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Abstract The development of culture-independent strategies to study microbial

diversity and function has led to a revolution in microbial ecology, enabling us to

address fundamental questions about the distribution of microbes and their influence

on Earth’s biogeochemical cycles. This article discusses some of the progress that

scientists have made with the use of so-called ‘‘omic’’ techniques (metagenomics,

metatranscriptomics, and metaproteomics) and the limitations and major challenges

these approaches are currently facing. These ‘omic methods have been used to

describe the taxonomic structure of microbial communities in different environments

and to discover new genes and enzymes of industrial and medical interest. However,

microbial community structure varies in different spatial and temporal scales and

none of the ‘omic techniques are individually able to elucidate the complex aspects of

microbial communities and ecosystems. In this article we highlight the importance of

a spatiotemporal sampling design, together with a multilevel ‘omic approach and a

community analysis strategy (association networks and modeling) to examine and

predict interacting microbial communities and their impact on the environment.
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Introduction: community concepts and approaches

Microbes include Bacteria, Archaea, single-celled members of the domain Eukarya

(i.e. algae, some fungi, and protists), and viruses. They are all members of the

biological consortia responsible for the global biogeochemical cycling that sustains

all life on Earth. As such, changes in the structure of these microbial communities

(species abundance and their distributions) affect the functional dynamics of whole

ecosystems by influencing the ecosystem processes (biological, chemical, and

physical) through metabolic feedback. Changes in the abundance of the smallest

organisms can thus influence the vitality and success of the largest organisms in

ways so complex that we are only now beginning to develop appropriate methods

and technologies that help to characterize and predict them. The new tools are

enabling us to gain a better understanding of the microbial taxonomic diversity and

community function across the planet, so that we can answer the questions ‘‘Who is

there?’’ and ‘‘What are they doing?’’ This basic approach, which has many parallels

with the nineteenth-century natural history assessment of microbes, will eventually

enable researchers to predict ecosystem changes in the micro-biosphere and

determine how such changes influence global processes, such as climate.

Community-level characterization of microbes is vital because they do not exist

in the defined species populations that we have come to understand from observing

animals and plants. For example, if we wanted to explore the ecology of the African

savannah, it would be pertinent to ask questions regarding the population

demographics of lions, hyenas, zebras, and antelopes. Specifically, determining

the age, sex, and health of each population is often useful for exploring and

predicting the ecological impact of changes in the abundance of each taxon. Armed

with this information, analyses can be carried out to determine the impact of each

individual organism’s phenotype on the population’s phenotype, and to identify

how specific population phenotypes will interact to affect ecosystem equilibrium

and community stability. However, outside the etiology of disease, where the

epidemiology and biogeography of specific pathogens are studied to understand the

effects on hosts, most microbial ecology is based on community-level analysis; that

is, the conglomeration of populations that define an assemblage. At this level of

investigation, the tens of thousands of individual populations (and hence species)

present in an ecosystem (e.g. a gram of soil) are examined to determine the

community-level phenotype and its impact on ecological dynamics. Instead of

analyzing factors such as a population’s age and sex ratio, predicting the ecological

impact of changes in microbial abundance involves the recognition of the different

interaction types among all the individual organisms (symbiotic, mutualistic,

antagonistic, competitive, predatory, etc.) that govern, together with the abiotic

factors of a particular environment, the presence or absence of taxa, their

abundances, and their metabolism in a given habitat or community.

The concept of ‘community’ has been interpreted in a variety of ways

(Odenbaugh 2007). In plant and animal ecology, communities are defined as

multispecies assemblages, in which organisms live together in a well-defined

environment and interact with one another (Konopka 2009). However, defined

boundaries are not particularly easy to apply to, for example, an ocean or terrestrial
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ecosystem. Therefore, some researchers refer to the community as a supra-organism

with ‘‘emergent properties’’ (explained below), where the boundaries of a

community are defined by the strength of organismal interactions rather than

physical boundaries (Levins and Lewontin 1985).

In microbial ecology difficulties in defining ‘‘boundaries’’ and ‘‘interactions’’

hamper a unique interpretation of community even when researchers study the

microbial structure of the same ecosystem. The delimitation of microbial

communities based on environmental boundaries is complicated because there is

an extremely rapid feedback among microorganisms and environment, with both

being constantly influenced and changed in a cause-effect cycle. This constant

to-and-fro between environment and microbial community can lead to rapid

community turnover, and creates microhabitats at small spatial and temporal scales.

In the microbial world it is not clear, therefore, whether the individual microen-

vironments should be considered as the boundaries of microcommunities inside

higher biological assemblages called communities, or whether they should be

considered as communities on their own. It is arguably a philosophical issue, but

one of vital importance when we consider how to model these systems. Defining an

empirical community can be even more complex in highly fluid dynamic systems,

such as oceans, where dynamic tides and currents mean microorganisms can be

transported rapidly from one habitat to another. Microorganisms might then be

temporarily part of a water sample because of chance events. They might persist in

that environment for only a brief time, or they might interact with the individuals

that were already present in that niche, thereby altering that community. It is not

obvious, therefore, that all the individuals present in a sample from a single time

point should be considered part of a community, especially when their presence is

potentially the result of stochastic and temporary events. In addition, answering the

question of what defines an interaction is complex in microbial ecology. For

example, a one-liter sample of water from the surface (0–2 m) of the Atlantic Ocean

needs to be considered in relation not only to the organisms present in that sample,

but also those that are not present in that sample but which interact metabolically

(due to the distribution potential of metabolites released by a cell) with the sampled

community. At best, therefore, a sampling event can be considered an incomplete

snapshot of a potential community.

