (r − 1/r) = −2i . (22)

In particular this gives the desired expression for i = i(u, r).
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Now r is obviously a root of

t2 − (r + 1/r)t + 1 = t2 + 2

u + 1/u
t + 1 = 0 . (23)

Hence the minimal polynomial for r , with coefficients in Q(u), is

p2(t) = t2 + 2

u + 1/u
t + 1 = t2 +

√
5 + 1√
2

t + 1 . (24)

This is a second order polynomial, which means that the degree of the extension
from Q(u) to Q(u, r) is 2.

The situation so far is that we have the number fields F1 = Q(u) and F2 = F1(r) =
Q(u, r). The latter field is a splitting field of the minimal polynomial of u, since the
polynomial admits eight roots over F2. The degrees of these extensions are

{F1 : Q} = 8 , {F2 : F1} = 2 , {F2 : Q} = 2 · 8 = 16 . (25)

The degree is always multiplicative. As a vector space over Q the field F2
appears as a tensor product, with a basis consisting of the sixteen monomials
1, u, . . . , u7, r, ru, . . . , ru7.

The order of the Galois group equals the degree of the extension, and this group
permutes the roots of the polynomials that were used to define the field. The story
becomes particularly simple when the extension is normal. If all the roots of the
degree 8 polynomial had been in the field obtained by adjoining one of its roots, the
extensionwould have been already normal, and the Galois groupwould have had order
8. On the other hand we might have found only one root in the first step, and would
then have been left with an irreducible polynomial of order 7. The second extension
would then have had degree 8·7 over the field of rationals. In theworst case scenario an
extension of degree 8! would be needed to split the polynomial, and the Galois group
would then be the symmetric group S8. Our Galois group must have the comparatively
modest order 16.

Three generators of our Galois group G can be written down immediately. With an
eye on the polynomial p2(t), we find them to be

g1(u) = 1/u g1(r) = r (26)

g2(u) = −u g2(r) = −r (27)

g3(u) = u g3(r) = 1/r . (28)

All three generators have order 2, and together they form an abelian group of order
8. Let us call it H . We need an additional element with the property that g4(u) = r .
To see what it does to r we note that

g4(p2) = g4(r)
2 + 2

r + 1
r

g4(r) + 1 = g4(r)
2 −

(
u + 1

u

)
g4(r) + 1 = 0 , (29)
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where Eq. (21) was used. One solution is g4(r) = u, so we choose the fourth generator
as

g4(u) = r g4(r) = u . (30)

It is easily seen that g2g4 = g4g2, which means that g2 belongs to the centre of
the group. In fact G = Z2 × D8, where D8 is a non-abelian group of order 8, easily
identified with the dihedral group if we observe that g1g4 and g3g4 are of order 4.

Recall that D8 is the symmetry group of the square. However, we do not need to
know this. The useful way to look at the structure of the group G is to observe that the
abelian group H is a normal subgroup since

g4g1g
−1
4 = g3 , g4g2g

−1
4 = g2 , g4g3g

−1
4 = g1 . (31)

Hence G/H = Z2, which is abelian. Thus the Galois group is soluble. A group G
is called soluble if it admits a sequence of normal subgroups Hk so that

e = H1 � H2 � H2 � · · · � Hn = G , (32)

where the notation is meant to imply that all the quotient groups Hk/Hk−1 are abelian.
The name “soluble” is chosen because Galois realized that a polynomial equation can
be solved in terms of radicals if and only if its Galois group is soluble. And indeed all
the known SIC fiducials, although they have a complicated appearance, do share this
remarkable feature [10].

The Galois group we have arrived at admits the very short sequence

e � H � G . (33)

A soluble group cannot have a shorter sequence of normal subgroups without actu-
ally being abelian. Similarly short sequences appear also for SICs beyond d = 4
[10,12].

But we return to our example. The action of the generators of the group, on the
numbers we have discussed, is worked out using Eqs. (10), (11), and (22). A modest
amount of extra work is needed for the action of g4. The result is given in Table 1. It
is interesting to observe that the generator g1 effects complex conjugation.

