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Abstract Although monotherapy with angiostatic drugs is

still far from effective, there is abundant evidence that

angiostatic therapy can improve the efficacy of conven-

tional treatments like radiotherapy. This has instigated

numerous efforts to optimize and clinically implement the

combination of angiostatic drugs with radiation treatment.

The results from past and present clinical trials that

explored this combination therapy indeed show encourag-

ing results. However, current findings also show that the

combination has variable efficacy and is associated with

increased toxicity. This indicates that combining radio-

therapy with angiostatic drugs not only holds opportunities

but also provides several challenges. In the current review,

we provide an update of the most recent insights from

clinical trials that evaluated the combination of angiostatic

drugs with radiation treatment. In addition, we discuss the

outstanding questions for future studies in order to improve

the clinical benefit of combining angiostatic therapy with

radiation therapy.
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Introduction

In 2004, more than 30 years after the proposition that

targeting the vascularization of malignant tissues might

provide a therapeutic benefit [1], the first angiostatic drug

was approved by the FDA, i.e., bevacizumab (Avastin�)

[2]. Currently, bevacizumab, a monoclonal antibody tar-

geting the vascular endothelial growth factor (VEGF), is

FDA approved for the treatment of metastatic colorectal

cancer (mCRC), metastatic renal cell cancer (mRCC), non-

small cell lung cancer (NSCLC) and glioblastoma, while its

treatment efficacy in other malignancies is still being

investigated. In addition, in the last decade the FDA has

approved several other angiostatic drugs for the treatment

of different malignancies (Table 1). Despite the increasing

number of angiostatic drugs targeting different angiogenic

pathways [3–5], thus far only limited clinical benefit of

angiostatic therapy has been demonstrated. For example,

bevacizumab monotherapy in patients with previously

treated mCRC resulted in an inferior overall survival (OS)

of 10.2 months compared to a OS of 10.8 months with

standard chemotherapy (FOLFOX4) [6], whereas the first-

line therapy with sorafenib in patients with mRCC results

in a similar progression-free survival as treatment with

interferon alpha-2a [7]. A well-known exception to this is

sunitinib which has been shown to improve OS in the first-

line treatment of patients with metastatic RCC as compared

to interferon alpha [8, 9].

Despite their limited benefit as monotherapeutics, both

clinical and preclinical studies have shown that angiostatic

drugs can improve the treatment efficacy when combined

with other treatments, including chemotherapy [10–14],

photodynamic therapy [15–17], immunotherapy [18, 19],

miRNA-based therapy [4] and radiotherapy [13, 20–23].

Regarding the latter, promising preclinical observations
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instigated numerous clinical trials exploring the benefit of

combining angiostatic drugs with radiotherapy. Five years

ago, we evaluated the clinical opportunities and challenges

that accompany the combination of radiotherapy with

angiostatic therapy [24]. At that time, over 75 trials were

still ongoing. Here, we present an updated overview of the

outcome of these clinical trials. In addition, we evaluate the

novel insights from these studies and discuss the out-

standing questions that new trials should answer in order to

improve the clinical benefit of combining radiotherapy

with angiostatic treatment.

The rationale behind combining angiostatic drugs
with radiotherapy

At the first sight, the rationale to combine radiotherapy

with angiostatic drugs appears counterintuitive since the

effect of radiotherapy relies on the presence of oxygen [25]

while angiostatic drugs aim to block tumor oxygenation.

Despite this apparent conflict, several preclinical studies

have shown that angiostatic treatment can enhance tumor

oxygenation, thereby increasing the efficacy of radiation

treatment [13, 22, 26–28]. The mechanisms by which

angiostatic drugs improve tumor oxygenation are still not

fully understood. Initially, it was hypothesized that selec-

tive killing of the endothelial cells would reduce their

oxygen consumption and increase vascular permeability.

This would result in an increased oxygen availability and

diffusion into the tumor tissue [29, 30]. Later studies

indicated that angiostatic treatment might improve tumor

oxygenation by remodeling of the abnormal and dysfunc-

tional tumor vasculature to a more normal and functional

phenotype [27, 31]. This ‘vascular normalization’ is

hypothesized to result from restoring the balance between

pro- and anti-angiogenic signals. It results in more

stable vessels, lower interstitial fluid pressure, better per-

fusion and consequently a better overall tumor oxygenation

[22, 32–34]. For example, our previous work has focussed

on the role of galectins in tumor angiogenesis and cancer

[35–40]. This was instigated by our discovery of galectin-1

as a pro-angiogenic factor that is essential for endothelial

Table 1 FDA-approved angiostatic drugs for cancer treatment

Drug (trade name) Main target(s) Cancer typea

Antibodies

Aflibercept (Zaltrap�) VEGF/PlGF mCRC

Bevacizumab (Avastin�) VEGF mCRC, NSCLC, mRCC, Glioblastoma

Ramucirumab

(Cyramza�)