Recently, Konopka (2009) defined a community as a system exhibiting

characteristics that each of its component organisms don’t have when analyzed in

isolation. This addresses the so-called emergent properties of the community, in

that the community has a property that occurs because of, and is different from,

the properties of its individual components. Some of the issues to do with the

emergence of these properties are reviewed by Corning (2002), who proposed that

multidimensional interactions between the biological, physical, and chemical

components of a system have cooperative effects that play a major causal role in

the evolution of biological complexity. This multi-dimensional complexity is the

cornerstone of the ecological niche concept, and as such, provides a rational

foundation for describing a community as a system comprised of many niches,

but one that also presents its own specific niche. In this sense, Doolittle and

Zhaxybayeva (2010) argued that communities constitute lineages that occupy
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particular niches and that they can migrate collectively (sometimes as a biofilm)

to new environments where they reestablish their niches. Thus, the composition

of a microbial community might be selected for its collective adaptation (where

adaptation is an emergent property of the community) to environmental factors.

Several studies that used artificial selection experiments have suggested that the

phenotypic traits of a community are heritable and that selection can operate above

the level of the individual organism and even population. Swenson et al. (2000a)

selected aquatic ecosystems for the ability to degrade the environmental pollutant

3-chloroaniline in four replicated lines, and compared them with four lines in which

parent ecosystems were randomly chosen without respect to their degradation

ability. Over many generations of variation and selection, three of the four selected

lines increased their degradation ability whereas none of the four non-selected lines

did so (Swenson et al. 2000b). In addition, several host-associated communities

have shown heritability, such as when the reciprocal transplant of the gut

communities of mice reproduces the function of the transplanted community in the

new host (Vijay-Kumar et al. 2010).

This point of view can also be applied to the concept of reproduction, in regard to

whether an individual microbe is the reproductive unit or whether communities

should be understood as a higher level of reproductive entity (Godfrey-Smith 2009).

For example, each human is an assemblage of human cells (10 trillion) and many

more microbial cells (100 trillion). Each person could be conceptualized as a

human-microbial ecosystem, with the whole system (meta-organism) responding as

a single reproductive unit. Some research suggests that microbes could be

responsible for mate selection in fruit flies (Sharon et al. 2010), which suggests

that the microbial part of a meta-organism may play a significant role in the

behavior and evolution of the host organism. However, we tend to ignore this

potential influence when we consider the reproduction of an organism, choosing to

see the host as a whole unit rather than a collection of host and microbial cells, and

avoiding the fact that each component of the meta-organism has its own level of

influence over the event. This simplification (i.e. by just taking the emergent

property of the system) might be a useful model when considering microbial

communities in an environmental sample. In this respect, the community may be

conceptualized as the unit of ‘reproduction’ and the point of action for natural

selection.

Amplicon metagenomics and shotgun metagenomics

That microbes do not exist as isolated taxa might seem like a scientific dogma now,

but historically microbes have been analyzed by isolating them in axenic culture (a

pure culture of microorganisms free from cells or living organisms of any other

species) on artificial media. This approach led to a narrow picture of the diversity of

an ecosystem as only an estimated 5 % or less of the microbial diversity in the

biosphere is thought to be cultivable with standard culturing techniques (Amann

et al. 1995; Curtis 2002). Moreover, since Bacteria, Archaea, and microbial

eukaryotes do not live in single species ecosystems, axenic culturing limits our
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ability to examine the interactions between microbial species, and to understand the

species-habitat and community-habitat interactions.

A new era of microbial ecology was initiated with the concept of cloning DNA

directly from the environment, which is commonly attributed to Pace et al. (1986),

and was applied by Schmidt et al. (1991) who characterized 16S rRNA sequences

from a Pacific Ocean picoplankton population by cloning environmental DNA into a

phage genome and screening for clones that contained 16S rRNA genes. By 1998,

this technique of randomly cloning environmental DNA followed by elaborate

screening methods became known as metagenomics (Handelsman et al. 1998),

which can be translated as ‘beyond the genome’ (Gilbert and Dupont 2011). This

new label referred to the concept that researchers were now exploring the genomic

DNA from all the genomes of all the organisms in an environmental community

through cultivation-independent methods, and, therefore, going beyond the single

genome. More recently, with the advent of high-throughput sequencing strategies,

metagenomics has diverged into two fields: amplicon metagenomics (sequencing of

libraries of a PCR-amplified gene of interest), and shotgun metagenomics (screening

or sequencing of libraries of randomly isolated DNA fragments). Here we discuss

these concepts and provide some historical perspective.

Typical modern-day metagenomic projects assess the microbial diversity of

different environments by assembling a catalog of the discovered species and their

functions. These studies seek primarily to characterize the taxonomic structure of

the microbial community, either by using a taxonomic marker gene such as the 16S

rRNA (i.e. amplicon metagenomics) or by using random shotgun sequencing

methods. The shotgun metagenomic approach can be further divided into two

technically distinct groups. (1) cloning-based approaches using vectors such as

fosmids (single-copy circular DNA vector of bacterial origin capable of replicating

autonomously), cosmids (multi-copy DNA vector of bacterial origin with autore-

plication capability), and bacterial artificial chromosomes (BACs) suitable for

cloning large-insert (10–100 Kbp) libraries, or the use of plasmid vectors for short-

insert (\5 Kbp) libraries. These vector-based DNA isolation techniques are

designed mostly for heterologous expression and sequencing, as well as direct

isolation and sequencing approaches. (2) Direct next-generation sequencing (NGS)

approaches that forego traditional cloning strategies for DNA isolation, relying

instead on DNA fragmentation and capture via various ligation strategies (Gilbert

and Dupont 2011).

Continuing advances in NGS technologies have resulted in dramatically faster

and cheaper sequencing of DNA libraries. The current pinnacle of this acceleration

is the ability of shotgun metagenomics to reconstruct whole bacterial and archaeal

genomes without prior knowledge of these organisms (or their genome sequence) by

using powerful assembly algorithms that join short overlapping DNA fragments

generated by the sequencer into longer contiguous sequences (Thomas et al. 2012).

