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Abstract The aim of this paper is to propose foundations for a formal model of

representation and numerical evaluation of a possibly broad class of arguments,

including those that occur in natural discourse. Since one of the most characteristic

features of everyday argumentation is the occurrence of convergent reasoning,

special attention should be paid to the operation �, which allows us to calculate the

logical force of convergent arguments with an accuracy not offered by other

approaches.

Keywords Argument structure � Linked argument � Convergent argument �
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1 Introduction

Like most research carried out by the Polish School of Argumentation, our approach

is rooted in the Polish tradition of methodology and pragmatics stemming from the

Lvov-Warsaw School [cf. (Koszowy and Araszkiewicz 2014), this issue]. Using the

concept of logical probability elaborated by Ajdukiewicz (1974), we adjust and

develop a simple method for evaluating argument force, as presented by Tokarz

(2006). The model of argument proposed in this paper consists of two components:

(1) a formal model for identifying argument structure and (2) a formal model for

computing the acceptability (credibility) of argument conclusions (the terms

‘credibility’ and ‘acceptability’ are used interchangeably).

First we present the background of our approach. We give a brief overview of

elementary ways of expanding simple arguments into more complex argumentative

M. Selinger (&)

Department of Logic and Methodology of Sciences, University of Wrocław, ul. Koszarowa 3/20,

51-149 Wrocław, Poland

e-mail: marcisel@uni.wroc.pl

123

Argumentation (2014) 28:379–393

DOI 10.1007/s10503-014-9325-3

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/191416171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


structures, and discuss the evaluation method for them recommended by Tokarz

(Sect. 2). Our contribution is the introduction of precise and, in comparison with

other approaches, simple set-theoretical definitions of the notions used to describe

these structures (Sect. 3). These definitions allow us to consider non-standard or

fallacious structures such as divergent, incoherent or circular arguments. Next, we

propose a numerical method for argument evaluation (Sect. 4). This method shows

how, depending on the structure of an argument, the acceptability of its premises

can be transformed into the acceptability of its conclusion. Specifically, our

contribution is the introduction of an algorithm which allows us to evaluate

convergent arguments. Finally, we discuss some related work on argument structure

and evaluation, and some issues that can constitute subject matter for further studies

(Sect. 5).

2 Background

Our research on formalization of argument structure was motivated by the

methodological need to clarify the fundamental concepts of argumentation theory,

as they were introduced in the Polish literature by Hołówka (1998) and by Tokarz

(2006) and his collaborators (Szymanek et al. 2003).

Our approach rests on a conception of argument which is widespread in critical

thinking and informal logic. The key feature of this conception is the distinction

between linked and convergent arguments. It is not easy to ascertain who first made

this distinction and who introduced the related method of diagramming, which is the

graph-theoretical method of representing arguments in informal logic. Reed et al.

(2007) indicate Whately (1836) as a forerunner of this method. As for the linked-

convergent distinction and its representation, they refer to Beardsley (1950) and

Freeman (1991); however, at least Thomas (1973) should be mentioned here as

well.

Linked arguments are usually diagrammed using one arrow to represent the

relationship of support between their joint premises and the conclusion (Fig. 1a).

The premises of convergent arguments support the conclusion independently, so the

diagrams represent each of them as connected with the conclusion by a separate

arrow (Fig. 1b). Combining these two types of arguments, or series of them, yields

more complex structures (Fig. 1c).

The method of evaluation recommended by Tokarz can be briefly described as

follows. Integers from 1 to 5 are assigned to the first premises and inferences of a

given argument (the first premises are those propositions that are not conclusions of

any inference). If the number 5 is assigned to a premise it means that the proposition

is fully credible; 1 means that it is fully non-credible (i.e. its negation is fully

credible); 3 stands for a neutral value; 2 and 4 are intermediate values. In the case of

inferences, 5 means that the conclusion follows from the premises; 1 means that the

negation of the conclusion follows from the premises; 3 that the conclusion is

independent of the premises; 4 that relative to these premises the conclusion is more

credible than its negation; and 2 that the reverse holds. In the next steps of the

procedure we compute the value of the final conclusion of the argument, using the
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operations of minimum and maximum as follows. To determine the value of the

conclusion of a single inference we take the minimum of the numbers assigned to it

and to its linked premises, and to determine the value of the conclusion of many

convergent inferences we take the maximum of the numbers calculated for each of

the inferences separately. The entire argument is acceptable if the number assigned

to its final conclusion is 4 or 5.

