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Abstract The success of combination antiretroviral therapy
(cART) in transforming the lives of HIV-infected individuals
with access to these drugs is tempered by the increasing threat
of HIV-associated neurocognitive disorders (HAND) to their
overall health and quality of life. Intensive investigations over
the past two decades have underscored the role of host im-
mune responses, inflammation, and monocyte-derived mac-
rophages in HAND, but the precise pathogenic mechanisms
underlying HAND remain only partially delineated. Compli-
cating research efforts and therapeutic drug development are
the sheer complexity of HAND phenotypes, diagnostic im-
precision, and the growing intersection of chronic immune
activation with aging-related comorbidities. Yet, genetic stud-
ies still offer a powerful means of advancing individualized
care for HIV-infected individuals at risk. There is an urgent
need for 1) longitudinal studies using consistent phenotypic
definitions of HAND in HIV-infected subpopulations at very
high risk of being adversely impacted, such as children, 2)
tissue studies that correlate neuropathological changes in mul-
tiple brain regions with genomic markers in affected individ-
uals and with changes at the RNA, epigenomic, and/or protein
levels, and 3) genetic association studies using more sensitive
subphenotypes of HAND. The NIH Brain Initiative and

Human Connectome Project, coupled with rapidly evolving
systems biology and machine learning approaches for analyz-
ing high-throughput genetic, transcriptomic and epigenetic
data, hold promise for identifying actionable biological pro-
cesses and gene networks that underlie HAND. This review
summarizes the current state of understanding of host genetic
factors predisposing to HAND in light of past challenges and
suggests some priorities for future research to advance the
understanding and clinical management of HAND in the
cART era.
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Introduction

Modern combination antiretroviral therapy (cART) has trans-
formed the landscape of clinical complications associatedwith
chronic human immunodeficiency virus (HIV) infection, par-
ticularly those involving the central nervous system (CNS).
Severe and relentlessly progressive forms of HIV-associated
dementia (HAD), linked in the pre-cART era to neuropatho-
logical findings such as HIVencephalitis and microglial nod-
ules, are now rare, as are opportunistic CNS infections [1•, 2•,
3]. However, milder forms of HIV-associated neurocognitive
disorder (HAND) such as asymptomatic neurocognitive dis-
order (ANI) and mild neurocognitive disorder (MND) [4] are
increasingly prevalent, owing to the intersection of chronic
immune activation, effects of aging, and antiretroviral drug
toxicities [5•, 6•, 7–9, 10•]. HAND is diagnosed in 40-50 % of
unselected, chronically HIV-infected individuals in the cART
era who undergo formal neuropsychometric testing [1•, 11]. In
contrast to HAND in the pre-cARTera, cortical brain involve-
ment, including impairment of learning, memory, and
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executive functions, often predominates over impairment of
subcortical and motor functions in patients on cART, similar
to non-HIV-associated neurocognitive disorders like
Alzheimer’s dementia [1•]. While not as devastating as
HAD, milder neurocognitive impairment (NCI) adversely
impacts medication adherence (particularly in older HIV-
infected persons), performance of cognitively demanding ac-
tivities of daily living [1•, 12], employment, and overall
quality of life [5•]. Increased risky decision-making and
shorter survival among HIV-infected persons with HAND
are also well documented [13•, 14, 15].

The neuropathogenesis of HAND remains incompletely
understood; it may overlap that of other common neurode-
generative diseases in which genetics has a role and with
which HAND shares certain similarities [16, 17•, 18•, 19,
20•]. Recognition of the critical importance of neuro-
inflammation, reflected by elevated expression of inflamma-
tion or immune-activation biomarkers in the brain, cerebro-
spinal fluid (CSF) and in some cases, plasma in HAND
[21–23], and the central role played by mononuclear phago-
cytes in these disorders, has provided a framework for studies
of the role of host genetic variation in HAND to date [18•, 24•,
25•].

The purpose of this review is to summarize the current state
of understanding of host genomic factors that predispose to
HAND with an emphasis on recent studies and reasonable
conclusions that may be drawn from this rapidly growing
volume of data. We conclude with a discussion of some
research priorities and suggestions for a way forward in this
complex field.

Host Genomic Studies

Host genetic variation is likely to impact both adaptive and
maladaptive host responses to HIV infection that play a role in
neuropathogenesis, just as host genetics clearly impacts sus-
ceptibility to HIV infection and the rate of disease progression
[26–30]. Many candidate-gene studies and a single genome-
wide association study spanning the pre-cARTand cARTeras,
primarily focusing on HAD with or without HIVencephalitis,
have identified variants in immune-regulatory genes and other
gene classes as potential risk-modifiers or protective factors,
but very few of these genes have been replicated in subsequent
studies (Table 1) [31•, 32•]. A number of factors that compli-
cate the clinical definition, risk-stratification, and monitoring
of HAND, have presented challenges to genetic studies aimed
at better understanding susceptibility to these disorders: inher-
ent fluctuations in individual neuropsychometric test scores
over time, despite correction for practice effects, imprecision
of diagnostic categories like ANI and MND, possible residual
biases in testing protocols, and varying methods used to
determine composite scores in prior published studies of

NCI among HIV+persons. Distinguishing reversible NCI
from the “legacy effect” of brain damage due to previously
untreated HIV infection, and completely excluding confound-
ing by comorbidities also remain difficult [6•, 7]. In contrast to
the pre-cART era, many converging pathogenic mechanisms
are likely to contribute to HAND at present [33, 34, 35•].
These challenges notwithstanding, recent genomic,
transcriptomic, and epigenomic studies have highlighted met-
abolic pathways and physiologic processes that are disrupted
in HAND (Table 2).