The two most commonly applied sequencing platforms in current metagenomic

studies are the 454/Roche pyrosequencing technology and the Illumina/Solexa

system. 454/Roche pyrosequencing is based on emulsion-PCR to amplify random

DNA fragments clonally, which are then attached to microscopic beads and

sequenced. This technology can currently be used to generate approximately a
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million 500–800 bp length reads (sequences) per run for *$10,000. The Illumina/

Solexa technology is based on the sequencing-by-synthesis technology of molecules

bound to a surface (cell flow) where clonal clusters are generated through bridge

amplifications (see Metzker 2010 for a more detailed explanation of both methods).

Currently, Illumina platforms (e.g. HiSeq2000) can generate 2–3 billion 150 bp

length reads for *$20,000.

This disparity in sequencing depth (number of reads per run) and read length

generated by each platform has led researchers to use primarily Illumina for

amplicon metagenomics and 454-pyrosequencing for shotgun metagenomics. The

short-read length, but high depth, of the Illumina platform is well suited to amplicon

metagenomics, such as in studies where the hyper-variable regions of the 16S rRNA

are analyzed. In those studies, extraordinary coverage of community composition

can be obtained, resulting in the recovery of huge number of species from an

environmental sample (e.g. Caporaso et al. 2011a, 2012b). In contrast, the 454

pyrosequencing platform, which generates fewer but longer reads, is advantageous

in shotgun metagenomics as these longer reads enable better functional assignments

of sequenced gene fragments. Genome assembly projects have found that a

combination of both 454 and Illumina is optimal for attaining both deep coverage

(number of times a particular genomic region is sequenced) and robust read-through

of repetitive regions of genomes. However, with the Illumina MiSeq platform now

generating *10 million 450 bp sequences per day for *$2,000, this desktop-sized

sequencer may prove itself capable of providing the balance between read depth and

read length and thus be suitable for most metagenomic studies.

Next-generation sequencing platforms also offer the flexibility to examine either

one sample in extreme depth, or to explore hundreds to thousands of samples in

parallel via multiplexing. This is done by adding a 9–12 bp DNA tag to each DNA

fragment prior to sequencing, then using that tag to identify the sample that each

fragment came from when many samples have been physically pooled together

(multiplexed) and sequenced in the same run. This method permits the simultaneous

exploration of hundreds or thousands of bacterial communities in a highly cost-

effective manner (Knight et al. 2012).

Microbial community diversity and phylogeography

The terms ‘‘community’’ and ‘‘assemblage’’ in the context of metagenomic studies

refer to the collection of microbial genomes in an environmental sample; that is, all

the microbes present in a sample are considered the microbial community of that

particular environment, irrespective of whether all the potential interacting units that

define the extent of the community are actually represented. To date, amplicon and

shotgun metagenomics have been used to characterize the taxonomic structure and

functional potential for microbial communities in hundreds of environments,

including marine sites (Gilbert et al. 2008, 2009; Rusch et al. 2007; Venter et al.

2004), agricultural soils (Rondon et al. 2000), forest soils (Lee et al. 2004), and

extreme environments such as acid mine drainage channels (Tyson et al. 2004),
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hypersaline waters (Narasingarao et al. 2011), and permafrost (Mackelprang et al.

2011; Yergeau et al. 2010).

Striking results have been reported from studies investigating the relative

abundance of taxa in different environments. For example, even with the

extraordinary depth of next-generation sequencing technologies, virtually none of

the bacterial communities studied have been completely sequenced; this speaks to

the incredibly high diversity of environmental samples. For example, in a gram of

soil, there are approximately a billion microbial cells, containing an estimated 4

petabase pairs of DNA (4 9 1012 bp). But even with today’s sequencing technology

it is financially unfeasible to sequence all four petabases once (approximate

cost = $150,000); indeed, most studies will generate only a few billion base pairs

per sample. This number corresponds only to a tiny fraction of the actual genomic

content of the community, and results in data sets representing primarily the more

abundant organisms. Adding to the level of community diversity in an environment

is the fact that microbial community structure can change dramatically over both

spatial and temporal scales as influenced by changing environmental conditions. For

example, studies of the human mouth have shown that different surfaces of the same

tooth have distinguishable microbial communities (Zaura et al. 2009), while

microbial communities in the open ocean may be stable across many kilometers.

Because significant temporal changes have been found in a variety of microbial

communities (Brown et al. 2009; Caporaso et al. 2011b, 2012a, b; Fuhrman 2009;

Gilbert et al. 2012), spatial analysis on its own is not sufficient to understand

microbial community dynamics. Therefore, studies should make use of both

longitudinal and cross-sectional sampling (spatiotemporal sampling) in order to

collect a complete representation of the real assemblage composition (extent of

organism interaction) for a community.

Microbial communities have been characterized by a few dominant taxa, and

many low-abundance, highly-diverse taxa. This latter group has been referred to

as the ‘‘rare biosphere’’ (Pedrós-Alió 2007; Sogin et al. 2006). Interestingly, while

a biosphere is normally used to describe a self-contained system, acquiring

connotations similar to the community term, there is little evidence to suggest that

these collections of rare bacteria are self-contained. Indeed, it is more likely that

they are continually interacting with more abundant organisms and changing in

abundance themselves. As community member abundance can change on different

temporal scales, a taxon once considered rare could become, or may have been, an

abundant taxon at another time (Brown et al. 2009; Caporaso et al. 2012b; Gilbert

et al. 2012).

Much remains to be learned about this rare biosphere, as for example, it is not

clear whether some groups are rare in every environment; that is, if ‘‘rareness’’ is an

evolutionarily conserved mechanism to avoid predation (Reid and Buckley 2011).