The advantages of this method are its simplicity and intuitiveness. A closer

analysis, however, reveals some difficulties. First of all, as there is only one

intermediate value between 3 and 5 (and between 1 and 3), it is impossible to

strengthen the argument by adding a new convergent reasoning which is acceptable

but not rated at 5. Moreover, the operation of maximum selects only the strongest of

the convergent arguments, while the rest are skipped over in the computation. This

means that the formulation of convergent arguments is pointless. Note that the same

idea (it can be called the ‘maximum principle’) is used in the Carneades

argumentation system when the proof standard ‘preponderance of the evidence’ is

employed (Gordon and Walton 2009). On the other hand, the operation of minimum

seems to be too ‘liberal’ when applied to linked arguments with many premises that

are not fully credible. Intuitively speaking, two doubts are more than one doubt (just

as the probability of the occurrence of two separate events at the same time is lower

than the probability of each of them individually). Furthermore, many doubts taken

together regarding propositions that, considered separately, are to some degree

credible, can make the set of these propositions not credible (as an improbable

coincidence may consist of probable component events). A further undesirable

consequence seems to be that what counts in the evaluation of linked arguments is

actually the acceptability of the weakest premise, so that it is useless to improve such

an argument by increasing the credibility of other premises (or of the inference).

These objections lead to the conclusion that the number of intermediate values

should be unlimited and the operations of minimum and maximum should be

revised. For this purpose we turn to the concept of logical probability as defined by

Ajdukiewicz: ‘the logical probability of a statement A relative to a statement B is

the highest degree of the certainty of acceptance of the statement A to which we are

entitled by a fully certain and valid acceptance of the statement B’ (Ajdukiewicz

1974, p. 121). Thus, we will use the notion of logical probability to model the

credibility of arguments in a formal way. To specify our understanding of the

‘degree of credibility’, let us cite one more characteristic, which accurately
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Fig. 1 Examples of linked, convergent and multilevel argumentative structure
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supplements Ajdukiewicz’s definition: ‘It is the degree of belief of a ‘‘perfectly

rational being’’ who has precisely as much information as we do’ (Kemeny 1959,

pp. 110–111).

3 Structure of Arguments

In this section we show how argumentative structures can be simply defined and

described in terms of set theory. Since the basic notions introduced below are

familiar to those who deal with the theory of argumentation, we will present them in

a somewhat abbreviated form.

Let L be the set of the propositions of a given language.

Definition 1 (Sequent). A sequent is any ordered pair of the form\P, a[ , where

P is a non-empty and finite subset of L and a [ L.

The sequent \P, a[ , where P = {a1, a2,…, an}, will be denoted by P c a or

subsequently by (a1, a2,…, an) c a. Sequents correspond to single inferences

represented by separate arrows in the diagrams.

Definition 2 (Sequent premise, Conclusion, Counterdomain, Range). The set of

premises (or the domain) of the sequent P c a is the set P; the proposition a is the

conclusion; the set {a} is the counterdomain; and the set P [ {a} is the range.

The domain, counterdomain and range of a sequent S will be denoted by p(S),

c(S) and r(S), respectively.

Definition 3 (Argument). An argument is any non-empty and finite set of sequents.

In other words, arguments are simply (non-empty and finite) relations between

(non-empty and finite) sets of propositions and single propositions of L.

Definition 4 (Argument premise, Domain, Conclusion, Counterdomain, Range).

The set of premises (or the domain) of an argument A is the set of all the premises of

all its sequents—symbolically, a [ P(A) iff there exists a sequent S [ A such that a [
p(S); the set of conclusions (or the counterdomain) of A is the set of all the

conclusions of all its sequents—symbolically, a [ C(A) iff there exists a sequent S [
A such that a [ c(S); the range of A is the set R(A) = P(A) [ C(A).

Definition 5 (First premise, Final, Intermediate conclusion). The first premises of

an argument A are the elements of the set Fp(A) = P(A) - C(A); the final

conclusions are the elements of the set Fc(A) = C(A) - P(A); the intermediate

conclusions are the elements of the set Ic(A) = C(A) \ P(A).

The example of a more complex structure represented by Fig. 1c) can serve as an

illustration. This argument, which we will call D, is denoted by the following

expression: {(a1) c a4; (a2) c a4; (a3) c a4; (a4, a5, a6) c a8; (a7) c a8; (a8) c a}.

