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Abstract Consolidating measurement data for use by data
models or in inter-comparison studies frequently requires
transforming the data onto a common grid. Standard methods
for interpolating multidimensional data are often not appropriate
for data with non-homogenous dimensionality, and are hard to
implement in a consistent manner for different datastreams.
These challenges are increased when dealing with the automat-
ed procedures necessary for use with continuous, operational
datastreams. In this paper we introduce a method of applying
a series of one-dimensional transformations tomerge data onto a
common grid, examine the challenges of ensuring consistent
application of data consolidation methods, present a framework
for addressing those challenges, and describe the implementa-
tion of such a framework for the Atmospheric Radiation
Measurement (ARM) program.

Keywords Datastream . Flattened arrays . Data slices . Data
consolidation . Regridding . Data Quality

Background

The ARM program collects field measurements of atmospher-
ic data from continuously operating, highly instrumented

ground stations, and from mobile instrument stations whose
locations change on an approximate yearly schedule (Mather
and Voyles 2013). The instrument-level data is collected in a
large number of individual native formats, and then converted
to netCDF (network Common Data Format) for permanent
archival and open distribution from the ARM Data Archive.
Applying increasingly more advanced analysis techniques
and quality analysis to existing data products creates higher-
level data products with additional scientific value. To support
its internal processing and to provide users with data in the
format they need, the program developed the ARM Data
Integrator (ADI) framework (Gaustad et al. 2014). ADI auto-
mates the process of retrieving and preparing data for analysis,
and creating integrated data products through a module data
integration workflow. This paper discusses the Serial 1D
transformation method implemented in ADI, the metadata it
uses and produces, and design considerations that can ad-
versely affect the scientific validity of the underlying data.

Introduction

Operational instrument-based time-series datastreams are
challenging to provide to end-users in a way that facilitates
their analyses. Many scientific issues such as climate research
require multiple, continuous, on-going datasets, collected by
instruments that remain in the field for years. Such
datastreams and their derived products like model runs and
retrievals require automatic methods of production, analysis,
and assimilation that can be applied consistently on a wide
variety of data. By contrast, in a traditional case-study with a
limited dataset, sophisticated analyses and manipulation could
be applied manually (Miller et al. 1994).

One of the challenges of dealing with operational data is
transforming it onto a different dimensional grid. This is
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necessary to consolidate data from different instruments for
use as part of the same analysis, or to generate a complete set
of inputs in a consistent format for a model or retrieval. In a
case-study mode, a variety of interpolation methods of appro-
priate dimensionality might be applied, examined, and
tweaked, and quality control might be done manually. But in
a production environment such as ARM (U.S. Department of
Energy 2009), an automated way of consolidating datasets of
arbitrary dimensionality and quality is necessary, and must
function without any a priori knowledge of the nature of the
data other than its original dimensionality.

A major complication is the fact that multidimensional
instrument-based datastreams are generally inhomoge-
neous in their dimensionality – a water-vapor retrieval al-
gorithm might be dimensioned by time and vertical height,
or a spectral radiometer will have dimensions of time and
wavelength, for example. Standard multidimensional inter-
polation methods such as a Delaunay tessellation require
and are sensitive to scaling (Li and Heap 2011). Such spe-
cific analysis is impossible to apply generally and automat-
ically on a continuous, on-going dataset. The Serial 1D
approach described in this paper transforms each dimen-
sion individually, removing any such scaling requirement.

An additional requirement when transforming opera-
tional data is a general, automated way to use input quality
information, and to generate output metadata that describes
the quality and status of the transformation. Regions of
missing or bad data should be interpolated over or skipped
when performing integrations, and as much provenance as
possible should be kept to help end user determine when a
quality control (QC) event has occurred and what solutions
were applied during coordinate transformation. In addition,
supporting fields called metrics can be generated, provid-
ing additional information about the nature of the transfor-
mation or the original input data.