VEGFR2 Advanced stomach cancer or gastroesophageal junction adenocarcinoma

Panitumumab

(Vectibix�)
EGFR mCRC (wt KRAS)

Cetuximab (Erbitux�)b EGFR mCRC (wtKRAS), metastatic non-small cell lung cancer and head and neck

cancer

Small molecules

Axitinib (Inlyta�) VEGF-R1/2/3, PDGFR, c-KIT RCC

Everolimus (Afinitor�) FKBP12/mTORC1 RCC, breast cancer, NET

Erlotinib (Tarceva�) EGFR NSCLC, PC

Pazopanib (Votrient�) VEGFR-1/2/3, PDGFR-a/b, c-Kit RCC, STS

Regorafenib (Stivarga�) VEGFR-2, TIE-2 mCRC, GIST

Sorafenib (Nexavar�) C-RAF, B-RAF, VEGFR-2/3,

PDGFR-b,
RCC, HCC, thyroid cancer

Sunitinib (Sutent�) VEGFR-1/2/3, PDGFR-a/b, c-Kit mRCC, imatinib-resistant GIST, progressive NET in the pancreas

Thalidomide

(Thalomid�)

Cereblon, unknown Multiple myeloma

Vandetanib (Caprelsa�) VEGFR-1/2/3, EGFR, RET Medullary thyroid cancer

Cabozantinib

(Cabometyx�)

VEGF-R2, c-MET Advanced RCC, medullary thyroid cancer

Lenvatinib (Lenvima�) VEGF-R1/2/3 Advanced RCC, thyroid cancer

a m metastatic, CRC colorectal cancer, NSCLC non-small cell lung cancer, RCC renal cell cancer, PC pancreatic cancer, NET neuroendocrine

tumors, STS soft tissue sarcoma, HCC liver cancer, GIST gastrointestinal cancer
b Was also approved by the FDA in 2004 for the treatment of mCRC [2]
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cell function during tumor angiogenesis [41–44]. Impor-

tantly, we identified galectin-1 as the endothelial cell target

of a synthetic angiostatic peptide named anginex [41, 45].

Treatment of murine tumor models with anginex (or

bevacizumab) was shown to improve tumor oxygenation

and consequently to enhance the anti-tumor effect of

radiotherapy [22]. This is in line with other preclinical

studies which have linked vascular normalization to an

enhanced efficacy of radiation treatment [13, 27]. At the

same time, it has been shown that the vascular normal-

ization occurs only transiently and that continuation of

angiostatic treatment eventually causes vessel regression

and reduced tumor oxygenation [22, 31, 34]. Hence, ade-

quate scheduling is important to ensure that radiation is

applied during the normalization window [22]. In addition,

to what extent vascular normalization occurs in the clinical

setting and whether or not it contributes to better tumor

oxygenation is still under debate [46, 47]. While the latter

still requires further investigation, the potential effects on

tumor oxygenation certainly provide a rationale to combine

angiostatic drugs with radiotherapy.

Another rationale to combine angiostatic therapy with

radiotherapy is the observation that tumor irradiation can

directly affect tumor vascularization, perfusion and oxy-

genation. Such radiation-induced vascular changes appear

to be dependent on the dose-scheduling regime. Based on a

literature study, different dose-dependent effects of radio-

therapy on the vasculature could be distinguished, i.e.,

vessel deterioration, vessel preservation and vessel induc-

tion [48]. The latter, i.e., the stimulation of tumor vascu-

larization and perfusion, is predominantly observed during

fractionated (low-dose) radiotherapy. For example, Mayr

et al. [49] used contrast enhanced MRI to determine tumor

perfusion in cervical cancer patients receiving fractionated

radiotherapy (±5 9 2 Gy/week for 4–5 weeks). They

observed increased perfusion after 2 weeks of treatment

after which a decline in perfusion was observed. A com-

parable finding was reported by Shibuya et al. [50] using

perfusion CT. Improved tumor perfusion following frac-

tionated irradiation was also reported in other tumor types,

including in non-locally advanced rectal tumors (5 9 5 Gy)

[51], and inoperable non-small cell lung tumors

(6 9 4.5 Gy) [52]. In the latter study, the increase in tumor

blood volume occurred both at the rim and the center of the

tumor albeit to a lesser extent in the tumor center [52]. We

also observed improved perfusion in the center of xenograft

colorectal tumors in mice that received 3 weeks of frac-

tionated irradiation (5 9 2 Gy/week) [28]. Interestingly, the

observation that fractionated irradiation can induce tumor

tissue perfusion is in line with reports that fractionated

radiotherapy can improve tumor oxygenation [53, 54].