Furthermore we have P(D) = {a1, a2, a3, a4, a5, a6, a7, a8}; C(D) = {a4, a8, a};

R(D) = {a1, a2, a3, a4, a5, a6, a7, a8, a}; Fp(D) = {a1, a2, a3, a5, a6, a7}; and

Fc(D) = {a}; Ic(D) = {a4, a8}.
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Sequents, because they correspond to single inferences, are the real atoms of

argumentation, so that sets consisting of only one sequent can be called atomic

arguments. There are two kinds of atomic arguments: simple arguments with only

one premise and linked arguments with many premises. Convergent arguments are

not atomic. So, contrary to what seems to be vaguely suggested by the standard

distinction, and what is followed by Vorobej in (1995), linked and convergent

arguments are structures that must be distinguished at two different levels of

complexity (like atoms and molecules in chemistry). Thus convergent arguments

are those that consist of many subarguments which have the same final conclusion

(a subargument of A is any non-empty subset of A).

Unlike the arguments in the examples considered so far, some arguments can

have more than one final conclusion. Furthermore, the set of final conclusions can

be empty. The set of first premises can in some cases be empty too. In order to

distinguish and describe these somewhat atypical structures we introduce some

additional notions. If an argument consists of two or more separate (possibly even

irrelevant) parts, each of them must have its own, different final conclusion. In order

to characterize this kind of incoherence we will first define the relation of being

(argumentatively) connected in a given structure.

Definition 6 (Connected propositions). Propositions a and b are connected in an

argument A, symbolically ConA(a, b), iff there exists a sequence of propositions d1,

… dn (n C 2), such that for every k \ n, the propositions dk and dk?1 belong to the

range of the same sequent S [ A, and furthermore d1 = a and dn = b.

Definition 7 (Coherence). An argument A is coherent iff ConA(a, b), for every

proposition a, b [ R(A). Otherwise, the argument is incoherent.

The relation of being connected is an equivalence relation. The analogous

relation which holds between whole sequents of a given argument is also an

equivalence relation. Therefore incoherent structures can be regarded as the sums of

mutually disjoint, coherent arguments, i.e. the sums of their separate parts. For

example, the incoherent argument {(a1) c a2; (a2) c a3; (b1) c b2} is equal to the

sum {(a1) c a2; (a2) c a3} [ {(b1) c b2} of two coherent arguments.

An argument can also have many conclusions due to the divergence of its

structure. In order to express this property precisely we must first define the relation

of support between the premises and the conclusions of a given argument.

Definition 8 (Support relation). A proposition b is directly supported by a

proposition a in an argument A iff there exists a sequent S [ A such that a [ p(S) and

b [ c(S); b is indirectly supported by a iff there exists a sequence of propositions d1,

d2, … dn, where n C 3, such that for every k \ n, dk?1 is directly supported by dk in

A, and furthermore d1 = a and dn = b; finally, b is supported by a, symbolically

SupA(a, b), iff b is directly or indirectly supported by a in A.

Definition 9 (Divergence) An argument A is divergent iff there exist two different

propositions a and b such that ConA(a, b), but neither SupA(a, b), nor SupA(b, a),

and furthermore there exists no proposition c such that SupA(a, c) and SupA(b, c).
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Similarly to incoherent structures, divergent arguments can be regarded as the

sums of non-convergent, but not necessarily mutually disjoint arguments. For

example, the divergent argument {(a1) c a2; (a2) c a3; (a2) c a4} is equal to the sum

{(a1) c a2; (a2) c a3} [ {(a1) c a2; (a2) c a4} of two non-divergent arguments.

Incoherence and divergence result in an increased number of final conclusions.

On the other hand, the number of final conclusions, as well as the number of first

premises, can be reduced by a vicious circle, i.e. a cycle that may occur among the

elements of an argument range. Since the relation of support is transitive, circularity

of arguments can be easily defined as follows.

Definition 10 (Circularity). An argument A is circular iff there exists a

proposition a such that SupA(a, a).

As the following examples show, circular arguments can have no first premises:

{(a) c b; (b) c a; (a) c c}; no final conclusion: {(a) c b; (b) c a; (c) c b}; or

neither first premises nor final conclusion: {(a) c b; (b) c a}. Thus circularity is

traditionally regarded as a serious structural defect that makes evaluation of

arguments impossible (petitio principii). Therefore we exclude such arguments from

further analysis.