Candidate-Gene and Genome-Wide Association Studies

Genes related to inflammation or immune regulation Genes
that have been inconsistently linked to HIV-associated
neurocognitive phenotypes, including HAD with or without
HIVencephalitis, include: apolipoprotein E (APOE) [29, 36•,
37•, 38, 39•, 40–45], tumor necrosis factor-α (TNF-α) [31•,
32•, 42, 46–48, 49•, 50, 51], macrophage chemo-attractant
protein-1 (MCP-1/CCL2) [21, 22, 32•, 48, 49•, 52–56, 57•],
macrophage inflammatory protein 1-α (MIP-1α/CCL3) [32•,
48, 49•, 57•], stromal cell-derived factor-1 (SDF1) [31•, 49•,
56, 58], HLA alleles [59, 60•, 61•], mannose-binding lectin 2
(MBL2) [49•, 56, 57•, 62, 63], and PKNOX1/PREP1, a tran-
scriptional regulator ofMCP-1 expression [32•, 49•]. Associ-
ations of C-C chemokine receptor 2 (CCR2), the co-receptor
for MCP-1, with HAD or AIDS dementia complex, progres-
sion to NCI in adults, or NCI among children have been
similarly inconsistent [32•, 54, 56, 57•, 58, 64]. While the
Δ32 deletion variant of C-C chemokine receptor type 5
(CCR5) [65] was protective against HAND in pre-cART
populations [58, 64, 66], this association has not been repli-
cated in individuals with HIV/AIDS diagnosed after 1991,
possibly due to reduced impact on viral load in the cART era
[32•, 54, 56]. Preliminary results from a recent cross-sectional
study among CNS HIV Antiretroviral Therapy Effects Re-
search (CHARTER) study subjects suggest that a polymor-
phism in theMBL2 promoter (rs7096206) may predict altered
levels of brain metabolites in frontal white matter and basal
ganglia, reflecting increased neuro-inflammation and energy
dysmetabolism in the brain [67]. In the largest longitudinal
study to date, drawing from pre-cART neurocognitive
data from HIV+and seronegative participants in the Mul-
ticenter AIDS Cohort Study (MACS), Levine et al. [57•] did
find evidence for a small effect ofMIP-1α/CCL3 andMCP-1/
CCL2 genotype on neurocognitive functioning over time
among HIV+cases only, but the magnitude of this effect
was small.

Interaction effects between MCP-1 and SNP rs2839619
in the PREP1 locus, which encodes a transcription factor
that binds and activates the MCP-1 promoter, may explain
inconsistencies in MCP-1 associations with HAND. PREP1
genotype (rs2839619) has been associated recently with HAD
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Table 1 Summary of published genetic associations (positive findings)
in candidate-gene and genome-wide association studies (GWAS) of HIV-
associated neurocognitive disorder (HAND) (See text for references).

Only genes associated with a HAND-related phenotype in at least one
published study, and studies that included HIV+subjects, are listed

Genes/processes
dysregulated in HAND

Clinical phenotype(s) evaluated1 Study design(s) Replication
status2

Nuclear genes

APOE (E4 allele) AIDS with ADC/HAD±HIVE; non-AIDS
with HAND±neuropathologic features

Autopsy (mostly case-control; one
survival study with autopsy
component; 2 uncontrolled);
cross-sectional; longitudinal
cohort

R

TNFA HAD; HAD/ADC, or HIVE and/or HIV-LE Autopsy case-control NR

MCP1/CCL2, CCR2 HAD±HIVE or AIDS/ADC, OR change in executive functioning and
processing speed between 2 consecutive visits up to 15 yrs apart; or
NCI (clinical rating score≥5); HAE (children)

Retrospective case-control;
longitudinal cohort±cross-
sectional analysis

R (MCP1)
NA (CCR2)

MIP1A/CCL3 HAD; AIDS with HAD; OR change in executive functioning and
processing speed between 2 consecutive visits up to 15 yrs apart; OR
risk of NCI

Retrospective case-control;
longitudinal cohort

R

SDF1 Decline in NC test scores and/or brain growth failure in children; OR change
in executive functioning and processing speed between 2 consecutive visits
up to 15 yrs apart; OR prevalent NCI (adults); change in GDS or cross-
sectionaL GDS in co-HCV+

Longitudinal cohort with cross-
sectional component;
retrospective case-control

NR

MBL2 Changes in GDS or cross-sectional GDS in co-HCV+; OR change in
executive functioning and processing speed between 2 consecutive
visits up to 15 yrs apart; OR prevalent NCI (adults)

Longitudinal cohort with cross-
sectional component

NR

CCR5 (δ32 del) HAD/ADC; AIDS±HAD; decline in NC test scores and/or brain growth
failure in children; NCI in children; GDS (change and cross-sectional)

Longitudinal cohort±cross-sectional
component; case-control

R prior to 1991
only; NR in
cART era

COMT Executive functioning domain Deficit Scores±stimulant abuse;
HAND: standardized NP domain T-scores

Retrospective/Case-control NR

DRD2, DRD3 GDS≥0.5 (NCI); Global and cognitive domain T-scores in population
with prevalent substance dependence

Cross-sectional/Case-control R (DRD3 in
substance
users)

HLA:DR, DQB1, A24,
B27

Time to CNS impairment (“deterioration in brain growth, psychological
function and/or neurological status”)

Pre-cART cross-sectional study;
cART era case-cohort study;
longitudinal cohort

R (DR, B27)
NA (DQB)
NR (HLA A)

APOBEC3G Brain growth failure, with NCI defined differently based on age Pre-cART pediatric cohort study NA

PKNOX1/PREP1 AIDS with dementia Retrospective case-control NA

YWHAE HAND Cross-sectional study with HIV+/
HIV- controls

NA

Mitochondrial & nuclear
DNA structural
changes

8-oxoG modification HAND “screen”, International HIV Dementia Score≤10 Autopsy case-control NA

Regulation of telomere
length

Detailed NP test scores (global and ability domain scores)±history
of chronic psychological trauma (Childhood Trauma Questionnaire
Short Form)

Cross-sectional with HIV+/HIV-
controls

NA

1Diagnostic criteria used included one or a combination of the following: American Academy of Neurology 1991 criteria, Centers for Disease Control
criteria, Frascati criteria, the Global Deficit Score (GDS), Domain Z-scores or Global Z-scores, the HIV Dementia Scale, neurocognitive impairment
>1.5 SD below the normative mean in two domains on comprehensive test battery, Diagnostic and Statistical Manual of Mental Disorders (DSM) III
criteria for dementia, or unspecified.
2 Replication status: R=Replicated in at least one other candidate-gene study; NR=Did not replicate in at least one study; NA=No published replication
attempts. Importantly, no genes/SNPs previously associated with HAND replicated in the GWAS.