Rare taxa in an ecosystem may carry out key physiological functions, be responsible

for the resilience of a community, and serve as a reservoir of genetic resources

that can provide novel material to the community (Fuhrman 2009; Patterson 2009;

Reid and Buckley 2011). For example, Leptospirillum ferrodiazotrophum, which

accounts for less than the 10 % of the community biomass in a highly acidic mine

drainage, is solely responsible for nitrogen fixation in that habitat (Tyson et al.
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2005). In the marine realm, recent evidence suggests that taxa representing 0.01 of

the total marine bacteria fix more nitrogen than do the larger organisms (Montoya

et al. 2004). Rehman et al. (2010) found that phylotypes (defined as organisms with

97 % genetic similarity) showing the highest activity in the gut mucosa microbiota

represented less than 1 % of overall community. These examples highlight the fact

that low-abundance taxa can potentially be more active in the environment than

abundant species.

The rare biosphere may also be composed of dying or dead cells that function as

reservoirs of genetic material, and thus might play a role in adaptation if living cells

are able to acquire this genetic material (Reid and Buckley 2011). To ensure that the

rare biosphere is not an artifact derived from sequencing error or inappropriate

sampling design, and to understand the role of these microbes in the environment,

we need to combine several strategies. Metagenomics alone, at a modest sequencing

depth, cannot provide a highly resolved view of the community structure because

of its bias toward sequences of the most abundant taxa. To establish what proportion

of the rare biosphere might be ‘alive’, research combining sequencing effort with

methods such as fluorescence in situ hybridization (FISH) to visualize rare cells, cell

sorting to capture them, and metatranscriptomics (sequencing of the expressed

genetic material) and metaproteomics (exploration of the proteins expressed and

folded by the community) to examine their functional activity, may offer a better

understanding of the role that the rare biosphere has within the larger microbial

community.

Metagenomic studies have suggested that environments contain not only species

adapted to that specific ecosystem, but also species that have arrived in the area and

survived but do not flourish. These organisms represent the latent seed bank

(Caporaso et al. 2012b; Fuhrman 2009; Fuhrman et al. 2008; Gilbert et al. 2009;

Lennon and Jones 2011; Pedrós-Alió 2006; Sogin et al. 2006). The seed bank

hypothesis suggests that microbes can enter a dormancy state of low metabolic

activity and flourish again when the environmental conditions change. For example,

Caporaso et al. (2012b) analyzed samples from the English Channel, comparing a

single water sample analyzed at a depth of 10,000,000 16S rRNA sequences against

samples collected every month for 6 years and analyzed at a depth of 10,000 16S

rRNA sequences. They found that 99.95 % of all taxa present in the six-year survey

were also present at the single deeply sequenced time-point, and that the sum total

of species richness found in the 72 monthly observations comprised less than five

percent of the total diversity in the deeply sequenced time point. These results

suggest that the differences in community composition observed between time

points in the 72-month observation were due to changes in the relative abundance of

taxa that were always present in the environment, rather than fluctuations in

community membership, and that the coastal pelagic ecosystem, despite being a

fluid dynamic environment, maintains a persistent microbial community.

However, if longitudinal sampling in a coastal marine ecosystem suggests that all

the organisms are always present, then what role do differences in the distribution of

taxa abundances between environments play in our ability to interpret these

ecological patterns? While the abundances of most bacterial phyla vary among

habitats (soil, freshwater, oceans), a few phyla appear to be present in many
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environments (e.g. figure 9.7 in Kirchman 2012). For example, Proteobacteria

are observed to be common to most environments even though different ‘classes’ of

this group dominate soil, fresh water, and oceans. There are also examples of

environmentally restricted phyla, like the Acidobacteria, which are common in

soils but rare in freshwater and marine environments. Similarly, Actinobacteria

are abundant in soils and fresh water, but are rarely present in marine samples.

Tamames et al. (2010) used 16S rRNA sequences from several experiments in

natural and artificial sources to study the environmental distribution and diversity of

prokaryotic taxa. Their results showed that most taxa can be found in many

environment types and that while environmental specificity is not very common at

the higher taxonomic levels (phylum to family), it emerges at lower taxonomic

levels (genus and species). The most selective environments were those of animal

tissues and regions of extreme temperature, while soil and freshwater habitats were

found to be less restrictive environments.

While it is expected that habitats that differ in physicochemical features will vary

in their microbial community structure, it is more controversial to respond to the

question of whether two microbial communities will differ in two geographically

separated locations that have the same environmental conditions. In 1934, Lourens

Baas-Becking captured this idea in his famous quote, ‘‘everything is everywhere,

but the environment selects’’ (reviewed in de Wit and Bouvier 2006). He proposed

that the small size and extremely rapid dispersal potential of bacteria meant that

they had the potential to exist everywhere across the globe. Their biogeography,

therefore, would be dictated by the environmental conditions they encountered

when they arrived to a new environment. According to this view, historical factors

such as isolation and geography will not be the forces determining microbial

distribution. There are numerous studies that have generated data either in favor of

or against this idea. For example, bacterial communities in similar soil environments

are similar even in different latitudes (Fierer and Jackson 2006). In a similar way,

the same 16S rRNA and carbon and sulfur metabolism genes from Zoothmnium
niveum are found in the Mediterranean and the Caribbean seas (Rinke et al. 2009).

These examples suggest that local environmental parameters are selecting for these

bacteria as they arrive in these locations. Similarly, evidence of the persistent

microbial seed-bank (Caporaso et al. 2012b) also suggests that a large number of the

bacteria in a given ecosystem are already present, albeit at extremely low

abundance, and potentially in a latent form.