To conclude this section let us add that each coherent, non-divergent and non-

circular argument can be transformed into a finite, multilevel structure (Selinger

2010). The first level is the set of all the sequents whose conclusion is the final

conclusion of the whole argument. Each subsequent level consists of all the

sequents whose conclusions are premises of the sequents from the previous level,

and so on. Such an argument always has exactly one final conclusion and at least

one first premise, and all the premises of its last level are first premises. These

properties make it easier to provide a clear and effective procedure for evaluation.

4 Evaluation of Arguments

In this section we present a method for numerical computation of argument force. We

assume that arguments considered to be computable are not circular. For the simplicity

of the presentation we also assume that each argument considered is coherent and non-

divergent. We will show how to transform the values of the first premises of such an

argument into the value of its conclusion. We consider these values to be the degrees of

acceptability of propositions for a given, rational agent in a given epistemic situation,

so the term epistemic values is relevant here. By analogy to probability, epistemic

values will be represented by the rational numbers from the closed interval [0, 1]. The

natural order of the numbers in this interval reflects the order of the set of epistemic

values, having a greatest element, a smallest element, and an unlimited number of

intermediate values, which allow us to strengthen or weaken arguments repeatedly an

unlimited number of times. Thus we have the following definition.

Definition 11 (Evaluation function). A function of evaluation is any function

mapping a set of propositions L0 ( L into the closed interval [0, 1] of rational

numbers.
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Obviously, not every function of evaluation can be assigned to a rational agent.

The issue of the canons (or postulates) of rationality is discussed systematically e.g.

by Kaplan (1981).

Let us consider a single sequent. Its premises support its conclusion with some

strength (or weight) that is to be measured by the numbers of our scale. We equate

the strength of a given sequent with the acceptability of its conclusion under the

condition that its premises are fully acceptable, so that by analogy to the conditional

probability considered by Ajdukiewicz we call it conditional acceptability. For a

given sequent S = (a1, a2,…, an) c a we will denote it by w(S) or alternatively by

w(a/a1, a2, …, an). Formally, w is assumed to be a predefined function mapping the

sequents of L into the closed interval [0, 1] of rational numbers. This parameter

corresponds to different types of inferences which can be regarded as argumentation

schemes. It is inversely proportional to the number of objections that can be raised

against the arguments of a given type by some methodical procedure such as that

proposed by Walton (2012). If the conclusion of a sequent is the logical

consequence of its premises, i.e. the sequent is deductive, its conditional

acceptability is 1.

Let v be an evaluation function. It will be convenient for further considerations to

assume that our language L contains the connective of conjunction among its

expressions. We also assume that if some propositions are elements of the domain

of the function v, then so is their conjunction. Thus we can equate the value of the

(set of the) premises of a given linked argument with the value of their conjunction

and compute it as a simple argument. In order to simplify further considerations we

assume at this stage that the premises of the linked arguments are independent.

Definition 12 (Mutually independent propositions). Propositions a, b [ dom (v)

are mutually independent iff w(a/b) = v(a) and w(b/a) = v(b).

If both conjuncts of a given conjunction are mutually independent, then its value

is a simple, arithmetical multiplication of the values of the conjuncts. Thus the value

of the entire conjunction is decreased proportionally to the values of its conjuncts,

and for the evaluation function v we have the following:

Definition 13 (Conjunction value). If a, b [ dom (v), and they are mutually

independent propositions, then v(a ^ b) = v(a) � v(b).

Since multiplication is commutative and associative, we can use it to compute

sequents with more than two premises, but first we need to expand the concept of

independence of propositions to take into account entire sets rather than only pairs

of propositions:

Definition 14 (Independent set of propositions). A finite, multi-element set of

propositions A ( dom(v) is independent iff every proposition a [ A and the

conjunction of all the propositions belonging to A - {a} are mutually independent.

Thus, if a1, a2,…, an [ dom(v), and if they form an independent set of

propositions, then v(a1 ^ a2 ^ … ^ an) = v(a1) � v(a2) � … � v(an).