Finally, an automated data transformation framework must
reconcile two contradictory requirements: it must be flexible
and customizable enough to deal with any arbitrary dataset,
but it also must provide a consistent user interface and output.
For ADI, we developed a framework for implementing such
automated, quality-based coordinate transformations, both in
the context of a standalone tool and as a module for use with
scientific analysis programs developed using ADI. The ADI
data_consolidator will be compared to other available time-
series data transformation tools.

The Transformation Methods section will discuss why a
serial approach of transforming each dimension indepen-
dently was chosen, and then examine the specific transfor-
mations methods supported. The design and implementa-
tion considerations that drove the architecture and the de-
tails of the parameter control methods that support the cre-
ation of high-quality standardized data products will be
presented in the sections that follow.

Transformation methods

The general method is to apply a series of interpolation and
integration methods on one-dimensional subsets (or slices) of
each dataset. This allows each dimension to be handled inde-
pendently, keeps a consistent methodology for application to
one-dimensional datastreams, and can be automated for an
arbitrary number of dimensions. We will refer to this method
as the serial one-dimensional (or Serial 1D) method. It is
straightforward to extend the method and transform multidi-
mensional surfaces in a serial manner; this will be discussed
further at the end of the next section.

Traditional methods and existing tools often implicitly im-
plement a Serial 1D methodology, for example by averaging
or interpolating time-series measurements onto common time
grid before interpolating onto a common pressure or height
grid. Thus, Serial 1D is simply a way of implementing these
different transformations in a consistent and easy-to-use man-
ner. To allow for flexibility, a number of standard transforma-
tion methods (linear or nearest-neighbor interpolation, and
averaging) are described, while other methods could be im-
plemented and applied in a similar manner.

The process of transforming an input variable to a new coor-
dinate system consists of defining the output grid, selecting
transformationmethods for each dimension, identifying and set-
ting the parameters of the input and output grids that will affect
the transformation and filtering undesirable input data from the
transformation using whatever QC information is available.

The resulting output includes not only data transformed to the
new coordinate system, but also parallel QC and metric fields
describing various conditions that occurred during the transfor-
mation. This provides additional information about the transform.

Serial 1D

The Serial 1D method is illustrated in Fig. 1. Each dimension
is extracted and transformed in individual slices of that dimen-
sion. A slice in dimension d is defined as the set of all values
of xd with all the other indeces xd’ fixed for d’ ≠ d. Each such
slice is thererfore one-dimensional in d. For example, in the
two-dimensional array illustrated in Fig. 2, each row and each
column is a 1D slice. In Fig. 2a, the rows are defined by
common values of the index a, and thus are one-dimensional
in index b. Similarly, the columns are dimensioned by index a
and all have common values of b.

If the size of each dimension is nd and the total number of
elements in our entire multidimensional data array is ntot, then
the number of slices in any dimension d is ntot/nd . For each of
these slices we can apply a one-dimensional transformation to
put that slice on the new data grid. Once all such slices have
been transformed, we move to the next dimension and repeat
the process, until each dimension has been transformed and
the data has been fully regridded.
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Flattened arrays

We want to develop a general method of applying one-
dimensional transformations onto each slice of an array of
arbitrary dimensionality. The transformation library (like
ADI) is written in C, and the C language syntax is different
for arrays of different numbers of dimensions. For example, a
one-dimensional array is accessed by syntax of the formM[i],
while a three-dimensional array would use syntax like
M[i][j][k]. Therefore, to use regular C array addressing would
require multiple functions written for each dimensionality,
called in a conditional block or using some kind of
overloading method, and even then it would not be a truly
general method.

Instead, we will take advantage of the way C stores multi-
dimensional arrays internally, as a single one-dimensional ar-
ray stored in contiguous memory (Knuth 1997). We will call
this one-dimensional representation a flattened array. Any reg-
ular array of any number of dimensions can be flattened and
therefore addressed by using a single index, and thus this will
allow us to develop a general method of extracting and

transforming each slice of each dimension of any such array.
We will first examine how to map M-dimensional data onto a
flattened one-dimensional representation:

array Mð Þ x0½ �… xM−1½ �→ array 1Dð Þ k½ � ð1Þ

The indices xi are used when considering the data in the M-
dimensional representation, while the index kwill represent data
in the flattened representation. We can relate these two indices
by defining the stride coefficients Dd for each dimension d as

1:

k≡
XM−1

d¼0
xdDd ð2Þ

Thus, to find the value of k corresponding to increasing an
index xd by one (i.e., adjacent elements in d), you have to jump
(or Bstride^)Dd elements down our flattened array; see Fig. 2.1b.

