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Abstract
Purpose Global climate change (GCC), especially global
warming, has affected the material cycling (e.g., carbon,
nutrients, and organic chemicals) and the energy flows of
terrestrial ecosystems. Persistent organic pollutants (POPs)
were regarded as anthropogenic organic carbon (OC)
source, and be coupled with the natural carbon (C) and
nutrient biogeochemical cycling in ecosystems. The objec-
tive of this work was to review the current literature and
explore potential coupling processes and mechanisms be-
tween POPs and biogeochemical cycles of C and nutrients
in terrestrial ecosystems induced by global warming.
Results and discussion Global warming has caused many
physical, chemical, and biological changes in terrestrial
ecosystems. POPs environmental fate in these ecosystems
is controlled mainly by temperature and biogeochemical
processes. Global warming may accelerate the re-
emissions and redistribution of POPs among environmental
compartments via soil–air exchange. Soil–air exchange is a
key process controlling the fate and transportation of POPs
and terrestrial ecosystem C at regional and global scales.
Soil respiration is one of the largest terrestrial C flux in-
duced by microbe and plant metabolism, which can affect

POPs biotransformation in terrestrial ecosystems. Carbon
flow through food web structure also may have important
consequences for the biomagnification of POPs in the eco-
systems and further lead to biodiversity loss induced by
climate change and POPs pollution stress. Moreover, the
integrated techniques and biological adaptation strategy
help to fully explore the coupling mechanisms, functioning
and trends of POPs and C and nutrient biogeochemical
cycling processes in terrestrial ecosystems.
Conclusions and perspectives There is increasing evidence
that the environmental fate of POPs has been linked with
biogeochemical cycles of C and nutrients in terrestrial eco-
systems under GCC. However, the relationships between
POPs and the biogeochemical cycles of C and nutrients
are still not well understood. Further study is needed to
explore the coupling mechanisms of POP environmental
fate and C biogeochemical cycle by using the integrated
techniques under GCC scenario and develop biological
and ecological management strategies to mitigate GCC
and environmental stressors.

Keywords Biogeochemical cycles ofcarbon . Global climate
change . Persistent organic pollutants . Terrestrial ecosystems

1 Introduction

Global climate change (GCC), especially global warming, is
unequivocal. The linear warming trend over the 50 years
from 1956 to 2005 (0.13°C per decade) is nearly twice that
for the 100 years from 1906 to 2005 and atmospheric carbon
dioxide (CO2) annual emissions have grown between 1970
and 2004 by about 80% (IPCC 2007). Global warming has
caused many physical, chemical, and biological changes in
terrestrial ecosystems (e.g., flooding, drought, wildfires,
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insects, ice cap melting, sea level rise, species extinction)
(Blum 2005; Running 2006; Kerr 2007; Turner et al. 2009;
Xu et al. 2009; Schenker et al. 2010; Hoffmann and Sgrò
2011; Schmid et al. 2011). Like GCC, the environmental
pollution by persistent organic pollutants (POPs) is an issue
of global concern (Lamon et al. 2009). POPs are chemical
substances that persist in the environment, bioaccumulate
through the food web, and pose a risk of causing adverse
effects to human health and ecosystems (UNEP 2005). Each
POP has a long-range transportation potential in air and/or
water and can bioaccumulate in lipid-rich tissues of the biota
and biomagnify through terrestrial and aquatic food chains
(Ma et al. 2004). Hence, POPs have a potential adverse
impact on higher trophic animals in terrestrial and coastal
systems (Olsson et al. 2000; Christensen et al. 2005;
Kucklick et al. 2011) and on human health (Arnot et al.
2011). Moreover, with the intensification of global warm-
ing, an increase in POPs levels has been found in environ-
mental compartments because of the release from
environmental reservoirs such as soil, water, and ice (Nizzetto
et al. 2010; Ma et al. 2011). These higher emissions induced
by GCC would increase the vulnerability of exposed organ-
isms including humans through the food chain and lead to
greater adverse effects on human health and terrestrial ecosys-
tems (Cousins et al. 2010). POPs pollution induced by GCC
has recently attracted political concern and significant atten-
tion. Last year, the United Nations Environment Programme
(UNEP) Stockholm Convention has announced a major inter-
national study on the influence of GCC and POPs on human
health and the environmental ecosystem.

