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LC-MS/MS-based multibiomarker approaches
for the assessment of human exposure to mycotoxins

Benedikt Warth & Michael Sulyok & Rudolf Krska

lites that frequently contaminate food and feed worldwide,
and hence represent a major hazard for food and feed safety.
To estimate human exposure arising from contaminated
food, so-called biomarker approaches have been developed
as a complementary biomonitoring tool besides traditional
food analysis. The first methods based on radioimmunoas-
says and enzyme-linked immunosorbent assays as well as on
liquid chromatography were developed in the late 1980s and
early 1990s for the carcinogenic aflatoxins and in the last two
decades further tailor-made methods for some major myco-
toxins have been published. Since 2010, there has been a clear
trend towards the development and application of
multianalyte methods based on liquid chromatography–
electrospray ionization tandem mass spectrometry for assess-
ment of mycotoxin exposure made possible by the increased
sensitivity and selectivity of modern mass spectrometry in-
strumentation and sophisticated sample cleanup approaches.
With use of these advanced methods, traces of mycotoxins
and relevant breakdown and conjugation products can be
quantified simultaneously in human urine as so-called bio-
markers and can be used to precisely describe the real expo-
sure, toxicokinetics, and bioavailability of the toxins present.
In this article, a short overview and comparison of published
multibiomarker methods focusing on the determination of
mycotoxins and relevant excretion products in human urine
is presented. Special attention is paid to the main challenges
when analyzing these toxic food contaminants in urine, i.e.,
very low analyte concentrations, appropriate sample prepara-
tion, matrix effects, and a lack of authentic, NMR-confirmed
calibrants and reference materials. Finally, the progress in

lytical methods is described and an outlook on probable de-
velopments and possibilities is presented.
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Introduction

Toxic fungal secondary metabolites, so-called mycotoxins,
are a global hazard for food safety by frequently contami-
nating food and feed. To estimate the risk of exposed
populations, traditional exposure assessment comprises the
analysis of foodstuff and evaluation of dietary recalls or the
estimation of average consumption patterns. To overcome
the disadvantages of this indirect approach, such as a lack of
information on individual exposure, toxicokinetics, and bio-
availability, biomarker approaches were developed as a
biomonitoring tool for some major mycotoxins (Fig. 1).
Baldwin et al. [1] reviewed biomarker research for the
commercially most important mycotoxins and defined bio-
markers as measurable biochemical or molecular indicators
of either exposure (exposure biomarker) or biological re-
sponse (effect biomarker) to a mycotoxin that can be spe-
cifically linked to the proximate cause. Typical biomarkers
of exposure are the parent toxins themselves, protein or
DNA adducts, and/or major phase I or phase II metabolites
(e.g. glucuronide conjugates), which are measured in bio-
logical fluids such as urine or plasma/serum, and are related
to the actual intake of the toxin through contaminated food.
In an excellent review, the role of biomarkers in the evalu-
ation of human health concerns caused by mycotoxins was
published recently. Here a biomarker of exposure was de-
fined as a biological measure which is correlated with the
quantity of the xenobiotic ingested, resulting in improved
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exposure classification over more traditional approaches [2].
It was highlighted that validation of such a biomarker re-
quires demonstration of (a) assay robustness, (b) intake
versus biomarker level, and (c) stability of stored samples.

Biomarker research for human exposure assessment en-
tered the mycotoxin research arena in the late 1980s and
early 1990s when extensive studies on the carcinogenic
aflatoxins were conducted [3–5]. They have been essential
for the establishment of the etiologic role of aflatoxins in
human disease through better estimates of exposure, ex-
panded knowledge of the mechanisms of disease pathogen-
esis, and as tools for implementing and evaluating
preventive interventions [5]. Three aflatoxin biomarkers
were validated by the establishment of a dose–response
relationship: in urine the level of the hydroxylated metabolite
aflatoxin M1 (AFM1) was between 1.2 and 2.2 % of that of
ingested aflatoxin B1 (AFB1) [6], while the level of the afla-
toxin–N7-guanine adduct ranged from 0.05 to 3.25 μg/L, with
approximately 0.2 % of ingested AFB1 excreted during a 3-
day period [7]. AFM1 was analyzed by a competitive direct
enzyme-linked immunosorbent assay (ELISA) whereas afla-
toxin–N7-guanine was measured by high-performance liquid
chromatography (HPLC) following elution from an antibody
affinity column. In serum the aflatoxin–lysine adduct can be
obtained through digestion of the aflatoxin–albumin adduct
[8]. Later in the 1990s work on ochratoxin A (OTA) [9] and
the fumonisins [10] was conducted mainly based on HPLC
with fluorescence detection. However, occasionally radioim-
munoassays, ELISA, and liquid chromatography–tandem
mass spectrometry (LC-MS/MS) have been applied as well.
Excretion of fumonisin B1 (FB1) in urine was recently esti-
mated to be on average 0.075 % of the FB1 intake in South
African women (n=22) [11], whereas the estimates were
significantly higher (0.5 %) in a US study (n=8) [12]. Despite