To derive the appropriate values of Dd, we note that C stores
data in row-major order, where the higher dimensions vary
faster than the lower dimensions. If column-major ordering is
desired (as it is in, for example, FORTRAN, IDL, or R) one
must transpose the arrays and indices as they are described here.

By definition,

DM−1≡1 ð3Þ

as increasing the highest index xM-1must always increment
k by one. The other stride coefficients Dd are given by:

Dd ¼ ∏
M−1

i¼dþ1
ni ð4Þ

where nd are the lengths of each dimension. For example, for
a 2D data set dimensioned by time and height ([t][h]), we have:

k ¼ nht þ h ð5Þ

and for 3D data in [x][y][z]:

k ¼ nynzxþ nzyþ z ð6Þ

From Eqs. (3) and (4), we can see that:

Dd ¼ ndþ1Ddþ1 ð7Þ

which provides us with a recursive relation for calculating
our stride coefficients.

Data slices

With all data in flattened arrays and with known stride coeffi-
cients, we can develop a general method for applying trans-
formations to each one-dimensional slice of data in the
dataset. The number of such slices in d is ns = ntot/nd.

1 Note that all our indices will be zero offset, i.e., xiϵ{0,1,...,ni-1}

Fig. 1 Logic flow for transforming multiple dimensions in series. Each
set of arrows represents the steps taken to transform a different dimension
d, and the primed indices indicate dimensions that have been transformed
at each stage. This process generates a series of intermediate data and QC
arrays containing both transformed and untransformed dimensions,
which are used as inputs to the next step until all dimensions have been
transformed
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Suppose that we have a flattened index k0 that we know
corresponds to the index value xd = 0 (i.e. the initial value of
our slice). Then by Eq. (2) we can find every element of this
d-slice by the following algorithm:

slice i½ � ¼ array 1Dð Þ k0 þ i⋅Dd½ � i∈ 0; :::; nd−1f g ð8Þ

Therefore, the problem of finding and looping over all the
slices in dimension d has been reduced to finding the initial value
k0(s) for each slice s, which is the same thing as finding all
possible permutations of {xd’} for d’ ≠ d while keeping xd = 0.

We can assert that k0(0) = 0; this corresponds to the case
where all indices xi = 0. To find all the remaining slices de-
fined by k0(s), we note that adding a value between 1 and Dd-
1 to any value of k corresponds to keeping the index xd the

same and changing just some indices xd’ for d’ > d. Similarly,
adding a factor of Dd-1 to k modifies only indices for d’ < d.
Thus, to iterate over all slices in d we need to run over the
faster dimensions by adding one to each successive value of
k0(s) until that value reaches Dd. We then add Dd-1 to incre-
ment the slower dimensions and reset the faster dimensions
back to 0 by subtracting Dd.

The following algorithm summarizes this method of deriv-
ing k0(s) for all slices s:

k0 0ð Þ ≡ 0
for s ∈ 1;…; ns−1f g :

k0 sð Þ ¼ k0 s−1ð Þ þ 1
if k0 sð Þ mod Dd½ � ¼ 0 :

k0 sð Þ ¼ k0 sð Þ þ Dd−1−Dd

ð9Þ

Fig. 2 Transforming the [a] dimension of a 2D array M[a][b]. (a) The
original 2D array M[a][b], with dimensions a and b. The size of these
dimensions are na = 4 and nb = 4. The horizontal ellipse illustrates a slice
in b with a constant value of a = 1, while the vertical ellipse illustrates a
slice in a of constant b = 2. (b) The flattened 1D representation M[k] of
the original 2D array. The slices from the 2D representation are located as
indicated in the flattened representation. (c) Each column of M[a][b]
corresponds to a 1D array of constant b, and therefore is indexed by
dimension [a]. Each such slice s[a] is extracted from the flattened array;