Terrestrial ecosystems can control and steer the Earth sys-
tem and respond strongly to GCC (Heimann and Reichstein
2008; Arnone et al. 2008; Piao et al. 2009; Singh et al. 2010).
The net exchange of C between the terrestrial biosphere and
the atmosphere is the difference between C uptake by plant
photosynthesis and releases by plant or ecosystem respiration,
soil respiration, and disturbance processes such as fire, land
management, and land-use change (IPCC 2007). The C bio-
geochemical cycling is a key coupling point between terres-
trial ecosystems and the climate system (Cao and Woodward
1998a, b; Falkowski et al. 2000; Xu and Chen 2006; Chen and
Xu 2010). Therefore, GCC can have significant impacts on
the structure and function of terrestrial ecosystems (Root et al.
2003; Williams et al. 2004). Some studies have shown that the
C biogeochemical cycling under high CO2 concentrations is
further drived and/or limited by nutrient availability and hy-
drological cycle (Schimel et al. 1997, 2001; Körner et al.
2005; Oki and Kanae 2006; Chen and Xu 2006, 2008; Wentz
et al. 2007; Jung et al. 2010). Thus, the question is how POPs,
as anthropogenic organic C sources from fossil-fuel emissions
and chemicals, are coupled with the natural C and nutrient
biogeochemical cycles in terrestrial ecosystems. Here, we
advance some hypotheses on the potential coupling process

and mechanisms between POPs and biogeochemical cycles of
C and nutrients (Fig. 1), review the current literature in this
area, and make some suggestions for further study.

2 POPs distribution and biogeochemical cycles of C
and nutrients

Some studies have indicated that GCC would likely increase
the exposure of the environment and ecosystem to POPs
(MacLeod et al. 2005; Lamon et al. 2009; Ma and Cao
2010). POPs are widely distributed among the environmen-
tal compartments (i.e., air, soils, vegetation, water bodies,
sediments, ice) of terrestrial ecosystems. Under the direct
influence of GCC, POPs environmental fate has been un-
dergoing significant changes and is controlled mainly by
temperature and biogeochemical processes (Valle et al.
2007; Ma and Cao 2010; Nizzetto et al. 2010). Increasing
temperature enhances volatilization and therefore leads to
increased emissions into air (Lamon et al. 2009; Gioia et al.
2011). Global warming also increases the frequency of
extreme events such as melting ice, storms, floods, and
forest fires (IPCC 2007). Extreme weather events have a
distinct impact on the remobilization and subsequent bioav-
ability of POPs (Schenker et al. 2010; Schmid et al. 2011).
Flooding events occur frequently in some regions and may
significantly contribute to re-emissions and redistribution of
POPs formerly stored in the sediments and agricultural soils
(Holoubek et al. 2007; Pulkrabova et al. 2008; Noyes et al.
2009; Bogdal and Scheringer 2010). Biomass burning is an
important linkage point between POPs and biogeochemical
cycles of C and nutrients in terrestrial ecosystems affected
by GCC. It not only can convert plant and soil organic
matter to CO2 (Kasischke et al. 1995; Westerling et al.
2006; Marlon et al. 2009; Turetsky et al. 2011; Zhang et
al. 2011) but also can cause the emission of particulate
matter and other gaseous pollutants such as CO, SOx,
NOx, volatile organic compounds, and POPs (Chi et al.
2010; Grandesso et al. 2011).