Now we can define how to compute the value of the conclusion of a single

sequent. We will denote this value by vS(a), where a is the conclusion of
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S. Formally, the function vS is an extension of the function v. Thus we assume that

the conclusion of the sequent under consideration does not belong to the domain of

v. If the value of some proposition is less than �, it means that the proposition is

believed to be more likely false than true. Since drawing conclusions from false

premises is a logical fallacy, a rational agent should not use such propositions in

arguments. Therefore we also assume that, relative to a given evaluation function,

the premises of a sequent under consideration are acceptable, i.e. the value of their

conjunction is greater than �. Let us note that an unacceptable proposition, or one

not yet evaluated, might be used as a premise if we accept it potentially, i.e. if we

construct a special evaluation function which assigns 1 to this proposition.

Therefore the above assumption does not exclude the possibility of analysing

different forms of a contrario reasoning within our model.

Definition 15 (Single sequent conclusion value). If v is an evaluation function, and

S = (a1, a2,…, an) c a is a sequent such that a1, a2, …, an [ dom(v) and a 62 dom(v),

and moreover v(a1 ^ a2 ^… ^ an) [ �, then: vS(a) = v(a1 ^ a2 ^… ^ an) � w(a/

a1, a2, …, an).

Thus the acceptability of the conclusion turns out to be the value of its premises,

which is reduced proportionally to the conditional acceptability. The same holds in

the case of probability, and our motivation for using simple multiplication here was

simply to maintain conformity with the probabilistic interpretation.

The above definition enables us to compute the value of atomic arguments and of

a series of them. Now we need to take into account the case of convergent

reasoning. For simplicity let us first consider arguments consisting of only two

sequents, say S1 = (a1, a2, … an) c c and S2 = (b1, b2, … bm) c c, with mutually

independent sets (i.e. conjunctions) of premises and with the same conclusion c. We

use vS1;S2
ðcÞ to denote the value of their common conclusion with respect to the

premises of both sequents.

Definition 16 (Conclusion value of convergent sequents). If vS1
cð Þ [ �, and

vS2
cð Þ [ �, and the sets of premises p(S1), p(S2) are mutually independent, then:

vS1;S2
ðcÞ = vS1

cð Þ � vS2
cð Þ, where x � y = 2x ? 2y - 2xy - 1.

Thus the support distributed between both independent pieces of evidence is

aggregated by the operation �. Moreover, the value of one piece of evidence is

increased proportionally to the value of the other with respect to the interval [�, 1]

(not to the whole interval [0, 1], as for the algorithm x ? y - xy proposed by Yanal

(1991, p. 140)).

The intuition is that the uncertainty left by the first argument, represented by the

section [x, 1] in Fig. 2, should be decreased proportionally to the certainty given by

the second argument, represented by the section [�, y] (in Yanal’s algorithm the

second value is represented by the section [0, y]). Thus, by Thales’ Theorem, we can

read the following proportion:

ðx� yÞ � x

1� x
¼ y� 1=2

1=2
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Important properties of the operation � are as follows:

x � 1 ¼ 1;

x� 1=2 ¼ x;

if 1=2\x; y\1; then x� y [ y; x� y [ x and x� y\1:

It follows from the second equation that if x = y = �, then x � y = �. This

implication does not hold for Yanal’s algorithm, according to which we obtain � in

this case. This means that if we were to take a convergent argumentation with some

completely irrelevant conclusion, we would have to accept it to a degree as high as

�. Furthermore, by continuing to add irrelevant or very weak convergent arguments

we would reach a value of almost 1 surprisingly quickly. Thus, Yanal’s algorithm

overestimates the acceptability of convergent arguments. Moreover, since it allows

both x and y to be smaller than �, it can even happen that the convergent sum of

unacceptable arguments (cf. Def. 17 below) will be acceptable itself. It is worth

noting that in Yanal’s examples of such arguments (e.g. induction) premises should

be interpreted as linked, so that there is no need to use many very weak convergent

arguments (such as particular instances of induction).