Abbreviations: ADC, AIDS dementia complex; HAD, HIV-associated dementia; HIVE, HIV encephalitis; HIV-LE, HIV leukoencephalopathy; HAND,
HIV-associated neurocognitive disorder; HAE, HIV-associated encephalopathy; NP, neuropsychiatric; NC, neurocognitive; NCI, neurocognitive
impairment; GDS, global deficit score; HCV, hepatitis C-virus. Gene names: APOE, apolipoprotein E; TNFA, tumor-necrosis factor-alpha; MCP1/
CCL2, macrophage chemoattractant protein-1; CCR2, C-C chemokine receptor type 2; MIP1A/CCL3, macrophage inhibitory protein-1-alpha; SDF1,
stromal derived factor 1; CCR5, C-C chemokine receptor type 5; del, deletion;MBL2, mannose-binding lectin 2 ; COMT, catechol-O-methyltransferase;
DRD, dopamine receptor; CYP2D6, cytochrome P450 2D6; CYP2B6, cytochrome P450 2B6; HLA, human leukocyte antigen locus; APOBEC3G,
apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G; PKNOX1/PREP1, PBX knotted 1 homeobox 1; YWHAE, 14-3-3ε protein
(Tyrosine 3-monooxygenase/Tryptophan 5-monooxygenase activation protein, epsilon isoform)
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Table 2 Genes with significantly altered expression in transcriptomic and epigenetic studies and hence implicated in HAND pathogenesis

Gene categories and pathways
dysregulated in HAND-related phenotypes

Source material/ phenotype(s) Reference(s)

Monocytes

Pathways: Brain metabolite neuroimaging traits, e.g.,
N-acetylaspartate concentration in FWM,
anterior cingulate

Pulliam et al. 2011 [100];
Borjabad, 2012 [17•]IFN response/activation

Example genes: IP-10

Pathways: Neurocognitive impairment (GCR) Levine et al. 2014 [31•]
Mitotic cell cycle

Translational elongation

Oxidative stress

Example genes: IL6R, casein kinase 1-alpha-1, hypoxia
upregulated-1, LDL receptor-related protein 12, KEAP-1

Brain tissue/brain-derived cells

Pathways: SIV±SIVE, HIV±HIVE brains; also
primary neurons in vitro

Eletto et al. 2008 [104];
Yelamanchili et al.
2010 [106]

pre-synaptic proteins/general neuronal function

Example genes: miR-128a, SNAP25, MEF2C,
miR-142-3p, miR-142-5p, miR-21 (downregulation
of target MEF2C in neurons)

Pathways: FWM from HIV-, HIV+/HIVE brains;
immunohistochemistry; glutamate levels, brain
neurotrophic factor levels

Noorbakhsh et al. 2010
[107]IFN response

Neuroinflammation Gene expression in primary astrocytes exposed to HIV Vpr
protein in vitro vs. controlsNucleotide metabolism

Cell cycle Neurobehavioral abnormalities (locomotion)
in transgenic mice with increased BG Vpr expressionMitochondrial function

Apoptosis (astrocytes)

Example genes: Caspase-6

Pathways: Acute and chronic SIV model±SIVE Reviewed in Winkler et al.
2012 [92•]Inflammation

Immune and acute-phase response

Ion transport

Example genes: B2M, STAT1, IFI44, IFIT3, MX1

Pathways: HAND diagnosis (±cART), ±HIVE Borjabad et al. 2012 [17•]
Neurogenesis

Synaptic transmission

Antiviral/immune responses (including IFN responses,
complement activation)

Ion/Calcium transport

Antigen presentation/processing

Oxygen transport

Signal transduction

Cell cycle

Oligodendrocytes/Myelination

Microtubule-based movement

Example genes (treated vs untreated HAND):CXCR2,CR1,
HLA-DQB1, CXCL2, IFIT1, IFI44, STAT1, MOBP

Pathways: HAND±HIVE vs. HIV+/HAND- vs. HIV-
controls; neurocognitive impairment (GCR)

Gelman et al. 2012 [93•];
Levine et al. 2013 [94•]Synaptic transmission

Neuroimmune function
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Table 2 (continued)

Gene categories and pathways
dysregulated in HAND-related phenotypes

Source material/ phenotype(s) Reference(s)

Endothelial markers Gelman et al. 2012 [93•];
Levine et al. 2013 [94•]Neuronal function

Glutamate signaling

Axon guidance

Clathrin-mediated endocytosis

IFN response

Antigen presentation/processing

Inflammation/acute-phase response/toll-like receptors

Oligodendrocyte function

Mitochondrial function

Cell signaling

Protein ubiquitination

Caveolin-mediated endocytosis

Example genes: YWHAE/14-3-3 protein, GAD1, IFRGs,
TFRC

Pathways common between HAND and AD: HAND±HIVE brains vs. HIV+/HAND-,
HIV+/HAND-; neurocognitive impairment
(GCR) in HIV+vs. Mini-Mental Status Exam
data in AD

