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Abstract A statistical evaluation of the uncertainty of the
length of a utility network is frequently omitted in current
geographic information system (GIS) applications, although
this information is important for management purposes.
Nevertheless, the spatial database storing geographic
information about the network might have been set up
through a complex process (ground surveying, digitising of
analogue maps, integration of different data sources),
resulting in a dataset with unclassified uncertainty. This
paper proposes a practical but ‘rigorous’ approach to
evaluate the influence of the uncertainty in the determina-
tion of the length of a network. Starting from the definition
of length uncertainty in terms of simple geometric elements
(arc, pair of arcs, open and closed path), some rules for its
evaluation in the case of complex networks have been
developed. The statistical concept applied for the evaluation
of uncertainty is quite standard because it is based on the
covariance propagation theory. On the other hand, the
influence of correlations between the lengths of adjacent
elements has been considered as well. The application of this
method only requires the topological structure of the network
that can be built in a GIS environment. Furthermore, an
alternative ‘approximate’ method is proposed to find an
approximation of the uncertainty of the network length with a
simple formula, which requires neither any particular
processing step nor the network topology. Both methods have
been tested and validated on simulated and real datasets.
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Introduction

During recent years, the use of geographic information
system (GIS) technology for the management of energy
distribution networks has quickly increased at Italian
facility management (FM) companies. Many problems are
involved in the passage from analogue to digital carto-
graphic data, and vectorisation and georeferencing of maps
are the most important tasks to be solved (Burrough and
McDonnell 1998). Even though GIS systems are rapidly
spreading among FM operators, some critical aspects
regarding the application of these instruments are worthy of
analysis, especially when considering data quality. The
geometric framework of spatial databases is often derived
from the vectorisation of existing hardcopy maps, usually at
the 1:1,000 or 1:2,000 scale (Russomanno 1998; De Knecht et
al. 2001). The original positional error of analogue geographic
information is incremented during the digitalisation process
that consists of a preliminary scanning of paper sheets,
followed by a feature extraction step. Different errors are
introduced when a manual (Bolstad et al. 1990) or an
automatic process is used (Den Hartog et al. 1996).
Subsequently, some editing tasks like line simplification
(Douglas and Peucker 1973; Vereign 2000) and generalisa-
tion (Blakemore 1984; João 1995) might introduce errors that
must be considered. The lack of consideration for data quality
along the entire vectorisation process commonly results in the
unavailability of knowledge about the accuracy of geometric
features in the final spatial database (Chrisman 1982).
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The problem of estimating the uncertainty of network
length measurement (UNLM) is a very important task in
Geographic Information Sciences, given that this aspect
is not usually implemented in commercial GIS packages.
On the other hand, knowledge regarding the consistency
of a network is fundamental for its management. The
Italian electric power and gas distribution industry is
governed by a national authority,1 which coordinates all
companies in the field. One of its main activities is the
redistribution of the total income of the energy sellers, on
the basis of a set of established parameters. Among these,
the length of the network owned by each company plays a
key role. The source of this information is given by
engineering drawings and utility maps that, in many cases,
have been converted into a digital format for their use in
CAD or GIS environments (Keefer et al. 1991).

In the literature, several works can be found about
spatial uncertainty and its propagation. For a general
overview of this subject and the presentation of error
models, see e.g. Caspary and Scheuring (1993), Heuvelink
and Burrough (2002), Kiiveri (1997), Leung and Yan (1998),
Shi (1998) and Meidow et al. (2009); for the computation of
the uncertainty of line segments, see Goodchild and Hunter
(1997) and Shi and Liu (2000), while Navratil and
Achatschitz (2004) address that of areas; Tong et al. (2003)
examine the problem of defining a positional error model
for circular curve features. Some authors also proposed
alternative approaches based on fuzzy statistics (e.g. Shi
and Liu 2004). Despite the broad variety of papers, the
problems of the evaluation of UNLM in real networks
composed of many arcs are not yet properly investigated,
at least to the author's knowledge. Some applications can
be found in the field of geography, but these cover other
types of linear objects like contour lines or cost lines (e.g.
Galloway and Bahr 1979).

The classic statistical approach to this would consider
the covariance matrix expressing the positional errors
of the nodes of each arc of the network and their geometric
layout and would compute the variances of the length of all
arcs. This consists of the variance of the length of each arc,
as well as all the covariances between arcs sharing a node.
Here, a solution to the problem of evaluating UNLM
following a formalisation based on geodetic bearings (Wolf
and Ghilani 2006) is proposed. By combining formulas to
compute the uncertainty of simple aggregations of arcs, a
‘rigorous’ method to evaluate that of complex networks is
addressed. This method is clear and very simple from a
theoretical point of view, but must be implemented in a GIS
operational environment or, alternatively, in an external
routine that works on GIS outputs. If the adopted software

does not already implement a tool to manage this task or
cannot be programmed, this approach is not useful at all.