The coupling of the OC and organic contaminant fluxes
and budget in the global environment was recently
addressed as one key scientific issue (Nizzetto et al. 2010).
The biogeochemical cycles of POPs and OC may be linked
in various ways (e.g., soil or sediment particles, soil–air
exchange, plant accumulation, soil respiration, etc.) (Ver et
al. 1999; Wegmann et al. 2004; Moeckel et al. 2008, 2009).
Organic C pools in terrestrial subsurface layers represent the
major active stores and sources of POPs. Some studies have
shown that dissolved OC strongly affects the sorption and
mobility of organic chemicals (Totsche et al. 1997; Flores-
Cspedes et al. 2002), causing POPs in dissolved and partic-
ulate form to migrate by leaching to water bodies and deep
sediments (Moeckel et al. 2008).
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Global warming may accelerate the release of POPs previ-
ously deposited in environmental media and enhance air–soil
exchange of POPs (Bogdal et al. 2010; Hung et al. 2010).
Soil–air exchange and partitioning are key processes control-
ling the fate and transport of POPs and terrestrial ecosystem C
at regional and global scales (Cabrerizo et al. 2009, 2011).
Terrestrial plants not only fix CO2 as organic compounds
through photosynthesis (Beer et al. 2010), but also sequester
POPs from the atmosphere (McLachlan and Horstmann
1998), and transport them into forest soil C pools, which leads
to the forest filter effect (FFE) (Nizzetto et al. 2008). Some
recent studies investigated the vertical concentration profile of
several global contaminants in the litters and soils, and
showed that the litters represent a significant compartment
for POPs mass balance, and moreover, the mass of POPs
was associated with the active C pool over time (e.g., through
a plant growing season) (Moeckel et al. 2008, 2009). Howev-
er, little is known on the coupling relationship between plant
POPs accumulation and C fixation in terrestrial ecosystems.

Soil respiration is the second largest terrestrial C flux in-
duced by microbe and plant metabolism from the soil surface
to the atmosphere (Bond-Lamberty and Thomson 2010).
However, POPs partition and transformation are usually af-
fected by soil respiration in terrestrial ecosystems. To date,

only few studies have focused on POPs transferring and par-
titioning processes in soil organic and inorganic matrix at the
microscale (Doick et al. 2005). It is worth noting that there are
major uncertainties in the reaction of soil respiration to tem-
perature and soil humidity and how this will affect the capacity
of soils for biodegradation of POPs and OC turnover (Semple
et al. 2007). Therefore, more insights are needed on the dy-
namics of POPs and C biogeochemical cycle to better under-
stand their global and regional fluxes under global warming.

3 GCC affects both POPs and biogeochemical cycles of C
and nutrients through food webs in terrestrial
ecosystems

The food web is essential for maintaining life in the ecosys-
tem, but environmental change affects food-web structure
and ecosystem function (Petchey et al. 1999; Harmon et al.
2009). Ecologists and environmental scientists are now ac-
tively seeking ways to detect the movement of energy,
nutrients, and contaminants through food webs (Elser et al.
2000; Sharpe and Mackay 2000; Kelly and Gobas 2003).
Terrestrial organisms in the food web structure usually act as

Fig. 1 The coupling between persistent organic pollutants (POPs) and biogeochemical cycles of carbon and nutrients in terrestrial ecosystems
under global climate change (GCC)
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“bioreservoirs”, “biovectors”, and “biotransformers” of C,
nutrients, and POPs (Nizzetto et al. 2010). Especially, the
fungus-driven food web has important implications for the
fate of soil organic C in temperate ecosystems under warmer
scenarios (Briones et al. 2009). Changes in the food web
structure may have important consequences for the biomag-
nification of POPs in the food webs. In terrestrial ecosys-
tems, organisms at the top of the food web can adapt to
habitat change and largely alter their exposure to POPs
(Macdonald et al. 2005). Blankenship et al. (2005) found
that the differential accumulation of PCB congeners in the
terrestrial food web can be explained by congener-specific
differences in bioavailability from the soil, exposure path-
ways, and metabolic potential of each of the food web
components. Moreover, biotransportation (i.e., biovectors)
of POPs often occurs and likely being global distributed
because of changes in habitat at various scales (Bustnes et
al. 2006; Evenset et al. 2007).