Levine et al. 2013 [94•]
Cytoplasm

Mitochondrial function

Tricarboxylic acid cycle

Transit peptide

Synaptic

Cell Differentiation

Activator

Repeat

Cell communication

Regulation of transcription

Phosphorylation

Pathways differentiating HAND+vs. – HIVE: Levine et al. 2013 [94•]
Gliosis

Dopaminergic tone
Inflammation

Example genes: GRK6, CCL2, ID2

Pathways: HAND vs. HIV- controls Lucas et al. 2014 [113•]
Neuronal RNA splicing/gene transcription

Example genes: RbFOX3

Pathway: Global and cognitive domain
T-scores/GDS (all 7 domains)

Jacobs, 2013 [72•]; Gupta,
2011 [71]Dopaminergic response

Example genes: DRD3

Pathways: Subsyndromic HAND/ANI, MND or
HAD±HIVE, vs. HIV- controls

Desplats et al. 2013 [117•]
Chromatin modification

Inflammation

Example genes: BCLB11B (targets IL-6, TNFα, CXCR4)

Note: Studies that lacked correlation with at least one in vivo HAND-related phenotype are not listed.

Abbreviations: miRNA, microRNA; SIV/E, simian immunodeficiency virus/encephalitis; HIV/E, human immunodeficiency virus/encephalitis; FWM,
frontal white matter; HAND, HIV-associated neurocognitive disorder; GCR, Global Clinical Rating; GDS, Global Deficit Scores; BG, Basal Ganglia;
AD, Alzheimer’s Disease
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(p=1.2 x 10-5), and there is extensive support for a role for
MCP-1 protein in the etiology of HAD in particular [32•].
PREP1 did not replicate in the single published GWAS of
HAND (largely HAD), however [49•].

Dopamine-related genes Some genes involved in dopamine
pathways have been also been variably associated with
neurocognitive function in HIV+persons. The Met/Met geno-
type at the catechol-O-methyltransferase (COMT) locus
(rs4680) predicted improved executive functioning in HIV+
subjects, an association that was attenuated by methamphet-
amine (meth) use [68]. No main effects on HAND, or inter-
active effects of COMT, dopamine transporter-1 (DAT1), or
brain-derived neurotrophic factor (BDNF) with other mea-
sures of HIV disease severity (e.g., CD4+ T-cell count), were
noted on specific domains of neurocognitive function in HIV-
infected individuals in other studies, including the GWAS
[49•, 69•]. The recent longitudinal study in the MACS did
not detect any interactions between stimulant use, HIV status
or dopamine-related genes (COMT, BDNF, dopamine
beta-hydroxylase, and DRD2/ANKK1 genotypes) on
neurocognitive functioning in HIV+subjects [57•].
Neurotrophin genotypes may assume greater importance in
HAND among older individuals [70]. The dopamine receptor
gene DRD3 (rs6280) was associated with NCI only among
HIV+meth abusers [71], but significant main and interaction
effects with substance use have also been seen for dopamine
receptors 1 and 2 (DRD2) in the motor domain of neuropsy-
chological performance among whites, and with nearly every
neuropsychological domain among African-American sub-
jects [72•]. The GWAS conducted in the longitudinal MACS
found null associations with DRD2 or DRD3 but did not
address interactions with substance/stimulant abuse.

Drug metabolism and transport genes Genetic differences in
meth metabolism have been proposed to be a factor in indi-
vidual variation in risk of NCI among HIV-infected persons
who abuse meth. Oxidative metabolism of meth requires the
hepatic enzyme cytochrome P450, family 2, sub-family D,
polypeptide 6 (CYP2D6). Extensive metabolizers based on
polymorphisms in CYP2D6 were significantly more vulnera-
ble to meth-associated NCI in a recent study that included no
HIV+subjects, suggesting that CYP2D6 genotype might also
be a risk factor for HAND among HIV+meth abusers [73].

Suppression of HIV replication in the CNS is a key com-
ponent of any strategy to reduce risk of HAND, and there
remains some evidence that better-penetrating antiretroviral
regimens are helpful in preserving neurocognitive function
[74, 75•]. Highly active antiretroviral drugs vary considerably
in their ability to penetrate the blood-brain barrier (BBB).
Recent pharmacogenetic/pharmacokinetic studies were un-
able, however, to associate the common variant 3435C>T
(rs1045642) in the drug efflux transporter gene, ATP-binding

cassette transporter P-glycoprotein ABCB1, or 150 other poly-
morphisms in 16 membrane transporter genes, with CSF
raltegravir levels in healthy HIV-negative subjects [76•]. As
noted by the authors, this study was underpowered to detect
associations for SNPs in many genes with low minor-allele
frequencies in the sample. A similar study, also in seronegative
individuals, evaluated the pharmacokinetics of efavirenz,
which is metabolized by hepatic CYP2B6 [77] and associated
with CNS toxicity, following a single oral dose (600mg) of the
drug. Polymorphic variants of CYP2B6 (516G>T, rs3745274)
and 983 T>C (rs28399499), which classify subjects as, exten-
sive, intermediate, or slow metabolizers and are known to
impact efavirenz plasma area-under-the-curve, were not sig-
nificantly associated with neurocognitive performance, al-
though CYP2B6 genotype tended to correlate with non-
dominant hand grooved pegboard at 4 and 6 hours after the
dose [78•]. Since the CNS side effects of this drug generally
wane with repeated use, it is unclear to what extent CYP2B6
genotype may impact NCI in treated subjects.