Thus, improved tumor perfusion might represent an addi-

tional mechanism of radiotherapy-induced tumor

oxygenation, next to previously described mechanisms like

decreased oxygen consumption, increased inflammation and

reduced tumor volume [55]. While the improved perfusion

and oxygenation might increase the efficacy of subsequent

irradiations, our recent findings confirm that the tumor areas

with increased perfusion also contained more viable tumor

tissue [28]. Apparently, the improved tumor vascularization

and oxygenation can also contribute to tumor cell survival

or to tumor regrowth following fractionated radiotherapy.

Thus, blocking this effect by angiostatic drugs could

improve the efficacy of the radiation treatment.

Altogether, the addition of angiostatic drugs to radio-

therapy might be effective by (1) transiently improving

tumor oxygenation and/or (2) counteracting radiotherapy-

induced tumor (re)vascularization to prevent or delay

tumor recurrence. However, it is evident that optimal dose-

scheduling of both treatment modalities is the key to

achieve beneficial effects of the combination therapy. After

all, dose-scheduling of angiostatic drugs will influence

whether and when vessel normalization occurs, thereby

affecting the efficacy of radiotherapy. At the same time,

dose-scheduling of radiotherapy will influence tumor per-

fusion and oxygenation, thereby affecting the efficacy of

angiostatic drugs. All this has been recognized and studied

by us and others in different preclinical tumor models

[22, 23, 56, 57]. The current challenge is to translate all

these insights into clinically applicable protocols. For this,

several outstanding questions have to be answered, espe-

cially with regard to dose-scheduling and with regard to the

commonality of the observed effects of radiotherapy on

tumor vascularization and perfusion. Insights from past,

present and future clinical trials on the efficacy of the

combination therapy can help to answer these questions.

The past results of combined angiostatic/radiation
therapy

In 2012, we performed an extensive review of the results of

clinical trials that combined radiotherapy with angiostatic

treatment. The overall conclusion at that time was that this

combination treatment generally results in favorable out-

comes with regard to tumor response and patients survival

[24]. The observed efficacy appeared to depend not only on

the type of drug and the type of tumor but also on the

proper scheduling and dosing of both therapies which was

in line with preclinical observations. In fact, exploring the

optimization of dose-scheduling was identified as an

important future challenge, especially since concerns were

raised regarding the increased toxicity that is observed in

patients who received the combination treatment

[24, 58, 59]. Interestingly, our recent studies in preclinical

tumor models indeed show that optimizing the treatment
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schedule does allow dose reductions without loss of treat-

ment efficacy, i.e., decrease in tumor volume [23, 28]. This

is in line with a previously published mouse study [60] as

well as with several clinical case reports [61, 62]. However,

strong clinical evidence that dose reduction does result in

lower toxicity while not affecting the efficacy of the

combination treatment is still lacking.

Collectively, past clinical trials confirmed the preclinical

findings that the combination of angiostatic drugs with

tumor irradiation could provide opportunities to improve

patient outcome. However, the combination therapy was

found to be associated with increased toxicity profiles

which pointed toward the need to improve dose-

scheduling.

The present progress in combined angiostatic/
radiation therapy

The 2012 paper by Kleibeuker et al. listed 78 ongoing

clinical trials combining angiostatic drugs with radiother-

apy [24] which was illustrative of the expectations

regarding the clinical benefit of this combination treatment

strategy. At present, 45 of these trials have been completed

and 19 trials are still ongoing. In addition, four have been

terminated due to either an insufficient number of partici-

pants, unacceptable toxicity or withdrawal of support from

the sponsor, whereas the remaining studies did not have a

recent status update (Table 2). Out of the 45 completed

trials, 22 published study results in PubMed-indexed

journals. Of note, the majority of these published trials, i.e.,

18, evaluated the combination of (chemo)radiotherapy with

bevacizumab (Table 3). Since we recently discussed the

opportunities of combining radiotherapy with another

widely used angiogenesis inhibitor, i.e., sunitinib [63], we

will focus here mainly on bevacizumab.