During bioaccumulation and biotransportation of POPs
through the food web, POPs may be biotransformed by
enzymatic systems into a different chemical species (Borga
et al. 2004; Dang et al. 2010) with enhanced toxicity (Kay et
al. 2005; Noyes et al. 2009), especially under higher tem-
perature. Buckman et al. (2007) observed that rising tem-
perature enhanced biotransformation of PCBs into
toxicologically active hydroxylated PCB metabolites. Thus,
a warmer climate will affect the toxicokinetics of POPs
within organisms in the food web and the biomass turnover
rate of each trophic level and will ultimately disturb the
biogeochemical cycles of C and nutrients in the ecosystems.
Unfortunately, due to a lack of information about ecosys-
tems exposure to POPs under GCC, it is currently difficult
to estimate accurately how GCC may impact wildlife expo-
sure to POPs. Morrissey et al. (2010) used stable isotope and
contaminant analyses to reveal differences in nutrient sour-
ces and contaminant pathways in two species of dipper in
western Canada and western Britain. Di Paolo et al. (2010)
highlighted the importance of including black C (BC) as an
adsorbing phase to study the dynamics of biotransformation
and bioformation of polybrominated diphenyl ethers
(PBDEs) in an estuarine food web. There are large uncer-
tainties concerning how GCC has affected ecosystems food
web structures. Therefore, we will further focus on how
GCC affect the trophic structure and POPs fluxes in the
ecosystems.

4 The vulnerability and adaptation of biodiversity
in terrestrial ecosystems to POPs pollution and GCC
stressors

Biodiversity in terrestrial ecosystems plays a key role in the
maintenance of C and nutrient cycles (Müller et al. 2010;

Nielsen et al. 2011). However, there is a significant increase
in the rate of biodiversity loss induced by GCC and other
environmental stressors such as POPs pollution (Butchart et
al. 2010; Curran et al. 2011; Dawson et al. 2011). Thus,
assessing the vulnerability and possible adaptation of biodi-
versity to environmental changes is necessary to further
understand the biogeochemical cycles of C and nutrients
and their influence on POPs dynamics and to mitigate
GCC effects and POPs pollution. A result by IPCC (2007)
showed that approximately 20% to 30% of plant and animal
species assessed so far are likely to be endangered if
increases in global average temperature exceed 1.5°C to
2.5°C. In some tropical regions characterized by high bio-
diversity, many species may be susceptible to the exposure
of multiple stressors (e.g., GCC, habitat loss and fragmen-
tation and pesticide pollution). More appropriate conserva-
tion actions will result from taking into account all these
aspects of vulnerability. On the other hand, the adaptation of
species takes place through adjustments to reduce vulnera-
bility or enhance resilience in response to GCC and associ-
ated environmental stressor (IPCC 2007). Adaptation is
selective and can take advantage of positive impacts and
reduce negative ones (Goklany 2005), especially biological
adaptation is more effective. Therefore, biological adapta-
tion strategy should be adopted to develop some environ-
mentally friendly management techniques (e.g., biological C
sequestration, bioenergy, bioremediation, namely the “3B”
technique) for enhancing biodiversity and mitigating GCC
and environmental stressor.

Biological C sequestration (BCS) refers to the assimila-
tion and storage of atmospheric CO2 in the vegetation, soils,
woody products, and aquatic environments (Lal 2004; Gitz
et al. 2006), which has the potential to offset the global
fossil fuel emissions. For example, C uptake by forests
contributed to a “residual” 2.6 Pg C year−1 terrestrial C sink
in the 1990s, about 33% of anthropogenic C emissions from
fossil fuel and land-use change (Bonan 2008). Soil C sink
capacity of managed ecosystems approximately equals the
cumulative historic C loss estimated at 55 to 78 Gt (Lal
2004). Furthermore, Jackson et al. (2005) highlight that C
sequestration strategies through tree plantations should be
considering their full environmental consequences. The na-
tional assessment for biological C sequestration in the USA
will be conducted in the course of the next 3–4 years. At the
same time, biofuels are being promoted as an important part
of the global energy needed to reduce fossil fuels use and to
decrease anthropogenic greenhouse gas fluxes (Vuichard et
al. 2009; Barton et al. 2010). Many studies evaluated the C
mitigation potentials of biofuels through cultivation technol-
ogies and ecological vulnerability (e.g., land use change and
biodiversity loss, etc.) (Searchinger et al. 2008; West et al.
2010; Mullins et al. 2011) and compared them to the gen-
erated “carbon debt” when clearing natural ecosystems for
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cultivating biofuels (Fargione et al. 2008). Tilman et al.
(2006) found that biofuels derived from the low-input
high-diversity (LIHD) mixtures of native grassland peren-
nials can provide more usable energy, greater greenhouse
gas reductions, and less agrochemical pollution per hectare
than can corn grain ethanol or soybean biodiesel. Moreover,
biofuels can be produced on agriculturally degraded lands
and thus both protect the habitat of biodiversity and envi-
ronment. In addition, the energy crops used for phytoreme-
diation are attractive (Witters et al. 2011), which could turn
phytoremediation into a profit-making operation. However,
information about phytoremediation applications based on
biological energy is rather limited and we still seldom assess
its biological C sequestration potential in mitigating GCC.