Nuclear and mitochondrial DNA damage The role of oxida-
tive damage to nuclear and mitochondrial DNA (mtDNA),
which can lead to neuronal apoptosis, in the pathogenesis of
milder forms of HAND seen in the cART era is not clear.
Neurotoxicity of HIV proteins such as Tat, gp120, and Vpr in
the cART era is mediated by excitotoxic neurotoxins released
by infected microglia and macrophages, activation of intracel-
lular and mitochondrial calcium signaling pathways, and in-
creased production of reactive oxygen species [79•]. One
study compared levels of nuclear and mtDNA oxidative dam-
age (8-oxoG modification) in postmortem frontal neocortex
tissue of HIV+patients with AIDS with and without HAND
and in seronegative controls. Nuclear DNA 8-oxoG damage
was significantly higher in HIV+patients, particularly those
with HAND, and a substantially higher frequency of noncod-
ing D-loop mutations in mtDNA among HAND cases was
noted as compared with either HIV+or seronegative controls.
Possible confounding by age was not mentioned [79•, 80].
These results leave open the possibility that as long as a
reservoir of virus exists in the brain, oxidative damage may
continue to contribute to the development of HAND.

A more recent study of South African women examined
the association of leukocyte telomere length (TL) with HAND
and chronic psychological stress due to prior abuse and/or
trauma [81•]. Telomeres are repetitive nucleotide sequences at
the ends of chromosomes that shorten by 20-200 base-pairs
with each mitotic division, due to the inability of DNA poly-
merase to complete DNA replication at the ends of each
strand. Activity of the enzyme telomerase, which synthesizes
telomeric DNA to prevent excessive shortening, is reduced by
oxidative stress, and shorter TL has been reported under
chronic psychological stress conditions. In analyses adjusted
for age and education, TL in HIV+women was found to be
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significantly shorter relative to controls and was strongly
correlated to severity of NCI, as determined by the Interna-
tional Neuropsychological Battery. A negative correlation of
relative TL was also found with verbal fluency in HIV+
women who had suffered psychological trauma. This was
the first study to investigate the effects of TL on
neurocognitive function in HIV-positive individuals. Very
early but intriguing results of a retrospective study presented
at the 2014 Conference on Retroviruses and Opportunistic
Infections [82] reported strong positive associations between
levels of cell-free mtDNA in CSF, another potential novel
marker of neuronal injury, and severity of NCI among HIV-
infected persons with HAND, as well as with biomarkers of
CNS inflammation and immune activation (MCP-1 and
interferon-gamma-inducible protein (IP-10), respectively).

Miscellaneous genes that have been linked in published
reports to HIV-associated neurocognitive phenotypes, but for
which studies attempting replication have not been published,
include HLA DQ [60•] and APOBEC3G (in pre-cART pedi-
atric populations) [83•], and YWHAE (among Hispanic-
Latino populations) [84•, 85]. Several genes associated previ-
ously with HIV replication in monocyte-macrophages or with
neurotoxic protein production in vitro have not been associat-
ed with HAND [32•, 86, 87•].

Transcriptomic and Epigenetic Studies

The advent of microarray technology has led to numerous
studies investigating the effects of HIV infection on host gene
expression in phenotypes that contribute to but are relatively
distant from HAND, including viral replication, HIV persis-
tence, apoptosis, and immune dysregulation in general. Those
studies performed prior to 2007, have been reviewed exten-
sively elsewhere [88] Subsequent functional genomics studies
have yielded additional information on genes and pathways
up- or down regulated in astrocytes, neurons, and glial cells,
cell types intimately involved in HAND pathogenesis (Ta-
ble 2) [31•, 89–91]. A number of genes show consistently
altered expression across studies of human astrocytes in vitro,
the human HIV-infected brain with or without HAD or HIVE,
and the simian-immunodeficiency virus (SIV)-infected ma-
caque model, pointing to their likely importance in HAND
[31•, 90, 92•]. While many studies to date have focused on
patterns of RNA expression changes specific to HIVE in
frontal gray matter [92•], few have investigated differences
in brain regions affected by HAND without HIVE. A micro-
array study by Gelman et al. [93•] using brain tissues from
HIV-infected and seronegative individuals enrolled in the
National NeuroAIDS Tissue Consortium (NNTC) Brain
Bank, revealed two different transcriptome patterns in
HAND+HIVE and HAND alone. HAND combined with
HIVEwas associated with high viral load, global upregulation
of genes involved in interferon responses, and general

immune activation, while specific neuronal transcripts in fron-
tal neocortex were down-modulated. HAND without HIVE,
however, was associated with low viral load, upregulated
endothelial-type transcripts, and the conspicuous absence of
gene-expression changes noted in HIVE. Weighted-gene
coexpression network analysis (WGCNA) of the same
transcriptomic data, accounting for correlations amongst func-
tionally related genes, also identified meta-networks of genes
associatedwith global neurocognitive function; these included
cancer-related genes and genes important in oligodendrocyte
function [94•] in frontal neocortex, frontal white matter, and
the basal ganglia. Dysregulation of genes involved in mito-
chondrial function, cancer, the immune response, synaptic
transmission and cell-cell signaling has also been suggested
in other studies of HAND [17•, 94•] (Table 2).

The role of antiretroviral drug toxicities in HAND remains
controversial. The contribution of complex drug interactions,
side effects when taking an increased number of drugs for
advanced disease, and known mitochondrial effects of older
dideoxynucleoside reverse-transcriptase-inhibitors such as stav-
udine and didanosine, toNCI is unknown [8, 95]. Transcriptomic
studies evaluating the impact of cART on gene expression pat-
terns in HAND in brain tissue reveal alterations in expression of
about 100 immune-regulatory, cell-cycle, and myelin-pathway
genes that are not correlated either with brain viral burden or to
antiretroviral drug CNS penetration effectiveness (CPE) score,
suggesting a possible explanation for the difficulty to date in
correlating CPE scores to neurocognitive outcomes despite their
association with reduced CSF viral load [8, 96•].