The operation � is commutative and associative, i.e. for every x, y and z,

x� y ¼ y� x;

ðx� yÞ� z ¼ x�ðy� zÞ:

Therefore, if we have many convergent sequents S1, S2, …, Sn, for some n C 2,

with the same conclusion c, and the values vS1
cð Þ; vS2

cð Þ; . . .; vSn
cð Þ are greater than

�, and moreover the conjunctions of their premises form an independent set of

propositions, then vS1;S2;...;Sn
ðcÞ = vS1

cð Þ � vS2
cð Þ � ��� � vSn

cð Þ.
It is obvious how to compute the value of the conclusion of the entire argument

by means of the above definitions. We will denote this value by vAðaÞ, where

{a} = Fc(A), Fp(A) ( dom(v) and C(A) \ dom(v) = [. If A is an atomic

argument, i.e. if A = {S} for some sequent S, then vAðaÞ = vSðaÞ. If A is a direct

argument consisting of many different sequents S1, S2, …, Sn with the same

conclusion a, then vAðaÞ = vS1;S2;...;Sn
ðcÞ. Finally, if an argument is a more complex

structure with many levels, the value of its conclusion should be computed level by

level, beginning with the highest level, where all the premises are first premises.

x

y

x y

0 ½ 1

⊕Fig. 2 Calculation of the value
of x � y
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It is easy to see that the calculated value can be given by a single formula. For

example, the value of the final conclusion of the argument D = {(a1) c a4; (a2) c

a4; (a3) c a4; (a4, a5, a6) ca8; (a7) c a8; (a8) c a} (see Fig. 1c), is given by the

following formula:

vDðaÞ ¼ f½½ððvða1Þða4=a1Þ� vða2Þ � wða4=a2Þ� ðvða3Þ � wða4=a3ÞÞÞ � vða5Þ�
� vða6Þ� � wða8=a4; a5; a6Þ� � ðvða7Þ � wða8=a7ÞÞgða=a8Þ:

The value of an argument may be not computable if the value of some of its first

premises is smaller than �. However, when such an argument contains a convergent

reasoning, it can still be computable if another part of this reasoning is supported by

acceptable first premises. On the other hand, even if all of the first premises are

acceptable, the value of the conjunction of some linked premises (or the product of

the conditional acceptability of some constituent sequent and the value of its pre-

mises) can be smaller than �. This situation can make further computation

impossible. Obviously, this kind of incomputability is evidence of a fallacy in the

argument analysed (perhaps it would be appropriate to assign the value � to the

conclusions of such arguments). In any case, an argument may be accepted only if

the value of its conclusion is computable. Naturally, this value must be greater than

�, because otherwise the argument would justify the negation of its conclusion

rather than the conclusion itself (or it would leave the conclusion undecided in the

case of a value of �). Thus the least restrictive criterion for the acceptability of

arguments can be formulated as follows:

Definition 17 (Argument acceptability). An argument A such that Fc(A) = {a} is

acceptable with respect to the evaluation function v iff vAðaÞ[ �.

The operation � can also be used to recalculate the acceptability of the

conclusion a of an argument A if a already belongs to the domain of an evaluation

function v. However, it must be assumed that the initial value vðaÞ is greater than �,

and moreover that it is not assigned to a due to some reasons dependent on the

premises of A. In this case we have vAðaÞ = v(a) � v0AðaÞ, where v0 is the

evaluation function obtained from v by reducing its domain to the set dom(v) - {a}.

Thus the assumption C(A) \ dom(v) = [ is not necessary for the computation of

vAðaÞ, but if it does not hold, then the argument acceptability criterion in Def. 17

should be replaced by the condition vAðaÞ[ vðaÞ.
Finally, let us discuss one limitation that must be faced in dealing with the theory

of argumentation, namely the assumption that the premises are independent. It is

problematic if a premise happens to follow from other premises (or if they are

equivalent). In this case the value of the conclusion of a linked argument can be

underestimated, since the value of the conjunction of its premises will be decreased

by that of the dependent premises, which is in fact needlessly added. On the other

hand, if the conjunctions of the premises of some convergent arguments are

dependent, then the value of the conclusion can be overestimated, since dependent

arguments will double the same content of argumentation (the double counting

fallacy). Therefore we must be careful when we compute the value of a conclusion
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supported by dependent premises, and eliminate such needless parts of the

argumentation before we begin calculations.

If it is not possible to avoid some dependent premises, we can avoid undesirable

consequences when we calculate the value of the premises of a single sequent. For

this purpose we have to replace the simple multiplication in Def. 13 with a more

general formula: v(a ^ b) = v(a) � w(b/a). However, in this case the commutativity

of conjunction must be ensured by a separate postulate, which can be regarded as a

postulate of rationality: v(a) � w(b/a) = v(b) � w(a/b). If it holds, the associativity of

conjunction can be expressed by the following postulate: v(a) � w(b/a) � w(c/a, b) =

v(b) � w(c/b) � w(a/b, c). With regard to the acceptability of convergent arguments

with dependent premises, we can still use the operation � to calculate an upper

bound for this value (Tokarz’s maximum principle determines a lower bound).