Combining bevacizumab with (chemo)radiotherapy

In 2014, Gilbert et al. and Chinot et al. published the results

of two phase III trials that evaluated whether bevacizumab

improves the efficacy of standard chemoradiotherapy for

patients with newly diagnosed glioblastoma [64, 65]. Both

studies were initiated based on previous observations in

phase I/II trials that suggested a potential benefit of this

combination treatment [66–69]. In the trial of Gilbert et al.,

bevacizumab (or placebo) was added in the fourth treat-

ment week of concurrent radiotherapy (30 9 2 Gy) plus

temozolomide, whereas Chinot et al. started bevacizumab

(or placebo) already in the first treatment week of radio-

therapy (30 9 2 Gy) plus temozolomide. Gilbert et al.

found no benefit of bevacizumab in terms of overall sur-

vival (OS; 15.7 vs. 16.1 months; HR 1.13) and

progression-free survival (PFS; 10.7 vs. 7.3 months; HR

0.79), but reported a worse quality of life and a decline in

neurocognitive function in the bevacizumab group. Patients

treated with bevacizumab experienced grade 3 or higher

adverse events more frequently [65]. Chinot et al. did

observe a prolonged PFS in the bevacizumab group as

compared to placebo (10.6 vs. 6.2 months), but also failed

to show a significant difference in OS. Again, grade 3 or

higher adverse events were more common in the beva-

cizumab cohort (66.8 vs. 51.3% in the placebo group) [64].

Of note, since the statistical design of the two trials was not

comparable, a direct comparison cannot be made. How-

ever, both studies point toward a favorable PFS with the

addition of bevacizumab to radiotherapy plus temozolo-

mide in newly diagnosed glioblastoma, especially when

combination treatment is initiated at the start of radio-

therapy. Unfortunately, the favorable PFS is accompanied

with increased toxicity. Thus, it remains to be seen if

bevacizumab is really a beneficial addition to the first-line

treatment in glioblastoma patients.

Overall, the clinical value of combining bevacizumab

with radiotherapy is open for debate, especially since most

current trials either report no clinical benefit [70–76] or

only a (minor) benefit in PFS or pCR (pathological com-

plete response) [77, 78]. For example, several phase II

studies have been performed in rectal cancer patients based

on promising results in phase I trials [79, 80]. Borg et al.

[71] added bevacizumab to neoadjuvant 5-FU and RT for

46 patients with stage III rectal cancer before total

mesorectal excision, evaluating the proportion of patients

achieving a pathological complete response (pCR;

ypT0N0). The study did not reach a significant difference

from expected pCR (10.0%) with a rate of 11.4%. Salazar

et al. also failed to show a significant difference in pCR

with the addition of bevacizumab to capecitabine-based

neoadjuvant chemoradiotherapy (CRT) in 44 patients with

stage II/III rectal cancer as compared to 46 patients

undergoing only CRT (16 vs. 11%, p = 0.54) [75]. Com-

parable observations were reported by Dellas et al. [81].

More recently, Landry et al. reported on the 5-year clinical

outcomes of a phase II trial in patients with locally

advanced rectal cancer that received preoperative

chemoradiation with bevacizumab followed by postopera-

tive chemotherapy (FOLFOX) plus bevacizumab. Despite

excellent 5-year OS and DFS, the primary endpoint (30%

pCR) was not reached. Moreover, the treatment schedule

was associated with substantial neoadjuvant and surgical

toxicity. This resulted in low compliance to adjuvant

treatment, and therefore, it was recommended to not further

explore this combination treatment [73]. Also Kennecke

et al. [82], who evaluated preoperative bevacizumab

treatment added to oxaliplatin, capecitabine and radiation

in 42 locally advanced or low rectal cancer patients,
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suggested that the results of their study did not justify a

phase III trial aimed at exploring the benefit of neoadjuvant

bevacizumab in rectal cancer. Of note, Spigel et al. [83]

observed an improved pCR rate of 29% in patients with

stage II/III rectal cancer who were treated prior to surgery

with 5-fluorouracil, bevacizumab and radiotherapy. Also

Xiao et al. [84] reported that sandwich-like neoadjuvant

therapy with bevacizumab was safe and effective for

locally advanced rectal cancer. Possibly, differences in the

timing of surgery, i.e., 2–8 versus 6–8 weeks following

chemoradiation could underlie the different observations

[85]. This should be taken into account when further

optimizing dose-scheduling of both treatments in rectal

cancer. Regarding scheduling, the patient accrual in a

single-arm phase II study by Resch et al. [86] in rectal

cancer patients that received bevacizumab concurrent with

chemoradiation was terminated due to toxicity. Based on

these current results, it can be argued whether the combi-

nation of radiotherapy with bevacizumab will provide a

clinical benefit to rectal cancer patients.