the initial b = 2 column from (a) is shown here. (d) Each slice is sent to the
1D transformation code, which creates a new slice s’[a’] on the output
grid, as shown in (e). (f) This slice s’[a’] is then inserted into a new 1D
flattened arrayM’[k’]. (g) After all such slices s’[a’] are filled inM’[k’] is
complete and represents a new intermediate 2D array M’[a’][b]
containing a mixture of the newly transformed dimension a’ (size na’ = 5)
and the untransformed dimension b. We now go on to transform
dimension b - > b’, using the flattened 1D array of (f) in step (b), this
time extracting and transforming slices s[b] in b

250 Earth Sci Inform (2017) 10:247–256



Multidimensional surfaces

We can extend the above method to extract multidimensional
surfaces simply by combining multiple indices in M-
dimensional space into a single virtual 1D index using the
same flattening technique. For example, you can treat an M-
dimensional array as an M-1 dimensional array by

array Mð Þ t½ � x½ � y½ � z½ �→array M−1ð Þ t½ � r½ � z½ � ð10Þ

where

r ¼ yþ nyx ð11Þ

In this way we can apply the methods of the previous sec-
tion to transform the xy surface in a Serial 1D context.

Intermediate structures

We have now reduced our transformation problem to a series
of 1D transformations. The Serial 1D method involves
looping over all dimensions d of our data, and applying the
desired transformation to all 1D slices of d. This means we
apply later transforms on data that has already been trans-
formed in another dimension. As each transformation will
(usually) change the size of the dimension in question, it is
necessary to store the results in an intermediate array that
contains a mixture of original and transformed dimensions,
which is then used as input to the next transformation. For
example, if you have a 2D array data0[t][z], dimensioned by
time and height, and you want to put that on a new time and
height grid [t’][z’], you first transform the time coordinate
onto the new grid (taking t → t’) for each original height z.
The result of this is the intermediate array data1[t’][z], with a
transformed time coordinate and the original height coordi-
nate. To complete the transformation, you then transform the
height coordinate for each new time t’, taking z → z’ and
generating the final array data2[t’][z’]. Figure 1 demonstrates
this logic in the general case.

Of course, each transitional array is actually stored as a
flattened array; the slicing methods of the previous section
must be applied to both the input and output (transitional) data
to make sure each slice is transformed correctly and ready for
the next transformation.

Time complexity

To transform each dimension, we call one 1D transformation for
each of the ns slices in that dimension, an operation that is linear
in ns. Therefore, if the transformations are linear in time (as are
the three basic transformations we describe in this paper), the
complexity of transforming each dimension fully is O(ntot),
where ntot is the total number of elements in the array. Thus,
the complexity of transforming across all nd dimensions is

O(ndntot), but since nd is typically very small for instrumental
datasets, this is still essentially linear in ntot. On modern com-
puters, even very high resolution multidimensional data from
radars or models can be transformed in a matter of seconds.

If more complex nonlinear transformations were imple-
mented in a Serial 1D framework, computational issues could
arise while transforming large datasets. Similar problems
could arise if this framework were applied to transforming
very large high dimensional abstract datasets, where nd ap-
proaches the size of ntot. However, as each 1D slice for each
dimension is independent of all the other slices, parallel or
distributed computing methods could be applied in such cases.

Supported transformations

In this section, we will examine three one-dimensional trans-
formations that have been implemented in ADI: linear inter-
polation, bin averaging, and nearest-neighbor sampling. For
each transformation, we will also discuss the QC implications
and the parameters that may be used to customize the nature of
that transformation.

Linear interpolation

The standard interpolation transformation is linear (as opposed to
more complicated polynomial or spline interpolation methods).
We take the nearest bracketing input points around our target
transformed coordinate index, draw a straight line through them,
and take the value of that line corresponding to our target index.
This is the default transformation when we try to transform data
from a larger grid to a smaller one, and can also be used to (for
example) shift every index in a grid half a bin over.