5 Some Related Work

This section explores the relationship between the proposed model and relevant

work in argumentation theory with regard to (1) the structure of arguments and (2)

argument evaluation. This comparison will lay the ground for discussing (3) how the

proposed model can be extended in the future to take into account research

directions suggested by some contemporary approaches. Namely, we sketch how to

specify the attack relation and how to introduce conductive arguments into our

model.

Formal aspects of argumentative structures are extensively investigated by those

who deal with AI and defeasible reasoning, such as Pollock, who created OSCAR

(1987), Vreeswijk (1997), and the creators of Deflog (Verheij 2003) and ASPIC?

(Prakken 2010). However, this research does not directly refer to the linked-

convergent distinction which is fundamental to our model. On the other hand, there

are also some software tools supporting the analysis of argument structure, such as

Carneades (Gordon and Walton 2006), Rationale (van Gelder 2007) or Araucaria

(Rowe et al. 2006; Budzynska 2011), which exploit this distinction substantially.

Some of these models introduce highly developed structures, such as the argument

graphs in Carneades (Gordon and Walton 2006), which result in a highly complex

argument representation (the fact that premises and conclusions are the edges of

these graphs is perhaps technically justified, but may be regarded as unintuitive). In

contrast, the definition proposed in this paper, which treats an argument as a relation

between sets of propositions and single propositions, seems to be very simple and

intuitive, and cannot be further simplified. In particular, this relation cannot hold

between individual, single propositions (cf. Budzynska 2011, p. 30), because it

would not allow us to distinguish which of the premises are linked.

Since the numeric model of evaluation proposed here takes into account the linked-

convergent distinction, it can be exploited in argument analysis performed using

argumentation technologies such as Araucaria and Rationale. Among other numeric

approaches, some, such as the Bayesian model proposed by Nielsen and Parsons

(2006), do not consider convergent reasoning, while the remaining ones do not

adequately reflect its cumulative nature. Tokarz’s method including the maximum
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principle (cf. Sect. 2) and the proof standards used in Carneades in order to select the

better of two sets of arguments (either pro or contra conclusion) belong to the latter

category. As Walton and Gordon state, ‘the proof standards […] modeled thus far in

Carneades do not compare the set of pro arguments against the set of con arguments,

but rather only compare each pro argument against each con argument’ (2013, p. 10).

In contrast, our method allows us to compute the value of each set independently of the

other, and thus to evaluate (and compare) them within a uniform and absolute scale.

Furthermore, these values increase proportionally to the number and to the forces of all

the convergent components. Yanal’s algorithm, on the other hand, reflects this

‘cumulative proportionality’, but overestimates the acceptability of convergent

reasoning (cf. Sect. 4).

An argument in our model is regarded as a separate propositional structure that is

extracted from some text or utterance, and it can be evaluated independently of

possible attacks or counterarguments that may occur in a dialogue. Thus our

approach should be distinguished from the abstract argumentation frameworks

introduced by Dung (1995), as well as from other non-numerical approaches dealing

with defeasible and non-monotonic reasoning. It is not the aim of this paper to

develop our conception into a sort of analysis of an argumentative dialogue (cf.

Kacprzak and Yaskorska 2014, this issue), but let us note that such a development

seems possible, since formulation and expansion of arguments can be interpreted as

acts of attack or defence. We will attempt to sketch briefly how to specify within our

model some possible means of attacking arguments, which have been defined from

ancient times through Schopenhauer (cf. 1988, vol. 3) to the contemporary literature

on argumentation (see e.g. Walton 2011).

Let A be an attacked argument, and B an attacking argument. If A is attacked, as

Schopenhauer would say, directly (cf. 1988, vol. 3), i.e. if it is undercut, then the

conclusion of A is questioned. Thus the conclusion of B should be formulated

simply as the proposition ‘A is not acceptable’, while the premises of B can state

that (1) some premise of A is not acceptable, i.e. its acceptability is not greater than

�; or (2) it does not belong to the domain of the evaluation function; or (3) there is

some sequent in A whose conditional acceptability is not greater than �. The

algorithms proposed in this paper let us distinguish some other possibilities, covered

neither by Tokarz’s method nor by Carneades: (4) the premises of some sequent

considered separately are acceptable, however their conjunction is not; (5) the

premises of some sequent are acceptable and its conditional acceptability is greater

than �, but the product of these values is not. These are the ways in which A can be

undercut. Let us note, however, that since we take convergent reasoning into

account, not every attack of this kind results in a successful questioning of the whole

argument.