HIV-infected monocytes or monocytes from HIV-infected
as compared to seronegative individuals have been the focus
of many in vitromicroarray-based studies to identify upstream
biological mechanisms relevant to HAND, due to their key
role in BBB injury. Genes and pathways that have been found
to be significantly upregulated in such studies include: a large
number of chemotaxis- and inflammation-related genes [97,
98] and genes involved in the interferon (IFN) response, as
well as genes that promote antioxidant and anti-inflammatory
responses [31•, 99, 100]. Expression of subsets of these genes
have also been associated in some, but not all [99] studies,
with mild NCI [31•, 100], with HAND in hepatitis C/HIV-co-
infected subjects on cART [101•], and with metabolic neuro-
imaging traits such as N-acetyl-aspartate in frontal white mat-
ter [100]; however, monocyte transcriptome patterns have not
always correlated with NCI in HIV+persons [99, 102].

A recent postmortem study examined changes in expres-
sion of ephrin (EPH) genes that mediate synapse formation
and recruitment of glutamate receptors to synapses [103•].
Postmortem brain tissues from cognitively characterized
HIV-infected subjects and seronegative controls from the
Manhattan HIV Brain Bank were examined for levels of
expression of a variety of genes, including EPHA4 and
EFNB2 (an ephrin ligand). Transcript levels of both of these
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genes in the caudate, and of EPHB2 in the anterior cingulate
were significantly lower in HIV-infected patients, and EPHB2
mRNA levels in the cingulate correlated with premortem
neurocognitive function. The authors hypothesized that de-
creased expression of EPHB2 in the cingulate may represent a
compensatory mechanism minimizing excitotoxic injury in
the face of chronic inflammation.

The small number of published epigenetic studies of
HAND have focused on expression of microRNA (miRNA),
small non-coding RNA molecules that bind messenger RNA
and regulate gene expression at the transcriptional or post-
transcriptional levels. MicroRNA (miRNA) expression stud-
ies conducted in cortical neurons exposed to viral proteins
such as Tat and Vpr [104, 105•], or in tissue from individuals
with HIVE or SIV-infected macaques with encephalitis
(SIVE) have implicated upregulation of the following classes
of host miRNAs in HIVE and SIVE: 1) immune response and
inflammation, 2) nucleotide metabolism, 3) cell cycle, 4)
oncogenesis (e.g., miR-21, which targets a neuronal transcrip-
tion factor), and 5) apoptosis (e.g., caspase-6). Downregulated
miRNAs included those involved in: 1) inflammation, 2)
neuronal monoamine oxidase activity (possibly explaining
the reduced dopaminergic activity in HAND), 3) apoptosis
(e.g., suppression of caspase-6 expression), 4) modulation of
viral replication, 5) mitochondrial function, and 6) axonal
guidance (Table 2) [105•, 106–108, 109•, 110•, 111•]. These
studies have provided some useful leads and validated several
neuropathogenic mechanisms in HAND, but sample sizes
have been extremely small (five individuals or less in human
studies). In general, these studies have not evaluated associa-
tions with neurocognitive phenotypes or accounted for multi-
ple statistical tests or potential confounders in the analyses.
Findings in SIV models also require replication in humans.

Consolidation of short-term memories into long-term
memory requires synaptic plasticity, which is characterized
by structural changes and altered gene expression at neuronal
synapses [112•]. In keeping with the finding that
synaptodendritic damage rather than neuronal loss is a neuro-
pathological feature of milder forms of HAND [113•], a recent
study found downregulation of many synaptic plasticity genes
in HIV-infected astrocytes, and increased expression of pro-
apoptotic genes, compared to uninfected controls [112•].
These findings translated into reduced dendritic spine density
and altered dendritic morphology, which weremost prominent
in cells infected with clade B virus.

Finally, Lucas et al. [113•] have reported a highly abnormal
distribution of the RNA splicing factor NeuN/Rbfox3 in post-
mortem brain tissue from 22 HIV-infected individuals with
MND/HAD as compared to seronegative controls. Very few
targets have been identified for this splicing factor, which is
usually confined to the nucleus, where RNA splicing occurs.
The authors posit that altered localization of RbFox3 in
HAND may reflect downregulation of expression of neuronal

genes relevant to HAND pathogenesis. This finding requires
further study.

Relatively few studies have evaluated the role of histone
modification and DNA methylation in the context of HAND.
Histone deacetylases (HDACs) function in epigenetic regula-
tion by deacetylating histones and other proteins involved in
transcription and chromatin remodeling; histone
hypoacetylation has been linked to many neurodegenerative
diseases. Saiyed et al. [114•] showed that HIV-1 Tat protein
upregulates HDAC2 expression in neuronal cells, leading to
transcriptional repression of genes involved in synaptic plas-
ticity and neuronal function and suggesting a potential thera-
peutic role for HDACs as a drug class in HAND [115, 116].
More recently, Desplats et al. conducted a case-control study
among 32 deceased HIV+individuals from the HIV Neuro-
behavioral Research Center and California NeuroAIDS Tissue
Network, 72 % of whom underwent neurocognitive testing
within 1 year of death [117•]. The study compared epigenetic
markers in postmortem brain tissue, such as B-cell CLL/
lymphoma (BCL11B), a transcriptional silencer, among sev-
eral patient groups: HIV+controls without detectable proviral
DNA, RNA or p24 in the CNS, HIV+cases with high viral
DNA but no HIV RNA or p24 (latent cases), and HIVE cases
with high expression of viral DNA, RNA and p24. Up to half
of HIV-infected subjects were on cART, and with the excep-
tion of HIVE cases, all HIV+subjects had mild to moderate
NCI. Compared to HIV+controls, higher levels of BCL11B
protein and other chromatin modifiers involved in transcrip-
tional silencing of HIV-1 (including HDAC1) were observed
in HIV+latent cases and were associated with dysregulation
of pro-inflammatory genes like IL6, TNFA, and CXCR4. La-
tent cases also displayed more cognitive impairment than
HIV+controls. These results suggest that even in the absence
of detectable viral replication, significant dysregulation of
pro-inflammatory genes may still occur and that these changes
are associated with increased levels of epigenetic factors such
as BCL11B. These findings are highly relevant to strategies
for eradicating viral reservoirs which might include modula-
tion of BCL11B.