Bin averaging

Averaging is the most complicated standard transform, be-
cause it requires your input and output data to represent a
region (or span) of your coordinate space, not just a single
point. To emphasize this fact we call this method a bin
average; the input and output data are represented by bins
with a finite width. Thus, we need two numbers to index our
variables: the front and back edge of each coordinate bin, or a
single coordinate index and a bin width. Each input bin is then
weighted by the fraction of the overlap with the span of the
transformed bin. Most interior input bins will be completely
covered by the transformed bin, so their weights will be 1.0.
But bins on the edge may straddle two different transformed
bins, and thus their contribution has to be split between them.

Nearest-neighbor sampling

Nearest-neighbor sampling is the simplest transform, and consists
of simply taking the nearest good input point within our range.
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The direction of the sampling doesn’t matter - we take the value
of the point with the least absolute distance to the target index.

Quality control methods

For data to be of use in scientific studies it needs to be
collected and analyzed in context of an end-to-end quality
assurance program that includes data QC and documenta-
tion. For continuous datastreams like those generated for
ARM, this requires automated methods of both calculating
and using QC in our analysis codes. The purpose of au-
tomated QC is to flag data which may be bad or require
further (human) analysis; this is especially important in a
production environment as human eyes may not evaluate
the data until much later, and it may be used as an input
to other automated procedures in the meantime (Timms
et al. 2010).

The ARM standards require datastreams to store QC
checks in auxiliary fields that are parallel to data fields and
c o v e r t h e s ame d im e n s i o n s . F o r e a c h v a l u e
data[×0][×1][.][xn] we therefore have a companion value
qc_data[×0][×1][...][xn]. These QC values are stored as in-
tegers, with each bit representing a particular state or condi-
tion. Depending on the nature of the test, failure (represented
by setting that bit to 1) may indicate the data is bad and should
not be used, or it could simply indicate an unusual or note-
worthy condition (ARM Standards Committee 2015).

Filtering input data

Within the context of the ADI transformation library,
these parallel QC fields allow the transformations to
filter bad input data automatically. The inclusive nature
of these integer flags allows the end user to customize
the particular states he wants to reject simply by setting
an appropriate mask, which will then be compared
bitwise to each QC value. When a transformation en-
counters a data point that is flagged as bad, it will
attempt to Bgo around^ that data point in whatever
way makes sense for that transformation. The interpola-
tion transformation, for example, will not interpolate
using a bad input point but will scan up or down the
input data to find good data with which to perform the
interpolations.

Output QC

The output of the ADI transformation process is meant to
be a new ARM-standard datastream. Therefore, the trans-
formations will also generate parallel output QC fields to
describe the various states and conditions that occur dur-
ing the transformation itself. When a transformation fails,

it is important to document both the occurrence and the
reason why it failed - if all the inputs were missing or if a
required input had a value outside its valid range, for
example. Storing this information can allow us to generate
statistics or do correlations on when such conditions oc-
cur, and can be an important part of analyzing and im-
proving a given datastream.

It is especially important to flag non-standard
Bindeterminate^ conditions because they do not necessarily
mean the data is flawed, just that the transformation occurred
in special circumstances. An example of this would be when
some but not all of the input values in an average were flagged
as bad; we can still calculate a meaningful average value, but
we are not using all the points we were expecting to.

Because the transformation library is designed to be
consistent across all applications, the possible QC states
that come out of a transformation are fixed, and all trans-
formed data will have only these QC bits set. In this way
the transformation process necessarily Bwashes out^ any
detailed QC information provided by the input datastream.
We can no longer tell exactly which input point was bad,
nor can we tell which test the data might have failed. All
we can do is set the appropriate QC flags that declare that
some (or all) of the points used to generate a given output
data point were bad.