In contrast, Martiny et al. (2006) examined a number of microbial biogeography

studies to conclude that they indicated that the environment is only partly

responsible for the spatial variations found in microbial diversities and that

everything is not, therefore, everywhere. This is corroborated by studies that have

found that geographical isolation affects the genetic diversity of microorganisms,

and that there is a non-random distribution of microorganisms even in samples

separated by only few kilometers (Papke et al. 2003; Whitaker 2003). In these cases,

distance effects are negligible in contrast to environmental effects. Besides, Green

and Bohannan (2006) demonstrated evidence of taxa-area relationships where

community differences did increase with distance. Galand et al. (2009) studied the

biogeography of the rare biosphere in the Arctic Ocean and found that rare taxa
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experienced the same ecological drivers, and present the same patterns, as abundant

taxa. This suggests that ‘rare’ bacteria, at least at the depth of sequencing

observation used in that study, may not be part of a latent seed-bank, but are actually

active members of the community.

While evidence for both sides of the ‘‘is everything everywhere?’’ debate mount

up, it is becoming increasingly clear that current methods may be incapable of

definitively answering this question. The reason for this is two-fold. First, it is

virtually impossible to show conclusively that a microbial taxon is absent from a

given location with current sequencing methods, and because metagenomics is

biased towards more abundant species, rare taxa are usually not included in these

analyses (Green and Bohannan 2006). Second, most diversity studies rely on 16S

rRNA sequences at a 97 % similarity level, which represents phylogenetic diversity

but does not measure the full genomic diversity that can vary considerably between

closely related taxa.

Limitations of metagenomics approach and its implications for defining
‘‘species’’

Despite the remarkable scope of metagenomics, it still has many shortcomings. In

metagenomics, the concept of ‘‘species’’ has been substituted by Operational

Taxonomic Units (OTUs), which describes organisms with higher than 97 % 16S

rRNA sequence similarity as belonging to the same species. However, the definition

of species based on this arbitrary nucleotide identity cutoff is controversial, because

although it is generally accepted to be true that two organisms that share less than

97 % nucleotide identity between their ribosomal RNA small subunit genes do

not belong to the same species, the opposite is not always a valid statement. For

example, three species belonging to the genus Bacillus that share[99 % 16S rRNA

nucleotide identity are considered as separate species because of their physiological,

and hence genotypic/phenotypic, differences (Vilas-Bôas et al. 2007). Moreover,

there is some evidence for horizontal transfer of 16S rRNA genes between different

species (Schouls et al. 2003), which would lead to misleading inferences in

phylogenetic trees constructed on the basis of these genes (Gevers et al. 2005).

In spite of these problems, amplicon metagenomics has been widely used to

characterize bacterial ‘‘species’’ abundance and distribution patterns across

thousands of ecosystems using the 16S rRNA genes as a taxonomic marker; e.g.

the Earth Microbiome Project (Gilbert et al. 2010a, b; Gilbert and Dupont 2011).

One potential solution to this problem is to create studies that use more than one

gene. Although this is a more expensive approach, the financial disadvantage may

be outweighed by the ability to capture a more accurate picture of the whole genome

diversity of a community. Genomic diversity, even in terms of gene complement,

can be extraordinary even within the same species. For example, three strains of

E. coli have been shown to only share 40 % of their genes (Welch et al. 2002). The

concept that there are genes common to the genomes of all strains of a species, and

genes that are either partially shared or unique for each strain, has led to the terms

‘core genome’ and ‘accessory genome’ respectively (Medini et al. 2005; Tettelin
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2005; Mira et al. 2010). The accessory genome may have been differentially

retained in the strains from the common ancestor as an adaptation mechanism to

changing environmental conditions or may have its origin in lateral gene transfer,

also called horizontal gene transfer (Ochman et al. 2000). The concept of core- and

accessory-genomes has been combined into the ‘pan-genome’ theory, which

describes the full complement of genes in a species. The idea of a pan-genome for a

species suggests that the genomes of multiple independent strains will be required to

understand the diversity and complexity of any bacterial ‘‘species’’. This is a level

of genomic resolution that metagenomics, at current technically achievable

sequence depths, may not be able to provide. However, it is believed that the use

of ‘single cell’ genomics (Woyke et al. 2010) could yield extensive information

about the genomic variability of a bacterial population and could lead to improved

differentiation of bacterial lineages on the basis of their nucleotide polymorphisms

and whole genome gene complement.

Unlike amplicon metagenomics, shotgun metagenomics seeks to elucidate the

functional potential of a microbial community. While shotgun metagenomics has

considerable advantages over amplicon metagenomics (e.g. it does not involve PCR

amplification or primer biases), it also has notable limitations. Firstly, studies have

reported that the abundance of taxa and their functional genes in a metagenomic

library vary depending on the DNA extraction protocol used to acquire the nucleic

acid from the environmental sample (Morgan et al. 2010; Delmont et al. 2012). This

is a problem for all nucleic acid studies, but must be taken into consideration in

metagenomic analyses if we intend to compare the community structure of the

ecosystems studied. Secondly, metagenomic datasets are often only sequenced to

a low depth compared with the quantity of DNA in a sample, which results in only

the most dominant populations being observed. Thirdly, it is difficult to annotate

the function or taxonomy of a short sequence fragment resulting in a large portion of

data lacking an appropriate annotation; and finally, the lack of functional

verification for sequence annotation is a persistent problem, since metagenomics

sequence fragments can only be annotated if they have sequence homology to genes

(already available in public databases) that correspond to biochemically character-

ized proteins (Warnecke and Hugenholtz 2007).