An argument A can also be attacked indirectly (cf. Schopenhauer 1988, vol. 3),

when its conclusion, say a, is either rebutted by a stronger argument or questioned

by an equal one with the conclusion *a. Thus, we can say that B attacks A if B is

acceptable and vAðaÞ� vBð� aÞ. Furthermore, the value y - x ? � for x, y C �,

where x = vAðaÞ and y = vBð� aÞ, can be taken as the final value of *a (the value

of a is: x - y ? �).
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This algorithm can also be used to calculate the acceptability of the ‘conductive

arguments’ evaluated in Carneades by means of proof standards (Walton and

Gordon 2013). Such arguments, apart from normal pro-premises, also have contra-

premises (exceptions) denying the conclusion. They can be introduced into our

model by simply assigning Boolean values to each sequent: true if the premises of a

sequent are pro its conclusion, and false if they are contra (cf. Koszowy and

Selinger 2013). Thus the algorithms proposed in this paper are an alternative to

proof standards. On the other hand, an advantage of proof standards is that they let

us avoid the double counting fallacy, so it seems that both methods could be used

complementarily. Let us note that in this extended version of our model the attack

relation can also be interpreted as the relation holding between individual

propositions, namely between the conjunctions of the exceptions and the

conclusions of contra-sequents.

The second type of indirect attack distinguished by Schopenhauer (cf. 1988, vol.

3) is called apagoge. It aims to reduce the conclusion a of an attacked argument A
to an absurdity (ad absurdum) or to a falsehood (ad falsum). In our model, apagoge

might be understood as finding an unacceptable proposition b such that the

argument B = {(a ? b; * b) c * a} is acceptable and vAðaÞ� vBð� aÞ.
These methods of attack can be used simultaneously in one counterargument. For

example, an intermediate conclusion of an attacked argument can be rebutted by a

better argument, so that the whole attacked argument or part of it is questioned; also,

some of its convergent parts could be undercut to facilitate the rebuttal of its final

conclusion, and so on. These ideas, however, should be elaborated in more detail to

reveal more relationships between our model and other models. Let us add only that

the relationships between various models of argumentation are being intensively

investigated. For example, Dung’s abstract frameworks have been developed and

furnished with a numerical semantics (Brewka and Woltran 2010; Gabbay 2012),

and the numerical formalism of Carneades has been translated into the formalism of

ASPIC? (van Gijzel and Prakken 2012).

To conclude, let us explicitly point out a more fundamental issue. As we have

stressed, our model of argumentation is based on the distinction between linked and

convergent arguments. Our approach can be said to modify it slightly, but the

correctness of this distinction can be questioned more profoundly. For example,

Vorobej in (1995) considers ‘hybrid arguments’, which are neither linked nor

convergent. It seems that they may be regarded simply as atomic arguments and

computed in the same way, but the very fact that such arguments exist reveals the

difficulties in recognizing the structure of argument in practice.

6 Conclusion

The computational model proposed in the paper shows that the diagramming method

can be formalized strictly and precisely (while still simply) by means of standard set-

theoretical and arithmetical tools. Our model combines the benefits of other

approaches to argument analysis: it recognizes the internal structure of arguments,

allows infinitely many degrees of acceptability, and allows the interpretation of the
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attack relation. Moreover, it reflects the cumulative nature of convergent reasoning.

It should also be stressed here that all of the proposed notions and operations are

finitary, so that the logical force of an argument can be evaluated in a finite number of

steps. Despite some limitations, the model can be applied to the evaluation of a fairly

large class of arguments, and can serve as a framework for further in-depth study.
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argumentów [The art of argumentation. Exercises in analysis of arguments]. Warszawa:

Wydawnictwo Naukowe PWN.

Thomas, S.N. 1973. Practical reasoning in natural language. New Jersey: Englewood Cliffs, Prentice

Hall Inc.

Tokarz, M. 2006. Argumentacja, perswazja, manipulacja [Argumentation, persuasion, manipulation].
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