A similar conclusion can be claimed regarding the com-

bination of radiotherapy and bevacizumab in nasopharyn-

geal cancer. In a phase II clinical trial by Lee et al. [74], 44

patients with stage IIB–IVB nasopharyngeal cancer

received radiotherapy (33 9 1.2 Gy) in combination with

three cycles of bevacizumab and cisplatin, followed by

standard adjuvant treatment consisting of fluorouracil in

combination with bevacizumab. While the study was

designed to test toxicity, the estimated PFS was lower than

previously reported in standard therapy (75 vs. 86%). The

estimated PFSwas also not reached in the study by Yao et al.

in patients with locally advanced squamous cell carcinoma

of the head and neck that received bevacizumab concurrent

with chemoradiation followed bymaintenance bevacizumab

treatment. Nevertheless, they concluded that the regimen

could be further studied in appropriately selected patients,

especially those not eligible for cisplatin administration

[76]. Of note, a study combining both bevacizumab and

erlotinib with concurrent chemoradiation in head and neck

cancer patients appeared to give favorable locoregional

control and OS compared to historical controls. It was sug-

gested to further study this in a randomized study [87].

Altogether, most current studies combining beva-

cizumab with radiotherapy only show moderate to no

clinical benefit at all. In addition, in most studies the

combination treatment is associated with increased albeit

manageable toxicities. All this is in line with previous

observations [24].

Combining sorafenib with (chemo)radiotherapy

As mentioned previously, most trials on combining angio-

static drugs with irradiation that were published between

2012 and 2015 involved the addition of bevacizumab to

radiotherapy. However, a few trials assessed the combina-

tion with other angiostatic drugs. For example, several

studies evaluated the addition of the tyrosine kinase inhibitor

sorafenib to radiation therapy. Brade et al. [88] tested the

safety of combining sorafenib with SBRT (up to 51 Gy) in

liver cancer patients. They observed a high rate of adverse

events and DLTs, predominantly in patients in which a high

volume of liver was irradiated. This is in line with reports

from Goody et al. and Dawson et al. [89, 90]. Based on these

observations, it appears not advisable to combine concurrent

sorafenib with SBRT in patients with locally advanced HCC

[88]. Interestingly, Chen et al. [91] observed more accept-

able toxicities when combining concurrent sorafenib with

conventional fractionated radiotherapy (2.0–2.5 Gy/fraction

up to 60 Gy). Since the response rate appeared similar

compared to historical studies of radiotherapy alone, it was

concluded that the schedule could be further investigated,

albeit with caution [91]. A comparable conclusion was

drawn by Hainsworth et al. [92] who applied maintenance

sorafenib plus temozolomide treatment following fraction-

ated radiotherapy (30 9 2 Gy) plus temozolomide in newly

diagnosed glioblastoma patients. Of note, the necessity to

combine radiotherapy with sorafenib with caution was fur-

ther exemplified by the observation that sorafenib prior to

radiotherapy can result in reduced liver volumes which

might require adjustment of the radiation dose [93]. In

addition, sorafenib treatment was associated with gastroin-

testinal perforation after radiotherapy in advanced renal cell

carcinoma patients [94]. These findings again illustrate the

necessity to gain more insight in the effects of alternative

dose-scheduling regimes when combining radiotherapy with

angiostatic drugs.

Combining sunitinib with (chemo)radiotherapy

The opportunities and challenges of this combination

treatment were previously reviewed by Kleibeuker et al.

[63]. Here, we briefly discuss some of the latest insights.

Recently, Jakob et al. published the results of two phase I

trials that explored the feasibility of concurrent sunitinib

and radiotherapy for treatment of locally advanced soft

tissue sarcoma (STS) prior to surgery [95, 96]. They

observed acceptable toxicity which was comparable to

other studies that evaluated the combination of radiother-

apy with angiostatic drugs in STS, including pazopanib

[97] and bevacizumab [98]. Based on favorable responses,

all these studies recommended further investigation of the

combination treatment in future trials [95–98]. However, a

single phase Ib/II study of sunitinib with radiotherapy in

soft tissue sarcoma reported unacceptable toxicities as well

as increased local relapse rates [99]. Interestingly, the ini-

tial dose of sunitinib used in this study was higher
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compared to the other studies (50 vs. 25–37.5 mg), which

might explain the observed increased toxicity. Horgan et al.

explored the feasibility, tolerability and efficacy of suni-

tinib adjuvant to surgery in locally advanced esophageal

cancer patients that received neoadjuvant chemoradiation

(irinotecan/cisplatin ? 25 9 2 Gy). This regime appeared

feasible although it was poorly tolerated. In addition, the

treatment did not show any clinical benefit compared to

(historical) controls [100]. All these findings support the

previous conclusions by Kleibeuker et al. [63] that effec-

tive combination of radiotherapy with sunitinib relies on

better insights in the optimal dosing and scheduling of the

combination treatment.