Methods to overcome these limitations rely on the combination of metagenomics

with other approaches. For example, to overcome the first two limitations,

Warnecke and Hugenholtz (2007) suggest dividing microbial communities into

simpler subsets by cultivating organisms of interest (although it is often difficult or

even impossible to grow the environmentally relevant organisms), or to carry out

enriched population studies where researchers try to preferentially target the

population of interest removing the rest of the taxa (e.g. by filtration, centrifugation)

and accompany this strategy with single-cell methodologies such as fluorescent

activation cell sorting (Brehm-Stecher and Johnson 2004) or microfluidics (Weibel

et al. 2007). To improve sequence annotation, sequence fragment assembly can be

used to make longer reads out of shorter reads based on overlapping regions, with

the caveat that these may result in pan-gene fragments; that is, with the joining of

gene fragments from multiple strains of a single species, or multiple species of a

single genus combined into one fragment (Thomas et al. 2012). To improve the
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number of proteins with known function or taxonomy is a monumental task, and has

many potential barriers to success. However, the efforts to increase the speed and

efficiency by which new proteins are assigned to a relevant function will help to

alleviate this gap in knowledge. A final solution will be to begin comparing

metagenomic data to sequence data from metatranscriptomic and metaproteomic

studies (Jansson et al. 2012). The identification of commonalities between these

‘omic data may aid researchers in clustering specific predicted proteins into new

protein families that can be targeted for functional assays.

Functional analysis in metagenomics, metatranscriptomics
and metaproteomics

The principal objective of most metagenomic studies, once the taxonomic structure

of a community has been characterized, has been to link a function to its

phylogenetic source in order to understand what different organisms do within their

communities. Numerous studies, such as the Global Ocean Survey (Rusch et al.

2007), have been carried out in an attempt to elucidate which species are involved

in processes such as phosphorus, sulfur, and nitrogen cycling (reviewed in Gilbert

and Dupont 2011). In addition, the discovery of organisms containing molecules

and genes of commercial interest is growing rapidly. Functional analyses of

metagenomic data have produced information about new antibiotics, hydrolytic and

degradative enzymes, biosynthetic functions, and antibiotic resistance enzymes

(Riesenfeld et al. 2004; Lämmle et al. 2007; Garmendia et al. 2012).

Unfortunately, the discovery of new functions or genes associated with as of yet

uncultured taxa has been hampered by the scarcity of reference genomes available

(consensus representation of the set of genes of a given species that serve as

reference to assemble and annotate ‘omic data). Reference genomes are essential

for accurately determining the taxonomy of short metagenomic sequence fragments

(Woyke et al. 2009). While metagenomics is usually considered a gene-centric

approach (i.e. focusing on the gene as a unit of investigation), emerging genome-

centric methodologies such as the single-cell DNA sequencing (Marcy et al. 2007;

Raghunathan et al. 2005; Stepanauskas and Sieracki 2007; Woyke et al. 2009;

Zhang et al. 2006) will undoubtedly assist the assembly and annotation of gene-

centric metagenomic studies.

While metagenomics identifies the potential function of a community in the

environment, metatranscriptomic analysis (the study of the RNA from the entire

community of organisms) determines which microbes are active and which genes

are transcribed. Because metatranscriptomics targets only the transcribed elements

of each genome, the resulting data set is less complex, and requires less sequencing

depth in order to achieve the same level of coverage compared to a metagenome.

However, despite this seeming advantage, metatranscriptomics faces other major

technical issues that have impeded its broad application. Firstly, RNA molecules

generally have a short half-life, often degrading in minutes or even milliseconds,

which makes sampling the material from an environment difficult, as the act of

sampling may change the metatranscriptomic profile. Secondly, ribosomal RNA
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(rRNA) represents the majority of the RNA extracted (Urich et al. 2008), which

limits access (i.e. for a given sequence depth the majority of sequence data

generated will be rRNA) to the informative messenger RNA (mRNA) molecule that

reveals the genes and pathways expressed under a given condition. In response to

these challenges, protocols have been developed to isolate mRNA transcripts from

total RNA, including the development of subtractive hybridization (Giannoukos

et al. 2012) and enzyme-based rRNA degradation (Sharma et al. 2010).

A number of studies have employed metatranscriptomics to explore environmental

gene transcription. Poretsky et al. (2005) were the first to combine the enrichment of

mRNA by rRNA subtracting methods with a non-targeted gene sequencing approach,

in which they used random primers to amplify the mRNA and a vector-cloning step

before Sanger-sequencing of the captured transcripts. This method was rapidly

superseded by approaches using NGS techniques, for example pyrosequencing was

initially used to sequence all the RNA (both rRNA and mRNA) from soil

communities (Leininger et al. 2006; Urich et al. 2008), while subsequent approaches

combined rRNA subtraction with NGS in marine environments (Frias-Lopez et al.

2008; Gilbert et al. 2008, 2010c). One of the more recent advances in the field

introduced the stable isotope probing (SIP) approach (Dumont et al. 2011) to label

organisms using specific substrates, so that the label was actively incorporated into

their mRNA. These studies have given insights into which genes are most actively

transcribed in different environments, helping microbial ecologists understand the

temporal and spatial dynamics of community-level gene expression. For instance,

these studies revealed that transcripts involved in RNA and protein synthesis, protein

folding and export, and DNA repair are highly abundant in soil and aquatic

ecosystems (Kirchman 2012). Additionally, some of the highly abundant transcripts in

extremely disparate marine ecosystems were found to be identical, despite different

technical approaches, suggesting ubiquity in certain functional gene transcription

between very different environments (Gilbert et al. 2008).

Another way to link genomic diversity to functional activity is through

metaproteomics, the study of all the proteins in an environmental sample. While

metagenomics tells us which genes a community has, and hence which proteins it

has the potential to produce, and metatranscriptomics refers to which genes are

actually transcribed but not which proteins are actually translated and present,

metaproteomics tells us which proteins are actually expressed and present in the

community. Since it was first applied to study an acid mine drainage community

(Ram et al. 2005), metaproteomics has been used to analyze more complex

environments such as the human gut (VerBerkmoes et al. 2009), soil (Chourey et al.