Under the Serial 1D method, the output data and QC fields
generated by transforming the first dimension will be used as
input to the transformation of the second dimension, and so
on until all the dimensions have been transformed. Therefore,
each intermediate QC field will be used to filter data for the
next dimension’s transformation, until we have transformed
all dimensions. The final output QC fields will hold the QC
states generated while transforming just the final dimension.
For example, in our 2D case where data0[t][z] is dimen-
sioned by time and height, after transforming the time coor-
dinate we will have the new arrays data1[t’][z] and
qc_data1[t’][z]. When transforming z, we use the QC values
given by qc_data1[t’][z] to filter bad values of data1[t’][z], in
exactly the way we used the original input QC fields to filter
bad data while transforming t. Figure 1 illustrates the same
process in the general case.

This means that some intermediate QC information has been
lost by the time we have transformed all dimensions. We cannot
determine the value of qc_data1[t’][z] at the end, because we do
not save or store anything on this intermediate [t’][z] grid. But
because qc_data1[t’][z] has been used as input to a later trans-
formation its impact is propagated through to the final output.
Many of the QC flags as described in Table 1 reflect some
qualitative QC information about the intermediate transforma-
tions. For example, QC_SOME_BAD_INPUTS upon output
implies that the result of the penultimate transformation gener-
ated some bad data, and provides a starting point for further
investigation if desired.
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Table 1 lists the possible QC states generated during trans-
formation, and which of the initial three transformation
methods apply:

About half of the quality states are general in that they
apply to all transformation methods. These include a flag to
denote the transformation was unsuccessful (QC_BAD), that
the transformation included one or more input values with an
indeterminate assessment (QC_INDETERMINATE).

T h e Q C _ E S T I MAT E D _ I N P U T _ B I N a n d
QC_ESTIMATED_OUTPUT_BIN refer to whether the trans-
formation parameters Bwidth^ and Balignment^ have been set
externally by the user whether default values were calculated.
Details of the parameters that can be externally set will be
discussed in a later section.

The QC_OUTSIDE_RANGE state is the only QC state
assigned a bad assessment other than the test test documenting
whether all inputs were bad and the test noting that the transfor-
mation failed. When averaging data it is set if none of the input
bins overlaps with any part of the output bin, or if an input
dimension’s values are more limited then its value in the output
(i.e., if input dimension height goes up to 60 km, but output max
height is 20 km, then all values above 20 km will have this flag
set). For subsample and interpolation transformations where we
use two input points to calculate every output point. If one of our
inputs has been flagged, we scan up or down the input grid until
we find the nearest good point in that direction that is still within
our defined range transform parameter. If not found within the
range then QC_OUTSIDE_RANGE is set.

Quality control states unique to the averaging method docu-
ment whether some, but not all of the inputs in the averaging
window were flagged as bad and thus excluded from the trans-
form (QC_SOME_BAD_INPUTS), and if all the inputs to be
averaged for this output bin were zero (QC_ZERO_WEIGHT).
For nearest neighbor, if the nearest good point is not the nearest
absolute point (i.e., the nearest point was flagged as bad), we
flag that Bindeterminate^ status in the QC field. If a linear inter-
polation technique is being used, if no such good point exists,
we scan down in the other direction until we find a good point to
use; in that case, the transform actually becomes an
extrapolation (which is mathematically identical to an interpo-
lation; the only difference is that instead of bracketing our target

index the two points we use are on the same side). If we do not
use the two closest bracketing points to interpolate, we set a QC
flag to indicate that a non-standard interpolation took place
(QC_INTERPOLATE). We also set a flag to indicate if one of
the bracketing points had been flagged as indeterminate
(QC_INDETERMINATE).

Transform metrics

In a manner similar to the automated QC tests, each of the trans-
formation methods can also create appropriate companion vari-
ables called Bmetrics^ that provide additional details about the
transformed data. Currently only the bin average transform does
so, and provides twometrics: the standard deviation of the points
used in the average and a fractional indicator of the number of
good points available in the averaging window. The naming
convention for these variables is to append a suffix to the trans-
formed variable name; in the case of the averagingmetrics, std. is
used for the standard deviation and goodfraction for the factional
test. In a similar manner to QC, only the metrics generated on the
final dimensional transformation will be available on output.