Narasipura et al. [118•] examined the role of epigenetic
regulation in maintaining latency of the virus in astrocytes
in vitro. DNA CpG methylation and histone modifications
(methylation and deacetylation) at the HIV-1 promoter region
are specific hallmarks of HIV-1 latency, and HDAC inhibitors
reactivate the virus in cell culture models and in HIV-infected
CD4+ T cells [118•, 119•]. This study added to previous
studies by demonstrating the role of epigenetic regulation in
maintaining and reversing virus latency in astrocytes specifi-
cally, a process implicated in HAND [90]. Inhibitors of class I
HDACs and histone methyltransferases which demethylate
DNA are able to activate the HIV-1 promoter in latently
infected astrocytes, thereby confirming that these cells may
be clinically important reservoirs for HIV in the brain. Other
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in vitro studies have revealed epigenetic regulation of markers
in T-regulatory cells, which normally maintain gut-mucosal
immune tolerance via suppression of effector T-cell functions
but are dysregulated in chronic HIV infection [120•], as well as
dysregulation of HDAC1 and DNA methyltransferases in oral
epithelial cells, potentially contributing to HANDvia increased
oral microbial disease and peripheral immune activation [121].

We know of only one unpublished study of DNA methyl-
ation in the context of HAND, the preliminary results of which
were presented at the 19th Conference on Retroviruses and
Opportunistic Infections in 2012 [82]. This study of 17 HIV+
participants in a longitudinal cohort study showed many
strong positive and negative correlations of methylation pro-
files at autosomal sites with changes in neurocognitive test
performance (scaled scores corrected for practice effects)
measured at two consecutive time points.

Other very preliminary findings deserving of further explora-
tion and replication in studies of HAND include: 1) interactions
between opioid-related genes such as OPRM1, substance abuse,
and HAND [122•]; 2) mitochondrial DNA haplogroup effects
on HAND risk within specific ethnic subpopulations [123]; 3)
the impact of iron metabolism, which is essential for mitochon-
drial function as well as dopaminergic metabolism [124, 125•];
and 4) potential protection against HAND by promoter variants
in the antioxidant response gene HMOX1 [126].

Summary

Many candidate-gene studies have identified genetic variants
as risk or protective factors in HAND, but due to a combina-
tion of factors—study heterogeneity, application of different
diagnostic methods, low power, changing epidemiology—
few of these genes and variants have been reliably replicated;
nor have any prior associations been replicated in the single,
published genome-wide association study. Due to significant
differences in study designs and methodologies, estimates of
effect size and measures of significance are not very mean-
ingful even for genes/SNPs that have been replicated at least
once. A large number of genes and biological pathways have
also been implicated in genome-wide transcriptome and epi-
genetic studies, some of which are consistently revealed
across human, non-human primate (SIV) models, and murine
models of HAND. Human studies have largely employed
homogenized brain tissue reflecting multiple cell types, how-
ever, complicating the dissection of cell-specific processes
that are dysregulated. Finally, not all of the genetic and
transcriptomic studies in HAND have incorporated adjust-
ments for multiple statistical comparisons, increasing the like-
lihood of false-positive findings amid true associations. In
some cases, however, published and preliminary studies of
two or more types— candidate-gene, GWAS, and

transcriptomic—have yielded consistent evidence regarding
mechanisms of HIV neuropathogenesis, as in the case of
genes involved in inflammatory or immune regulation, syn-
aptic plasticity and neuronal function, iron transport [e.g.,
transferrin receptor (TFRC)], and mitochondrial function
[17•, 93•, 94•, 104, 123, 124, 127•, 128].

It is important to remember that HAND is an extremely
complex phenotype, influenced by numerous environmental,
psychological, lifestyle and endogenous host factors; it is
likely to involve alterations in many brain regions that nor-
mally compensate for one another. Studies to date have mostly
evaluated only changes in the frontal cortex, rather than white
matter, hippocampus, and basal ganglia regions that also show
abnormalities in HAND [129•, 130, 131•]. The focus has also
been on severe HAND phenotypes such as HAD and HIVE,
which probably no longer reflect the salient biological mech-
anisms that contribute to milder forms of HAND today [132];
individuals with HAND and postmortem HIVE have distinct-
ly different transcriptomic profiles from those with HAND
alone [93•]. It also seems likely that relatively little risk is
attributable to individual genes, and that these small effect
sizes are easily obscured by differences between studies and
methodologies used. This poses a challenge even for meta-
analyses that might be done in a consortium context with
larger sample sizes.

Dysregulation of genes involved in synaptic plasticity,
axonal guidance, and interferon response is also a relatively
consistent theme. Perhaps the most important conclusions to
be drawn from the impressive body of data derived from
GWAS, candidate-gene, transcriptomic and epigenetic studies
thus far are that: 1) APOE genotype may play a role in older
HIV-infected persons [6•, 133•]; 2) genes involved in inflam-
mation and immune regulation in the periphery and CNS,
macrophage/monocyte responses to HIV infection, synaptic
plasticity, axonal guidance, and mitochondrial function are
fundamental in determining neuronal injury and ultimately,
neurocognitive function in HIV+individuals; 3) specific gene
modules and molecular pathways revealed to be dysregulated
in HIV-infection and HAND may now be evaluated for indi-
vidual variation and therapeutic potential; and 4) dopaminer-
gic dysfunction is altered in HAND and may play a role in
HAND pathogenesis among subsets of HIV-infected sub-
stance users [91, 134]. Many of these findings still require
replication. The potential impact of host genetics on epigenet-
ic modifications in HAND is also an unexplored area that may
improve understanding of maladaptive host responses to HIV
infection [135•].