2010), and the ocean surface (Morris et al. 2010; Sowell et al. 2011). Due to the

complexity of protein extraction, separation and identification, this field has been

less widely used than metagenomics and metatranscriptomics and it is still in its

infancy. Challenges in the field include the reliable identification of low abundance

proteins. Resolving this problem is dependent on the development of higher

sensitivity mass spectrometers. Also, while there is some evidence of a relationship

between the relative abundance of an mRNA fragment and the relative abundance

of its corresponding protein, this work still requires significant interpretation

because of the posttranscriptional regulation of transcripts.
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To date, the vast majority of ‘omics studies have been organism, gene, or

pathway-centric, rather than focused on the integrated community. Despite the great

potential of the current methods and techniques to analyze the ecosystem at a

community level, the interaction between members of a community and their link

with the environmental gradients they are exposed to has been understudied

(Jansson et al. 2012). One of the significant barriers is how to use different

techniques to explore relationships observed by a specific ‘omic technique, or

relationships between patterns observed with different ‘omics techniques. For

example, comparing shotgun metagenomics and metatranscriptomics, researchers

found that there was very little overlap between the mRNA transcripts and genes

that could be annotated (Gilbert et al. 2008, 2010c). Similarly, it is difficult to find

direct correlations from transcripts to proteins (Smith et al. 2010). However, as

more datasets become available it will become increasingly easier to explore

interactions between different ‘omic levels, aided by the development of novel data

analysis tools to enable integration of, for example, metagenomic data and

metaproteomic data, helping us to explore interactions within a community from

multiple perspectives.

Analyzing the community as a system

Recognition of the fact that organisms modify their environments and that such

phenomena are important on a global scale is vital in designing the next generation

of experimental and observational studies. The properties of the community, or

community phenotype, as we have already suggested above, can be understood as

the emergent properties of multifaceted interactions between different populations

(e.g. metabolic, predatory, competitive, cooperative). These interactions are in turn

driven by the interactions between each cellular unit comprising that population.

Those cells are in turn driven by the metabolic interactions and molecular dynamics

of their cellular biochemistry, and so on. One way to capture these multilevel

interactions is via computational simulations of community dynamics. For example,

genome-derived metabolic flux-balance models (Henry et al. 2010) can be used to

generate a simulated community, in which the energy flux between cells can be

balanced within an artificial system. In this simulated system, we can populate

cellular constructs with cellular metabolic models from different species (derived

from their genomes), then set this system running under defined external stimuli

and observe the effects of changing environmental conditions (e.g. O2 or CO2

concentrations) on the population structure of the microbial community.

In principle, it is conceivable that the quantified inputs and outputs of a system

model designed to emulate every ecosystem on Earth could drive a system model of

the whole Earth, in order to enable highly accurate predictions of global responses

to, for example, climate change. Doing so, however, would require, firstly, a

genome for every relevant organism in a community at every given potential

environmental condition for that community; secondly, a better understanding and

predictive capability for genomic evolution in microbial organisms; and finally, a

much more comprehensive understanding of cellular biochemistry, the functional
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properties of specific genes, and the transcriptional and proteomic response of each

organism to a myriad of external stimuli scenarios. This information currently does

not exist for any system on Earth. While the development of this knowledge and the

necessary technologies should certainly be pursued, until then it is necessary to

focus on how particular communities, and their collective phenotype, respond to

myriad external stimuli.

Determining species interaction in a community is of great interest because it

could help microbiologists understand why some organisms tend to co-occur while

other species are never found together in an environment. Species interaction

analysis could also help us understand and detect cooperative effects, where two or

more populations or species cooperate to supply each other’s nutritional needs, often

by metabolizing compounds that each species or population is unable to biodegrade

alone. Co-occurrence, however, does not necessarily infer a metabolic or physical

interaction. Yet co-occurrence networks (e.g. Steele et al. 2011) can generate

hypotheses about potential interactions that can then be tested experimentally in

regard to particular physical and chemical variables.

Regarding community-environment interaction, the integration of environmental

aspects to explore community changes in previous studies has been done in an indirect

and discrete way, comparing qualitatively dissimilar environments, such as terrestrial

versus marine niches (Gianoulis et al. 2009). For example, Dinsdale et al. (2008) used a

comparative metagenomic approach to analyze the frequency distribution of microbial

and viral metagenomic sequences in order to explore the functional potential of nine

environments. Currently, several endeavors are under way to help generate information

about global microbial ecosystems; for example, specific natural habitats are regularly

sampled and continuously monitored in order to recover time-series information.1 The

Earth Microbiome Project (http://www.earthmicrobiome.org) is an additional multi-

disciplinary effort that aims to analyze microbial communities across the globe in a

comparable framework (Gilbert and Dupont 2011; Gilbert et al. 2010a, b; Knight et al.

2012). These efforts further our understanding of community composition changes over

time and the environmental factors that may have the greatest influence on the observed

changes in microbial diversity. This information together with the future development

of powerful predictive models will make it possible to forecast changes in microbial

communities on the basis of existing patterns (Larsen et al. 2012).

Species interactions and how these vary with the environment can be represented

by association networks or by network-modeling approaches. One of the first studies

using microbial networks developed a mathematical method called a ‘‘local

similarity metric’’ for evaluating time-lagged relationships; that is, to study if one

organism tends to follow another or tends to decline after another one increases

(Ruan et al. 2006). These pairwise interactions were used to construct a network

diagram, which reflected the positive and negative relationships among microor-

ganisms and between microbes and environmental variables. Fuhrman and Steele

(2008) extended the analysis by focusing the network analysis on what they called

1 Western Channel Observatory L4, http://www.westernchannelobservatory.org.uk; the Hawaiian Ocean

Time Series, http://hahana.soest.hawaii.edu/hot; the Bermudan Ocean Time Series, http://bats.bios.edu;

and National Ecological Observatory Network, http://www.neoninc.org.
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‘‘nearest neighbors’’ (organisms or factors that correlate directly either positively or

negatively with one another). Results suggested that the taxonomic relatedness did

not necessarily mean that these taxa would be found in similar ecological niches.