It is very interesting to observe that the subfield Q(
√
5) is left invariant by all

transformations belonging to the subgroup H . Hence the abelian group H is the
Galois group of the field considered as an extension of Q(

√
5). This makes the field

Table 1 The generators of the
Galois group, and how they act u r

√
5

√
2 i

√
1 + √

5 i τ

g1 1/u r
√
5

√
2 −i

√
1 + √

5 −i 1/τ

g2 −u −r
√
5 −√

2 −i
√
1 + √

5 i −τ

g3 u 1/r
√
5

√
2 i

√
1 + √

5 −i 1/τ

g4 r u −√
5 −√

2
√√

5 − 1 i −τ
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Q(
√
5)

Q(
√
5,

√
2)

Q(u) Q(r)

Q(u, r)

�
��

�
��

Fig. 1 Left the lattice formed by the field inclusions.Right the algebraic units we have discussed, embedded
in the complex plane. On the unit circle we find the phase factor u and its relatives, as well as the baby unit
−1. On the real axis outside the unit circle we find r and its relatives

an abelian extension of the real quadratic fieldQ(
√
5). The field ER = Q(

√
5,

√
2) is

totally real, in the sense that every embedding of this field intoC is real. This field can
be extended to eitherQ(u), which contains the overlap phases, or toQ(r), and the two
of them are related by the automorphism g4 when regarded as subfields of Q(u, r),
which is the field needed to construct the SIC projectors. Judging from the way the
various patterns recur in higher dimensions [5,12], the correct way of looking at the
fields we have encountered is as given in Fig. 1.

4 Some Further Results I was Told About

We have reached the conclusion that the SIC phases are units in an interesting field.
Now the set of units in a given field form a multiplicative unit group, and it is natural
to ask how the SIC phases are positioned within that group.

There are algorithms for computing generators of unit groups, but we have to take
leave of pencil and paper methods at this point. A computer algebra package such
as Magma or Sage is needed for the calculation. For the field F1 = Q(u) the unit
group is Z2 × Z × Z × Z × Z × Z . The finite subgroup Z2 is known as the torsion
subgroup, and evidently consists of the units ±1. A possible set of generators of the
infinite factors is [22]

u(1) = 1 + √
2 u(2) = i

√√
5+1√
2

u(3) =
√
5−1
2
√
2

+ i
√√

5+1
2 u(4) =

√
5−1√
2

+ 3−√
5

2
i
√√

5+1√
2

u(5) = u(2) + u(3) .

(34)

Their minimal polynomials are of degree 2, 4, 8, 8, and 8. The generator u(1) is the
fundamental unit in the quadratic fieldQ(

√
2), while −u2(2) is the fundamental unit in

Q(
√
5). The generators u(3) and u(4) are complex phase factors.

Remarkably, u(3) is equal to the SIC phase u. Hence the SIC phase has a very
special position inside the unit group. Unfortunately, for the fields arising from SICs,
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the unit group is known only in a handful of cases [5]. The size of the calculation
grows quickly with the field—in fact calculating unit groups is one of those problems
for which the best known algorithm demands a quantum computer [23].

5 How the Example Generalizes

In one sense, our example does not generalize at all: in no other case, except possibly
for one of the two SIC fiducials in dimension 8, can the analogous calculations be
done by hand. However, this is a practical difficulty, not a conceptual one, and, using
computer algebra packages, quite a bit of progress has been made. It is found [12],
quite generally, that SICs give rise to fields that are abelian extensions of the real
quadratic fields Q(

√
D), where

D = (d − 3)(d + 1). (35)

(Any square factor is irrelevant, and can be divided out). Choosing d > 3 appropriately,
abelian extensions of every real quadratic field occur in the SIC problem, and the SIC
phases provide generators for their unit groups. A main point, emerging from recent
work [5], is that we now have a precise description of the relevant extensions. In all
known examples they are ray class fields with conductor d (or 2d if d is even), or
extensions thereof. These words carry deep meaning for algebraic number theorists.
The most familiar example of a conductor is the integer n in the phase factor e2π i/n ,
when the rational field is extended to the cyclotomic fieldQ(e2π i/n). Cyclotomic fields
house themost general abelian extensions ofQ, and their conductors tell us how they fit
together. Considering abelian extensions of the imaginary quadratic fields Q(

√−D)

one is led to replace the exponential function with special functions defined on suitable
elliptic curves. It seems that, if we want to deal with abelian extensions of the real
quadratic fieldQ(

√
D), SICs provide very valuable insights. Some of the details, and

how they relate to Kronecker’s Jugendtraum and to Hilbert’s unsolved 12th problem
[24], are described in a contribution to this issue by Appleby et al. [25].

Coming back to the question whether SICs exist in all dimensions, if we knew the
field and its unit group, and if we had enough information about the position of the
SIC phases within the unit group, the question might not look so formidable anymore.

Finally, the reader may well ask for the physical significance of all this. The answer
is not known. But the idea that quantum theory unquestioningly accepts the continuum
has been effectively contradicted: on the contrary, elementary quantum theory seems to
know about some of the deepest discrete structures hidden inside the continuum. This
suggests that any challenge to the continuum has to go through quantum mechanics,
not around it.
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