Future Research Priorities in the Genomics of HAND

Study populations and design There is an urgent need for
longitudinal studies of HAND in which subjects serve
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as their own controls, minimizing the impact of con-
founding factors and optimizing power for detection of
genetic effects. There has been a dearth of studies
involving pediatric populations, in whom the long-term
effects of HIV infection on the CNS may be particularly
devastating, and in women, who may have less access
to care in some settings and/or may be more vulnerable
to the effects of substance dependence on some aspects
of neurocognitive function [136–138].

It is currently unclear whether global indices of NCI, even
when adjusted for population norms, form a sufficiently ho-
mogeneous phenotype for genomic studies. The use of
domain-specific ratings, which may have greater test-retest
reliability and are finer-grained than global composite mea-
sures of neurocognitive function, may be less subject to noise
in the detection of genetic markers [31•, 139]. The predictive
value of combinations of the most promising genetic bio-
markers might be evaluated in longitudinal studies that incor-
porate consistent case definitions, corrections for practice
effects, and the best available population norms. Finally, ad-
ditional studies focused on milder forms of HAND, including
ANI, in individuals with undetectable virus and which use
consistent diagnostic criteria are essential [140, 141]. A recent
substudy of the CHARTER cohort addressed the prognostic
relevance of ANI, which has been much debated, confirming
that subjects with ANI experience significantly higher rates of
decline to symptomatic HAND than those who are
neurocognitively normal at baseline [142•].

The rapid growth of bioinformatics and systems biology as
disciplines, and the evolution of machine learning tools, has
now made it possible to emphasize identification of an in-
creasing number of biological processes that underlie HAND
[31•, 143•, 144•]. Microarray gene-expression and epigenetic
studies can and should be further exploited for this purpose,
with the caveat that they are best designed to provide broad
brushstrokes, not detailed mechanistic understanding. For ex-
ample, recent epigenetics work has revealed regulatory
miRNA pathways validating general mechanisms such as
global mitochondrial dysfunction. The CREB gene and its
targets, implicated in both histone-modification and miRNA
studies of HAND [105•, 114•], have complex roles in cell
growth, differentiation, and neuronal function.

Conventional statistical approaches often fail to identify
weak single-gene and gene-gene (or gene-environment) inter-
action effects, which are actually likely to be the fundamental
genetic drivers of complex phenotypes like HAND [31•].
Network methods have emerged as a more powerful way to
detect such effects. In order to derive clinically meaningful
understanding of HAND and highlight biological processes
that can be targeted therapeutically, it will be helpful to utilize
the latest tools for integrating data from multiple sources and
of multiple types. Several computational tools have been
developed in recent years to predict the impact of a

nonsynonymous genetic variants on protein function and,
hence, distinguish pathogenic from neutral variants [145•].
Techniques such as WGCNA [146] hold promise for more
powerful delineation of disease-related co-expression mod-
ules that account for functional relatedness of genes, and
which can be used to analyze data from a large variety of
“omics” venues.

The internal consis tency of microarray-based
transcriptomic and epigenetic studies of HAND is difficult
to know, as this has not been well studied; very small numbers
of subjects (<5) are often evaluated, and rarely have subjects
served as their own controls. Many potential confounding and
modifying factors are also in play. Given small anticipated
effect sizes and the inability to estimate power in most
genome-wide studies conducted for discovery purposes, it is
imperative that replicative studies now be performed in larger
numbers of subjects with estimates of clinically meaningful
effect sizes, measurement error, and potential confounders in
mind. In addition, standardization of research protocols and
assays going forward may be helpful for combining data
across multiple cohorts in order to meet the stringent
power requirements of GWAS and also to facilitate
validation of true-positive findings. Whole-exome se-
quencing approaches, which have not been published
in HAND, are another way to identify the functional
genomic variation that is responsible for common com-
plex diseases without the high costs associated with
whole-genome sequencing, while maintaining high cov-
erage and sequence depth [147]. Research in the area
will also benefit from reporting of both corrected and
uncorrected p-values, so that type I and type II error
can be balanced in the ongoing process of replication.
The biology of replicated genes and pathways will then
require further exploration at the bench to determine
which ones are therapeutically actionable.

Refinement of HAND subphenotypes or intermediate
phenotypes Due to the constraints of neuropsychometric tests
and HAND definitions based only on these tests, alternative
phenotypic measures of HAND that are less affected by
confounders should be further explored, including structural
and metabolic neuroimaging indices and new neuropatho-
logical correlates of HAND in the cART era, such as
synaptodendritic simplification [148, 149]. Studies emerg-
ing the neuroimaging literature suggest that structural and
metabolic subphenotypes of HAND may allow for more
powerful analysis of genetic impacts on HAND [100,
129•, 150•, 151•]. Other noninvasive and low-cost bio-
markers of NCI are also urgently needed to assist in
monitoring patients over time, including in low-resource
settings, because better characterization of longitudinal tra-
jectories of neurocognitive performance will facilitate as-
sociation of neurocognitive changes with host genomic
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factors. These biomarkers can then be applied in subpop-
ulations with substantially different risk profiles, enhancing
the generalizability and practical applicability of findings
in this field. Continued refinement of practical tools for
detecting mild HAND [141] may also make screening
more acceptable and lower the cost of collection of
much-needed longitudinal data. Tissue-based microarray
studies evaluating multiple rather than single brain regions
in affected individuals, with correlation of genetic, RNA,
epigenetic, and protein expression data, are going to be
essential to piece together complex patterns into coherent
and therapeutically actionable mechanisms of pathogenesis
using systems biology approaches.

Conclusion

In conclusion, the complexity of HAND and the lessons learned
from genomic studies to date suggest that increased
methodologic rigor in study design and an integrated analytical
approach employing tools from systems biology and machine
learning are needed to significantly advance individualized care
for persons withHAND. The pathways delineated by all types of
genomic studies in this area will also become particularly mean-
ingful when combined with data emerging from the NIH Brain
Initiative and the Human Connectome Project, which promise to
provide a comprehensive picture of human neural networks.
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