Transform parameters

Transform parameters are variables embedded in the transfor-
mation methods that can be externally set by users, and that
allow customization of how the transformations are applied.
They can be used to characterize the coordinate system grid
being created for the output data products and to describe
relevant charactisics of the input data, and an additional class
of parameters are provided that allow a user to alter how the
input data is interpreted. The available parameters, the trans-
formations to which they apply, and whether they apply to the
input or output coordinate grids is documented in Table 2. The
parameters that must always have a value include a parameter
that documents the transformation method applied (interpo-
late, average, or nearest neighbor) and parameter’s start and
length, which denote the first value of, and the number of
values that will comprise the coordinate variable respectively.

Table 1 QC States by transform
method Transform QC Bit Average method Interpolate method Subsample method Assessment

QC_BAD X X X Bad
QC_INDETERMINATE X X X Indeterminate
QC_INTERPOLATE X Indeterminate
QC_EXTRAPOLATE X Indeterminate
QC_NOT_USING_CLOSEST X Indeterminate
QC_SOME_BAD_INPUTS X Indeterminate
QC_ZERO_WEIGHT X Indeterminate
QC_OUTSIDE_RANGE X X X Bad
QC_ALL_BAD_INPUTS X X X Bad
QC_ESTIMATED_INPUT_BIN X X X Indeterminate
QC_ESTIMATED_OUTPUT_BIN X X X Indeterminate
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Parameters unique to the bin averaging method algo-
rithm document the bin width, front edge, and back edge.
Preferably the bin parameters of input data are document-
ed within the data itself, but if not it can be supplied by
the user, as can the output bin characteristics. If not sup-
plied, the averaging routine will calculate the default bin
width from the data with the individual front edge and
back edges of the bins for each sample derived from the
resulting bins. A related parameter interval documents the
difference between two values of a grid as a single value,
and as such only relate to a regular grid (i.e., a grid whose
bin widths are equal for all samples). The remaining pa-
rameter that directly relates to how a transformation is
applied, and affects subsequent QC states, is range. It
allows users to set the maximum distance for a given
dimension over which a set of data will be interpolated
or subsampled. Details of the remaining parameters, how
they are used, and their default values are presented in the
ADI online documentation (Gaustad 2015). The docu-
mentation also describes how these parameters can be
used to perform analysis such as creating an average of
data and smoothing data using a running average.

Comparisons with other tools

Frequently scientists will implement their own transfor-
mation methods using netCDF libraries provided by their
preferred software language such as Python, IDL, or
MatLab. Because the intent of the ADI framework for
which this transformation approach was developed was
to eliminate the need for scientiests to write their own
transformation algorithms, this section will focus on tools
that provide higher level transformation capabilities than
those available in common programming languages. A
general advantage of the approach discussed over those
commonly used is the extent of control provided by
allowing users to set many of the parameters frequently
embedded into existing techniques, such as limiting the
range to look for nearest neighbors or to filter for specific

QC conditions. Thus, a general transformation method
can be fine tuned by the end user for their needs.
Another advantage of the presented approach is the use
of built in automated quality control and metrics. These
capabilities allow a user to capture provenance and to
fully understand how the data has been affected by the
transformation process.

In the remainder of this section we will compare our
framework with three existing tools which may be used to
manipulate and interpolate netCDF files: The netCDF
Operators (NCO), Climate Data Operators (CDO), and
Python library wradlib (Pfaff et al. 2012). The individual
sections that follow will focus on how the methods com-
pare in terms of the approach, flexibility, and accuracy of
the transformation methods themselves.

NCO

The NCO (Zender 2016) package is a series of UNIX
executables designed to quickly and easily manipulate da-
ta in netCDF format. One of the functions of ADI data
consolidator was to provide a simple tool to bring many
different datastreams onto the same coordinate grid, so the
comparison is a natural one.