this very low excretion rate and issues associated with
interindividual variability and rapid clearance, urinary FB1

was recommended as a valuable biomarker for fumonisin
exposure and risk assessment. Most fumonisin biomarker
research conducted within the last two decades was related
to the inhibition of the sphinganine N-acetyltransferase (cer-
amide synthase) and subsequent sphingolipid biosynthesis
disruption initiated by fumonisins. A correlation between
fumonisin intake and the sphinganine-to-sphingosine ratio or
an elevated sphinganine level was found to be useful in
animals but not in humans and constitutes a typical biomarker
of effect [10]. The first biomarker research on the trichothe-
cene deoxynivalenol (DON, vomitoxin) was initiated in 2003
when Meky et al. [13] developed an LC-MS-based assay to
measure the sum of free DON and DON glucuronides (DON-
GlcAs) combined after enzymatic hydrolysis and use of an
immunoaffinity column (IAC) as a sum parameter in human
and rat urine. Further LC-MS/MS methods were developed
for the determination of DON and DON-GlcA using either a
synthetically produced authentic reference standard [14] or the
hypothetical mass [15] for the detection of the glucuronide(s).
A major limitation of proper exposure assessment including
ideally all relevant mycotoxins and their biotransformation
products was the lack of sufficient sensitivity and selectivity.

As a result of the advent of the latest generation of high-
performance LC-MS/MS instruments, a clear trend towards
the development and application of multianalyte methods in
mycotoxin biomarker research can be observed. Purification
of the analytes is often achieved by using sophisticated sample
cleanup approaches with subsequent separation by liquid
chromatography and detection using triple-quadrupole ana-
lyzers coupled via an electrospray ionization (ESI) interface.
However, the latest studies have also successfully applied the
so-called dilute and shoot approach by omitting any cleanup
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step [16]. This article provides a short overview and compari-
son of published multibiomarker methods, discusses chal-
lenges associated with very low analyte concentrations,
sample preparation, matrix effects, and a lack of calibrants
and certified reference materials, and describes the progress
in human exposure assessment studies facilitated by these
methods.

LC-MS/MS-based multibiomarker methods

The first method described for the determination of various
mycotoxin biomarkers in human urine was developed by Ahn
et al. [17]. To achieve sufficient sensitivity and selectivity,
AFM1, OTA, FB1, and fumonisin B2 were concentrated using
three separate IACs. The eluates were pooled, dried under a
stream of nitrogen, and resolved in a mixture of acetonitrile and
water . Also two other published multibiomarker methods used
the selectivity of antibodies by applying a novel multi-IAC
column (Myco6in1™, Vicam) which comprises antibodies
specific for aflatoxins, OTA, fumonisins, DON, zearalenone
(ZEN), T-2 toxin, and HT-2 toxin [18, 19]. The first method did
not include AFM1, but instead included the aflatoxins B1, B2,
G1 and G2, for which no correlation with food intake had been
achieved in the past [2]. In addition, no enzymatic hydrolysis
was performed despite the extensive glucuronidation of DON
[13] and ZEN [20] one can expect in such studies. In constrast,
the method of Solfrizzo et al. [19] used β-glucuronidase-
assisted hydrolysis, resulting in increased levels of the parent
toxins. Besides the IAC enrichment, a second step of sample
preparation using solid-phase extraction (SPE; Oasis HLB,
Waters) was conducted to overcome issues associated with
low DON and deepoxy-DON recoveries. The advanced clean-
up procedure resulted in lower limits of detection (LODs) of
this method compared with that of Rubert et al. [18] although a
less sensitive mass spectrometer was used (Table 1). Our group
chose a time- and cost-effective “dilute and shoot” approach for
sample preparation, where the urine sample is simply diluted
1:10 with acetonitrile/water (10:90) and injected directly into
the LC-MS/MS system, to facilitate the quantification of 15
analytes [16]. A chromatogram of a blank urine sample spiked
with reference standards is illustrated in Fig. 2. Besides the
simplification, the advantage of this workflow is the full recov-
ery of the polar conjugates such as glucuronides which are
frequently lost during sample cleanup [21]. By implementation
of these key excretion metabolites in a method using authentic
reference standards, it is possible to investigate the metabolism
of a certain mycotoxin as successfully exemplified for DON in
vitro [22] and in vivo [23, 24]. The disadvantage of the dilute
and shoot approach is the prerequisite of the latest state-of-the
art triple-quadrupole mass analyzer to achieve the very low
LODs required. Even when these highly advanced instruments
are used, it is moderate to high exposure rather than very low