Combining other angiostatic drugs

with (chemo)radiotherapy

Besides the trials discussed above, a handful of studies

described the combination of additional angiostatic drugs

with radiotherapy. For some of these, e.g., SU5416 (se-

maxanib) and vandetanib, no trial results have been pub-

lished, possibly because the combination treatment is no

longer of interest. For other inhibitors, some information is

available. As mentioned above, pazopanib was combined

with radiotherapy in soft tissue sarcoma patients [97].

Based on a dose–escalation study, Haas et al. [97] con-

cluded that neoadjuvant pazopanib (daily dose of 800 mg

daily for 6 weeks) in combination with 50 Gy (25 9 2 Gy)

appeared safe, albeit that toxicity should be carefully

monitored in future studies. Of note, a case study reported

complete remission of gastric and esophageal metastases in

a renal cancer patient after treatment with radiotherapy

(10 9 3 Gy) and neoadjuvant as well as adjuvant pazo-

panib [101]. The study by Haas et al. also reported favor-

able responses which warrants further studies on the

clinical benefit of radiotherapy combined with pazopanib.

Two recent studies evaluated the combination of endo-

star/endostatin with radiotherapy in NSCLC patients. In the

study by Bao et al. [102], patients with unresectable stage III

NSCLC were treated with endostar combined with concur-

rent chemoradiation (docetaxel/cisplatin ? 30–33 9 2 Gy).

They reported promising short-term efficacy and local con-

trol rates, and the treatment regimen was generally well

tolerated [102]. These findings are in agreement with a

previous study in NSCLC patients and warrant future eval-

uation of this treatment [103]. On the other hand, Sun et al.

evaluated the addition of endostatin to concurrent

chemoradiation (carboplatin/paclitaxel ? 30–33 9 2 Gy)

followed by maintenance chemotherapy ? endostatin in

patients with unresectable stage III NSCLC. This study was

closed early because of unacceptable toxicity, i.e., four out

of ten patients presented with grade III pulmonary toxicity

[104].

Collectively, the results of the current studies that

evaluate the feasibility to combine angiostatic drugs with

radiotherapy have not provided remarkable novel insights

regarding this treatment regimen. The occurrence of toxi-

cities remains an issue of concern [105]. Combining

radiotherapy with bevacizumab generally shows limited

efficacy while the combination with other angiostatic drugs

has shown favorable responses, but still awaits further

confirmation in (randomized) clinical studies. Optimization

of dosing and scheduling of both treatment modalities

remains one of the key future challenges.

The future of combined angiostatic/radiation
therapy

Based on preclinical studies as well as on different clinical

observations, it still appears feasible that the combination of

angiostatic drugs with radiotherapy can be a valuable addi-

tion to current therapeutic strategies for cancer patients. At

the same time, the insights from past and present clinical

trials have made it clear that successful clinical implemen-

tation of this combination treatment requires considerable

investigations. As evident from our current and previous

review, there are a large number of studies ongoing that will

help to resolve some of the outstanding questions, especially

with regard to feasibility and toxicity of combining different

angiostatic drugs with different radiation regimes in a broad

spectrum of cancer types. Moreover, several novel trials

have been initiated in the past 5 years, for example with

bevacizumab (Table 4). The results of all these trials will

help to make the necessary steps to bring effective combi-

nation therapy to cancer patients.

One of the most urgent issues to address involves the

optimal dose-scheduling of both treatment modalities, not

only to improve treatment efficacy, but also because the

results from past studies indicated that inadequate dose-

scheduling can induce severe toxicities [24, 63]. With

regard to dosing, it is important to explore how alterations

in dosing of either treatment affect the toxicity and efficacy

of combination therapy. For example, Carlson et al. and

Omura et al. explored the addition of bevacizumab to

hypofractionated radiotherapy in newly diagnosed

glioblastoma patients [106, 107]. In the latter study,

patients received hypofractionated stereotactic radiother-

apy (6 9 6 ? 4 Gy over 2 weeks) with concurrent and

adjuvant temozolomide plus bevacizumab. The regime was

identified as safe and was found to have a comparable

effect on OS as compared to historical standard treatment.