However, a six-year time-series study in which microbial association network

analysis was carried out (Gilbert et al. 2012) showed that correlation in abundances

was stronger within bacterial taxa than between bacteria and eukaryotes, or between

bacteria and environmental factors. These results indicated that species-species

interactions between bacteria play a more important role in regulating community

stability than do their interactions with eukaryotic organisms or the environment.

Instead of examining communities taxonomically, an alternative technique is to

identify environmentally restricted functional genes and pathways in order to detect

the metabolic activities in distinct environments (e.g. Dinsdale et al. 2008; Rusch

et al. 2007). Gianoulis et al. (2009) suggested that focusing on the molecular

processes of the ecosystem as a whole provided more information than focusing on

species composition. Similarly, Barberán et al. (2012) found significant differences

between the community profile derived from the 16S rRNA gene and from the

functional trait set in 53 metagenomic aquatic samples from the Global Ocean

Sampling expedition. The traits these authors analyzed proved to be valuable

ecological markers because they discriminated between different marine ecosystems

and even between the same ecosystem in different oceans. Moreover, while

characterizing the inter-trait relationships, Barberán et al. (2012) proposed some

traits that could be further developed as habitat descriptors during sample

processing. All these studies highlight that in some ecosystems, exploring the

community as a whole may be a more informative approach than a species-focused

approach.

These networks are also useful to predict microbial changes of an ecosystem. Yet

the accuracy of predictive modeling approaches depends on the characteristics

of the environment and microbial community to be analyzed. For example, the

dispersal capacity of an oceanic microbial species is believed to be hampered by

landmasses and ocean currents (Marshall et al. 1997), so such models would have to

include ocean currents as a factor for microbial diversity prediction in the ocean

(Follows and Dutkiewicz 2011). In contrast, the dispersal of microbes in soil seems

to be dominated by its structural complexity; the heterogeneous structure of soils is

believed to impede the dispersal of microbial metabolites (Luttge 2005), so soil

microbial community modeling will have to reflect this aspect (Zhang et al. 2005).

Finally, in order to model a dynamic system, other interactions, besides species-

species interactions and community-environment interactions, should be taken

into account. On the microscale level, each cell also interacts with its cellular

environment via protein–protein interaction, protein–DNA interaction, gene inter-

action, and so on. Furthermore, interaction can be thought of as interchanging

genetic material, for example, through viral gene transfer, horizontal gene transfer,

or transposon movement. At the macroscale level, communities are not closed and

isolated entities; instead, dispersal and interactions between communities and

interdependencies of local interactions occur. The ‘‘metacommunity’’ concept, from

plant and animal ecology, describes a set of local communities linked by the

dispersal of multiple potentially interacting species such that both local interactions
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and regional processes influence local community assembly (Leibold et al. 2004).

While metagenomics has yet to work with such theoretical approaches, metacom-

munity analysis appears to be an inevitable development of single community

studies in the microbial world.

Conclusions

How has metagenomics influenced our understanding of microbial ecology?

Alternatively, what do we know now that we didn’t know when we were just

exploring the microbial physiology of cultured bacteria? It is not presumptuous to

say that metagenomics has radically altered our understanding of how many

bacterial species exist in the environment, and how diverse their genomic potential

is. In the last 30 years, through the use of environmental DNA studies and the more

recently developed metagenomic techniques, microbial ecologists have changed our

perspective regarding microbial biogeography, metabolic interactions, and commu-

nity dynamics. This was achieved by leveraging technology to reach deep into the

microbial world and uncover the dark potential (the previously unknown

functionality) of the cells and populations that exist there. The metaphor of

illuminating the ‘black box’ of biology is probably highly appropriate to describe

the manner in which ‘omics is shining a light on the components of natural

communities. Now we have identified some of these components, we can begin

characterizing their functional role in the ecosystem.

In many ways metagenomics is at a crossroads between researching the individual

components of microbial complexity and the emergent properties of systems. While

some commentators have labeled metagenomics as a ‘top-down’ driven methodology

that simplifies the complexity of the individual components of the system, it is also a

valuable tool for elucidating these components. The gene-centric perspective of

metagenomics might seem like a method for exploring the complexity of the system,

but the current limitations associated with the annotation of specific potential gene

sequences, and the inability to often associate functions with phylogeny, means that

metagenomics frequently ends up as a noise-generation machine. Indeed many of the

developments in bioinformatics since the inception of NGS have revolved around

trying to ‘make sense’ of the hubbub of data. However, metagenomics is now entering

a new phase whereby whole pan-genomes are being reassembled from the ‘‘noise’’ in

an attempt to reinstate the genome, suitably reconceived, as a unit of information that

can contribute effectively to community-level analysis. This research avenue will

undoubtedly help us to reconstruct the mechanistic components of metabolic

interaction and cell–cell interaction within microbial ecosystems, and may help to

predict certain emergent properties of these systems.

All the while as we try to better understand the units of complexity in microbial

communities, we are also attempting to use the existing data streams to identify the

emergent properties of the community interactions by mapping the dynamic

turnover of genes and transcripts, proteins and metabolites on to our existing, if

limited, understanding of the metabolic complexity of microbial interactions. This is

proving to be valuable for coarse-scale interpretations of the emergent metabolic
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properties of the highly complex and spatiotemporally dynamic processes that act at

the molecular level but are felt by us at the extreme macro-scale. These micro-scale

processes influence macro-scale climate processes and ecosystem services that

influence human beings and our social cohesion. Therefore, the role of ‘omic

approaches (metagenomics, metatranscriptomics and metaproteomics) in elucidat-

ing both the micro- and macro-scale dynamics of microbial ecosystems cannot be

underestimated, as they have the capability, when combined with appropriate

experimental design, to redefine our understanding of how ecosystems respond and

feed back to produce system change. These developments, actual and still potential,

even with caveats about the challenges ahead, suggest how far beyond the genome

community-level analysis has gone and can go.
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