background traces that is detectable. A method developed by
Njumbe Ediage et al. [25] covers seven mycotoxins and
several important conjugation and breakdown products (in
total 18 analytes). Sample cleanup was optimized in a
progressive procedure where urine samples were extracted
with ethyl acetate/formic acid (99:1, v/v) followed by
strong anion exchange (SAX) SPE cleanup of the acidified
aqueous fraction. The combined extracts of the evaporated
organic phase and the SAX eluate were injected into the
LC-MS/MS system. Owing to the high concentration factor,
the reported recovery was between approximately 45 and
100 %. In contrast to results obtained by various groups
[15, 23, 26, 27], no DON-GlcA was detected in urine
samples naturally contaminated with DON. This might
indicate a loss of those conjugates during cleanup despite
successful validation. However, this could also be because
DON-3-GlcA was analyzed exclusively rather than DON-
15-GlcA which was recently suggested as the human main
excretion product [23]. The analytes included and the per-
formance characteristics of the five multibiomarker methods
described above are compared in Table 1. For quantitative
analysis of urine samples, all methods were performed in
selected reaction monitoring (SRM) mode. Methods 3 and 4
recently showed good agreement for most of the investigated
analytes in a mini interlaboratory comparison [28]. Although
in all the methods developed urine was the matrix of choice,
there are limitations related to this approach, e.g., differing
urine excretion owing to different fluid intakes. This can be
overcome partially by normalization for the creatinine con-
centration of a urine sample. In exposure studies it is
recommended to collect 24-h urine instead of first morning
or spot urine samples if possible as spot samples are usually
not representative of the excretion throughout a day [24]. In
addition, urinary excretion mainly represents recent mycotox-
in intake, whereas measurements in plasma/serum are more
likely to represent long-term exposure.

Analytical challenges

Sample preparation

A major challenge in mycotoxin biomarker research are the
extremely low analyte concentrations present in biological
fluids following dietary exposure. Hence, appropriate sam-
ple preparation protocols are crucial to obtain acceptable
LODs. This is, however, hampered by the great chemical
diversity of analytes typically included in multibiomarker
methods. This issue becomes even more complex once polar
conjugates such as glucuronides are included as they are
frequently lost during common cleanup approaches such as
SPE or IAC procedures [16, 21]. The five methods presented
in the previous section and in Table 1 illustrate different

LC-MS/MS-based multibiomarker approaches 5689
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concepts in an excellent way. The great advantage of the
methods using IAC cleanup is the specific retention of the
target compounds only. Thereby, high enrichment factors are
obtained without concentrating also potentially interfering
matrix compounds as they are removed efficiently. The
major disadvantage is the preselection of analytes by the
column chosen depending on the antibodies used. There-
fore, usually no conjugates or other biomarkers/analytes of
interest can be included in a method. Furthermore, enzy-
matic hydrolysis should be performed to include conju-
gates, and the overall procedure is time-consuming and
costly and requires a labor-intensive sample preparation.
This is in contrast to the dilute and shoot approach, where
a urine sample is centrifuged, diluted, and analyzed with-
out further pretreatment. However, to overcome matrix
effects and interfering matrix peaks, eluents, the chromato-
graphic gradient, and the dilution factor need to be care-
fully optimized [14, 16]. Njumbe Ediage et al. [25]
investigated different procedures including dilute and
shoot, dilute, evaporate, and shoot, liquid–liquid extrac-
tion, and two different SPE cartridges (SAX and Oasis
HLB). They concluded that the LODs obtained with
SAX columns were threefold to ninefold lower com-
pared with those obtained with Oasis HLB columns,
whereas the approaches based on sample dilution
yielded unfeasibly high LODs and significant signal
enhancement for ZEN and FB1. Various SPE cartridges
(Oasis HLB and MAX, Sigma Supel-Select HLB,
Sequant ZIC-HILIC, Bakerbond Polar Plus) have also
been tested during method development of the
established dilute and shoot method but failed to retain
the polar glucuronide conjugates, with the exception of
the Oasis HLB [16] and the ZIC-HILIC cartridges when
using optimized protocols.