Moreover, the reduced treatment period appears more

convenient for cancer patients [106]. The study by Carlson

et al. [107] also reported that the addition of concurrent/

adjuvant bevacizumab to hyperfractionated IMRT
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(10 9 6 Gy) did not improve OS while a somewhat higher

rate of grade 3 toxicity was observed. Nevertheless, these

studies provide the first evidence that altered dose-

scheduling can be explored in order to improve treatment

efficacy. In this light, our recent preclinical results are also

of interest. We observed that concurrent combination

treatment allowed a 50% reduction in dosing of the

angiostatic drug sunitinib without affecting the therapeutic

efficacy of conventional fractionated radiotherapy [23, 28].

Of note, the low dose was also effective in combination

with single high-dose irradiation. These observations could

provide opportunities to improve combination treatment

both in the curative and in the palliative setting. However,

the applicability of such approaches in a clinical setting

still awaits confirmation.

Apart from dosing, the scheduling of both treatments is

also of importance. Different effects have been observed

between concurrent and (neo)adjuvant combination of

angiostatic drugs with radiotherapy [24, 63]. Recently,

Avallone et al. [108] reported on differential clinical

effects of combining bevacizumab with chemoradiation

either concomitantly or sequentially in high-risk locally

advanced rectal cancer patients. While the endpoint was

reached using the sequential schedule, the concomitant

Table 3 Overview of trials combining RTx with bevacizumab published between 2012 and 2017

Trial Phase Diseasea Schedulingb Radiotherapy

regimec
Chemotherapy Treatment

benefit

References

NCT01332929 I Brain metastases Neo/conc 15 9 2 or

10 9 3 Gy

1/3 versus

11/15a
[109]

NCT00805961 II GBM (first-line

treatment)

Conc/adj 30 9 2 Gy Temozolomide/everolimus Yes (PFS)b [77]

NCT01186406 II GBM (ND) Conc/adj 30 9 2 Gy Temozolomide No (OS

and PFS)

[65]

NCT00943826 III GBM (ND) Neo/conc 30 9 2 Gy Temozolomide Yes (PFS),

No (OS)

[64]

NCT01022918 II GBM

(unresectable)

Neo/adj 30 9 2 Gy Temozolomide/irinotecan No (PFS) [72]

NCT00545792 II Gynecological

cancer

(recurrent)

Conc 45 Gy in 25

fractions

Yes (PFS) [78]

NCT00281840 II HNSCC (stage III/

IV)

Conc/adj 40 9 1.8 Gy Docetaxel No (PFS)b [76]

NCT00408694 II NPC (stage IIB–

VB)

Conc/adj 33 9 2.12 Gy Cisplatin/5-FU No (PFS)b [74]

NCT00460174 II Pancreatic cancer

(localized)

Neo 15 9 2.4 Gy Gemcitabine NAc [110]

NCT00321685 II RC (LA non-

metastatic)

Conc 28 9 1.8 Gy Capecitabine/oxaliplatin

(FOLFOX)

No (pCR)b [73, 115]

NCT00865189 II RC (LA) Neo/conc 25 9 1.8 Gy FOLFOX/5-FU No (pCR)b [71]

NCT01043484 II RC (localized) Conc 25 9 1.8 Gy Capecitabine No (pCR) [75]

NCT00308516 II RC (stage II/III) Conc/adj 28 9 1.8 Gy FU (conc)/FOLFOX6 (adj) Yes (pCR;

DFS)b
[83]

NCT00307736 I/II RC (LA) Conc 28 9 1.8 Gy 5-FU/erlotinib Yes (pCR)b [113]

NCT00308529 II SCLC (LA) Neo/conc/

adj

34 9 1.8 Gy Irinotecan/carboplatin NAd [111]

NCT00393068 II EC (operable) Conc 25 9 1.8 Gy 5-FU/paclitaxel/carboplatin/

erlotinib

No (pCR) [70]

NCT00140556 I HNSCC/NPC Conc 70 Gy in twice

daily 1.25 Gy

Cisplatin/erlotinib Yes (OS)b [87]

NCT00392704 II HNSCC (LA) Neo/conc 38 9 1.8 Gy Paclitaxel/carboplatin/5-FU (neo);

Paclitaxel/erlotinib (conc)

Yes (PFS)b [112]

a Responders according RECIST in patients treated with increasing dose bevacizumab
b Compared to historical studies, NA not assessed
c Study was set up to compare different response measures
d Due to early trial closure related to toxicity
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schedule arm was terminated early because of inconsistent

activity. Also, toxicity and postoperative complications

appeared to be higher after concomitant treatment [108].