Most of the NCO tools are designed to merge or per-
form statistics upon netCDF files of the same structure, as
compared to our framework, which is designed to consol-
idate heterogeneous datasets into a common structure.
There are some NCO functions (ncra, ncwa, nces) which
are used to integrate over an entire dimension in a file
(and thereby removing it), and an interpolation tool
ncflint whose purpose is to generate data between that
given by two files of the same structure, using the same
record dimension. Specific applications like these simplify
their individual use, but at the cost of overall flexibility.

The NCO tool ncap2 provides a robust processing en-
vironment which can be scripted to perform very compli-
cated manipulations. It includes a native 2D bilinear-
interpolation routine, and also allows interface to the
GNU Scientific Library (GSL) (Galassi et al. 2009) 1D

Table 2 Transformation
parameters by transform method Transform parameter Transformation Input grid Output grid

Transform All N Y
Interval Interpolate, Average Y Y
Start All Y Y
Length All Y Y
Width Average Y Y
Front_edge Average Y Y
Back_edge Average Y Y
Range Interpolate, subsample Y N
QC_bad Interpretation of input data Y N
Missing_value Interpretation of input_data Y N
QC_mask Interpretation of input data Y N
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interpolation routines, and averaging routines could prob-
ably be scripted for use with ncap2. However, such
scripting is essentially a programming effort; some of
the methods described in this paper might be implemented
in such a task.

CDO

The Climate Data Operators (CDO) (Schulzweida et al.
2009) is another package of UNIX-based command-line
routines designed for standard processing of netCDF files
on climate model output and unlike the described tech-
nique may not necessarily be easily applied to non-
model or other types of time-series data. The CDO pack-
age contains many tools for interpolating data from one
standard climate grid to another and performing other sci-
entific and statistical retrievals from such datasets. Such
interpolation methods are applied to the spatial 3D grid, a
2D horizontal grid, a vertical coordinate, or over time
values, and include standard methods such as multidimen-
sional linear interpolation, distance weighted averaging,
or nearest-neighbor interpolation.

For standard climate model data, CDO may be a good
choice for data and grid manipulation, as specific issues
related to those datasets can be dealt with. But CDO is
limited to the three spatial dimensions and one temporal
dimension listed, and thus would not be useful for spectral
data or other multidimensional datasets. By contrast, the
serial 1D approach described in this paper is a general
approach for N-dimensional variables.

Wradlib

Wradlib is a Python library designed to facilitate the use
of weather radar data. It provides collections of algo-
rithms and functions that enable users to create custom-
ized data products for use in forecasting, research, devel-
opment, or teaching (Pfaff et al. 2012). Because of its
focus on radar data, wradlib supports a larger, more di-
verse set of transformation methods useful with radar data
(such as Z to R conversions). It also supports spatial in-
terpolation techniques such as Ordinary Kriging.
However, it is only available in Python, although
Jupyter Notebooks are provided to allow users to experi-
ment and easily access code snippets. While the ARM
ADI transformation library is being updated to support
the Caracena grid transformation method (Caracena
1987), the wradlib is a good alternative for working with
radar data and the special tools and methods that data
needs. However, it is probably less useful for non-radar
atmospheric data and non-atmospheric time-series data.

Conclusions and future work

ARM has developed and been successfully using the
Serial 1D transformation method in over a dozen produc-
tion algorithms and several dozen in house algorithms
whose analysis required consolidation of temporally di-
verse datasets onto a common grid. ARM’s data consoli-
dation architecture has greatly increased the efficiency of
implementing production algorithms, frequently shorten-
ing their development time by a factor of two or higher,
improved the robustness of the code through the use of a
heavily used and well tested library, standardized logging
and provenance, and automated QCs applied.

The Serial 1D method capabilities are currently being
updated to support the creation and evaluation of data that
describes data sets that span across a grid of measurement
locations. The core libraries have been updated to grid
transformations, with the initial approach being the
Carecena method (Caracena 1987). The gridded capabili-
ties will facilitate the development of data sets that can be
readily used to evaluate the model simulations of the at-
mosphere and better support the global climate modeling
community’s needs.
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