Matrix effects and peaks

Co-eluting matrix components can negatively influence the
accuracy of quantitative methods through ion suppression or
enhancement in the ion source. This is particularly true for
ESI, where the competition for electrical charges or the
effect on the evaporation of ESI droplets can lead to signif-
icant ion suppression [29]. Hence, it is of great importance
to thoroughly investigate these effects during method devel-
opment and validation. Ion suppression can be reduced
efficiently by careful optimization of the eluents and gradi-
ent. However, this is not trivial and is a particular issue in
multianalyte methods, where compromises are unavoidable.
Matrix effects can be controlled by using matrix-matched
calibration [19], inclusion of internal standards [17, 30], or
correction of results with the apparent recovery [16]. How-
ever, when matrix-matched calibration or apparent recovery
for the correction of results is used, it still needs to be
considered that urine samples can differ in their concentra-
tion, thereby influencing matrix effects. This depends large-
ly on the volume of drinks consumed by an individual prior
to sample donation. Therefore, the blank urine which is used
for preparation of matrix-matched standards or the spiked
samples, respectively, needs to be chosen with the greatest
care and the effect of differing urine sample concentrations
should be investigated during validation.

Another major issue is the frequent co-elution of matrix
compounds. This requires careful selection of SRM transi-
tions in order to minimize background noise as well as
interfering peaks that might trigger false-positive results.
Descriptive examples are illustrated for an AFM1 interfer-
ence by Ahn et al. [17] and for zearalenone-14-glucuronide
(ZEN-14-GlcA) in Fig. 3. During common tandem mass
spectrometric compound optimization, usually the two most
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Fig. 2 Chromatogram from selected reaction monitoring (SRM) of a
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(period I), whereas between 10 and 15 min both polarity modes were
measured simultaneously using fast polarity switching (period II).

AFM1 aflatoxin M1, FB1 fumonisin B1, FB2 fumonisin B2, DON
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(Adapted from [16])
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abundant fragment ions are chosen as quantifier and quali-
fier ions, respectively. However, in challenging biomarker
applications, one should consider several SRM candidates
in order to select specific fragment ions. This evaluation
must include the injection of spiked matrix samples to
identify potential interferences and is particularly required
if no proper sample cleanup was performed. This issue is
visualized in Fig. 3.

Lack of authentic reference standards and certified reference
materials

In the past, most biomarker methods focused on parent
mycotoxins rather than on conjugated forms as no
(certified) calibrants are commercially available for the-
se metabolites. Despite this caveat, considerable prog-
ress has been achieved in the direct quantification of
mycotoxin conjugates without the need for enzymatic
hydrolysis. By application of this direct approach, prob-
lems such as the loss of information on the analyte’s
structure and its detoxification potential, but also incom-
plete hydrolysis and the time-consuming sample prepa-
ration can be overcome. Glucuronide conjugates have
been synthesized either using chemical synthesis as in
the case of DON-3-GlcA [31] and ZEN-14-GlcA [32] or
by in vitro assays using liver microsomes. With use of
this approach, GlcAs of DON [27, 33], ZEN and me-
tabolites [34], and T-2 toxin and HT-2 toxin [35] were
obtained in small quantities. An important quality con-
trol measure is the use of certified reference materials
including well-characterized calibrants to monitor the
performance of a certain laboratory. However, for

mycotoxin biomarkers, i.e., mycotoxins and their conju-
gates, there is no matrix reference material available that
would make it possible to assess the measurement per-
formance in the analysis of biologically important ma-
trices such as human or animal urine, plasma/serum, or
feces. This is critical especially in view of the complex
biological matrices and makes efforts such as a recent
interlaboratory comparison [28] even more important to
ensure analytical accuracy. The preliminary results
obtained in this study which determined up to eight
mycotoxin biomarkers in human urine showed good
agreement between most analytes. The overall rate of
satisfactory z scores [36] (|z|≤2) was 85 % (68 of 80
results), with unsatisfactory or questionable z scores
obtained for FB1, OTA, and α-zearalenol.