5 Integrated approaches to reveal the coupling
mechanisms between POPs and biogeochemical cycles
of C and nutrients

The development of integrated techniques (e.g., stable iso-
tope, biomarker, modeling, etc.) in terrestrial ecosystem
research is necessary to fully understand the mechanisms,
functioning, and trends of POPs and biogeochemical cycles
of C and nutrients. In the last two decades, stable isotope
techniques have been widely used to study the biogeochem-
ical processes such as C cycle and primary productivity,
nutrient cycling, microbial community functioning, trans-
portation and biodegradation of pollutions, the hydrological
cycle, and terrestrial and aquatic food chain (Näsholm et al.
1998; Pace et al. 2004; Dickhut et al. 2004; Govindarajulu et
al. 2005; Morin et al. 2008). Recent advances in the appli-
cation of molecular genetic approaches have provided an-
other powerful tool to analyze potentially huge microbial
diversity in natural environments (Anderson and Cairney
2004; He et al. 2009; Zhang et al. 2009); however, this
gives no direct information about the biogeochemical pro-
cesses in which microorganisms are active. A combination
of stable isotope probing (SIP) and biomarker-based finger-
printing can be a powerful approach to directly link the C
(13C) biogeochemical process with active specific micro-
organisms groups in natural environments (Boschker et al.
1998; Lu and Conrad 2005; Xu et al. 2009; Sun et al. 2010).
With the 13C-labeled tracers available, nuclear magnetic
resonance (NMR) spectroscopy technique has been increas-
ingly used in ecology, geochemistry, and environmental
science (Mathers et al. 2000; Hedges et al. 2001; Käcker
et al. 2002; Chen et al. 2004; Johnson et al. 2005). These
approaches provide more structural information for biogeo-
chemical cycles of C and organic pollutants in terrestrial
ecosystems, particularly when combined with stable isotope
and bio-molecular techniques. On the other hand, modeling
is very useful to integrally understand and predict the C and

POPs biogeochemical cycling processes at a global and re-
gional scales under GCC (Cao andWoodward 1998a; Thomas
et al. 2005; MacLeod et al. 2005; Lamon et al. 2009), includ-
ing Dynamic Global Vegetation Models (DGVMs), General
Circulation Model (GCM) and Berkeley-Trent Global Multi-
media Mass Balance Model (BETR Global). The environ-
mental fate and transportation of POPs are to some extent
controlled by the C biogeochemical cycle in terrestrial eco-
systems, which should be considered in global C cycle models
in terrestrial ecosystems.

6 Conclusions

There is increasing evidence that GCC has significantly
affected the C and nutrient cycling processes in terrestrial
ecosystems. However, GCC impacts on the environmental
fate and biological effects of POPs are not well understood,
particularly in terms of the relationship between POPs and
biogeochemical cycles of C and nutrients. Therefore, further
research questions should focus on the dynamics of POP
environmental fate and C biogeochemical cycle under dif-
ferent GCC scenarios. These questions would answer how
GCC affects the trophic structure of ecosystems and food
web magnification of POPs, and would address the effects
of multiple stressors on the vulnerability and adaptation of
biodiversity, and the development of integrated techniques
(e.g., stable isotope, biomarker, NMR, modeling, etc.) could
help unravelling the links between POPs and the C cycle. It
is worth pointing out that the hydrological cycle is a key
ecosystem process which drives the C and nutrient cycles
and POPs dynamics under global warming, and therefore
needs to be considered when we study the above mentioned
issues. In addition, developing environmentally friendly
management strategies (“3B” technique) is urgently re-
quired for biodiversity conservation and mitigating GCC
and environmental stressors.
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