This is illustrative of the importance of optimal scheduling,

and it is therefore essential that the effect of scheduling is

further explored in future studies.

Finally, future studies should aim to integrate insights

on tumor perfusion with the observed response to therapy.

As described above, the main rationales to combine

angiostatic drugs with radiotherapy are (1) to improve

tumor perfusion and oxygenation by vessel normalization

and (2) to counteract radiation-induced tumor (re)vascu-

larization. Both aims require different approaches with

regard to dose-scheduling. Thus, it is vital in obtain

information of tumor perfusion and oxygenation prior to

treatment planning but also to monitor changes in these

parameters during treatment. This could improve treatment

efficacy. Several of the trials that were discussed here also

included perfusion measurements or explored (bio)markers

that could predict response to therapy. However, it is out-

side the scope of the current review to discuss the insights

of these studies regarding these issues. It suffices to state

that the development and implementation of noninvasive

imaging techniques to measure perfusion and early tumor

responses are important to better explain and/or predict the

response to the combination of angiostatic drugs with

radiotherapy.

Conclusions

Despite the limited clinical efficacy of angiostatic drugs as

monotherapeutics, there is ample evidence that angiostatic

therapy can be valuable when combined with other treat-

ment modalities, including radiotherapy. This involves the

beneficial effects of angiostatic drugs on tumor perfusion

prior to and during radiation as well as their inhibitory

effects on tumor (re)vascularization during or after radia-

tion. Past and present clinical trials that combined angio-

static drugs with radiotherapy indeed showed that this

approach can improve therapeutic outcome. However, this

is mainly observed in phase I/II trials and actual validation

of clinical benefit awaits confirmation in larger randomized

phase III trials. Moreover, variable efficacy as well as

increased toxicity has been reported when angiostatic drugs

are combined with radiotherapy. This is most likely due to

non-optimal dosing and inadequate scheduling of both

treatment regimes. Thus, exploring the close relation

between dose-scheduling represents the key challenge for

future research regarding combination treatment. This

Table 4 Newly initiated trials combining bevacizumab with radiotherapy (2012–2017)

Trial Phase Diseasea Schedulingb Radiotherapy regimec Chemotherapy Statusd

NCT01730950 II GBM Conc IMRT, 3D-CRT, or proton beam RT 5 days a week

for 2 weeks

None 2

NCT01746238 I STS Conc 6 weeks, 5 days a week Doxorubicin 3

NCT02313272 I GBM Conc Hypofractionated SRT Pembrolizumab 3

NCT01871363 II RC Conc 25 9 2 Gy Capecitabine 5

NCT01743950 II GBM Conc 27 9 2 Gy (PRDR) None 3

NCT01569984 II mCRC Neo Up to 60 Gy in six fractions, alternating weekdays for

2 weeks

None 1

NCT02185352 II BM in

BC

Neo WBRT Etoposide, cisplatin 3

NCT01580969 Ib/II Glioma Conc Individually determined Minocycline 3

NCT01588431 II HNSCC Neo/conc 5 weeks, 70 Gy Docetaxel, cetuximab,

cisplatin

2

NCT01818973 II RC Neo/conc 5 weeks, 50 Gy Capecitabine ? oxaliplatin 3

NCT01554059 II RC Neo/conc 5 weeks, 50 Gy 5-FU, oxaliplatin 1

NCT02812641 II EC Conc 4 weeks, 40 Gy Cisplatin, 5-FU 3

NCT02672995 I BM Conc Three fractions, 18–27 Gy None 3

a Disease: GBM glioblastoma, STS soft tissue sarcoma, RC rectal cancer, mCRC metastatic colorectal cancer, BM brain metastasis, BC breast

cancer, HNSCC head and neck squamous cell cancer, EC esophageal cancer
b Scheduling: scheduling of angiostatic drug to radiotherapy neo neoadjuvant, conc concurrent, adj adjuvant
c Radiotherapy: radiation is applied at a frequency of 5 days/week unless indicated otherwise. When the dose applied is unknown, this is

indicated with 9 Gy
d Status: 1 = completed; 2 = active, not recruiting; 3 = recruiting; 4 = terminated/withdrawn; 5 = unknown
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directly relates to the development of rapid and noninva-

sive imaging strategies in order to measure tumor perfusion

prior, during and after treatment. This will help to optimize

current approaches to improve treatment strategies and to

make effective combination therapy available for cancer

patients in daily clinical practice.
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