Application of LC-MS/MS methods in exposure studies

The multibiomarker methods presented have been applied in
several pilot studies to prove their applicability and to esti-
mate mycotoxin exposure in the populations/individuals
tested. In general, the application of these methods resulted
in advanced data on exposure patterns and revealed new
findings on co-exposure to the mycotoxin combinations
reported in Table 2. This is a significant advancement
compared with the results presented in the only reported
co-exposure study in which three separate methods
based on ELISA, HPLC with fluorescence detection,
and LC-MS/MS were applied to reveal exposure to
aflatoxin and DON in pregnant women from Egypt
[37]. An example of the relevance of the reported new
exposure data is the extent of co-exposure observed in
samples from Cameroonian individuals [16]. Overall, in
110 samples (63 %, n=175) at least one analyte was
detected, with a maximum of six analytes (AFM1, FB1,
OTA, DON, DON-15-GlcA, nivalenol) detected in a
single individual simultaneously, a severe co-exposure
that had never been reported before (see also Table 2).
In this study additionally the first quantification of
ZEN-14-GlcA and nivalenol in naturally contaminated
human urine was described. In a very recent South
African survey among women living in a rural, high
esophageal cancer region, two different multibiomarker
methods and, in addition, two single-target LC-MS/MS
methods were used and indicated frequent mycotoxin
co-exposure for the first time in South Africa. Further-
more, the first finding of urinary DON, ZEN, their
conjugates, and OTA in this region and an advanced
understanding of toxicokinetic patterns by direct deter-
mination of conjugation and hydroxylation products of
DON and ZEA was achieved [38]. In an Austrian pilot
survey, the structure of DON-15-GlcA was tentatively
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elucidated and identified as the major conjugation prod-
uct in human urine. Furthermore, it was estimated that a
significant number of study participants exceeded the
tolerable daily intake established for DON [23]

Outlook

The current trend of multianalyte methods in mycotoxin
biomarker research will certainly continue. We expect these
methods to be optimized and validated for even more chal-
lenging matrices such as feces and plasma as done for
single-target methods in the past [2]. The methods devel-
oped will significantly contribute to improved exposure
assessment. Thereby, they offer a new innovative and com-
plementary way of quantifying the risks associated with
mycotoxins, and will be of increasing importance besides
traditional food analysis.

Driven by the increasing sensitivity of modern mass
spectrometers, more detailed in vivo toxicokinetic studies
will be performed directly in humans following low toxin
intake via naturally contaminated food. These experiments
have mainly been restricted to animals in the past because of
high doses. Thereby, metabolism and detoxification routes
will be discovered as recently demonstrated for DON and
ZEN [24] to support advanced risk assessment. Further-
more, it is expected that more biomarkers of mycotoxin
exposure will be validated using these methods by means
of a dose–response relationship.

We also expect more laboratories to be involved in efforts
to synthesize novel mycotoxin conjugates such as α-
zearalenol glucuronide, β-zearalenol glucuronide, OTA glu-
curonide, and ochratoxin α glucuronide as calibrants and
implement them in multianalyte methods. This includes reg-
ulated toxins but also mycotoxins which have rarely or not
been addressed yet by biomarker research, such as T-2/HT-2
toxin, nivalenol, citrinin, Alternaria toxins, and moniliformin.
The quest for new key metabolites will be supported by high-
resolutionmass spectrometry and increasingly sensitive triple-
quadrupole analyzers.

Ultimately, the multibiomarker approach could serve in
the identification of what are some of the most important
mycotoxin mysteries: the role of mycotoxins in chronic
disease caused by low-dose long-term background exposure
through the intake of contaminated food and the toxicolog-
ical risks posed by combinations of mycotoxins of frequent
natural occurrence.
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