Thus, a simplified solution, referred to as the ‘approximate’
method, is also presented. This yields an approximate value
for UNLM on the basis of the knowledge of the number of
network nodes and their multiplicity. The variance of the
whole network length is the result of the sum of all variances
of each single arc, added up to covariances, whose contribu-
tion may also be negative (as often happens). The first term is
very trivial to compute, and the second term depends upon the
geometric relationships between different arcs. Considering
the global structure of FM networks in urban areas, some
approximation for the covariances is introduced.

In the ‘Fundamental hypotheses’ section, the fundamental
hypotheses that have been assumed in the development of
the proposed theory are presented (definition of uncertainty
and stochastic model). After the presentation of some
formulas to compute the uncertainty of basic network
elements (‘Uncertainty of basic linear features’ section), the
‘rigorous’ and ‘approximate’ methods for its calculus, in the
case of large networks, are reported in the ‘Uncertainty of the
length of complex networks’ section. The ‘Systematic errors’
section explores some systematic errors that could affect the
estimate of UNLM and reports how these can be modelled.
Some results obtained from the application of both proposed
methods to simulated and real datasets are reported in the
‘Results on simulated and real datasets’ section, while
conclusions are drawn in the ‘Conclusions’ section.

Fundamental hypotheses

The goal of the paper is to evaluate the UNLM on the basis
of a spatial database, storing coordinates of network nodes
and their topological relations (Mainguenaud 1995). The
basic assumption of the positional error model of a point
takes on circular normal distribution, which is usually
adopted for cartographic data (Leung and Yan 1998). The
estimated standard deviation of the total length of a network
is assumed as a measure of the UNLM.

Furthermore, we assume that the positional error of all
points in the spatial database is the same with the standard
deviation, σ, and that no correlation between coordinates of
different points exists.

Concerning the covariance σxy between x and y
coordinates of the same node, in general, it could not be
neglected; some considerations about the contribution of
σxy to the UNLM will be given later in the ‘Correlated x–y
coordinates’ section.

In the following, the evaluation of UNLM begins by
considering the standard deviation of the length of simple
linear structures, combinations of two or more linear
elements and complex networks.

1 AEEG—Authority per l'Energia Elettrica e il Gas (Authority for
Electric Power and Gas).
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Uncertainty of basic linear features

Uncertainty of a single linear feature

The basic case we consider is that of a single linear feature,
assumed as a straight line segment defined by two points
(nodes). Its length is expressed as lij, with associated
standard deviation σlij (hereafter, indices i and j are omitted
for clarity where obvious). The functional relationship
between nodes and length is given by:

l ¼ f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj � xi
� �2 þ yj � yi

� �2q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þΔy2

p
ð1Þ

where x=[xi yi xj yj]
T.

The stochastic model is given by the standard
deviations of the coordinates of both nodes and by their
covariances. At this stage, some initial assumptions have
been introduced:

& Equal standard deviations for both x–y coordinates
(σxi=σyi=σi);

& Equal standard deviations for both nodes (σi=σj=σ);
and

& No correlation between coordinates of different nodes.

In general, the covariance matrix associated with the
coordinate vector x has the form:

Cl ¼
s2 sxy 0 0
sxy s2 0 0
0 0 s2 sxy

0 0 sxy s2

2
66666

3
77777
: ð2Þ

The covariance σxy requires a more detailed analysis for
each specific case. For methodological purposes only, the
first case of σxy=0 is discussed, and secondly, the case in
which σxy≠0.

Uncorrelated x–y coordinates

The standard deviation (σl) of the length of a single linear
feature can be evaluated by applying covariance propa-
gation for the non-linear case (Mood et al. 1974):

s l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
JxClJTx

q
ð3Þ

where the Jacobian is expressed as:

Jx ¼
@l

@x
¼ @l

@xi
@l
@yi

@l
@xj

@l
@yj

h i
¼ � Δx

l � Δy
l

Δx
l

Δy
l

h i
ð4Þ

and the stochastic model is given by the covariance matrix
2, which in this case reduces to the diagonal form because
covariances have been considered negligible.

By applying formula 3, the variance of the length can be
computed as follows:

s2
l ¼

1

l2
2Δx2 þ 2Δy2
� �

s2 ¼ 1

l2
2l2
� �

s2 ¼ 2s2: ð5Þ

This result immediately shows the independence of σl
from the real length l of the linear feature and from the
position of the nodes.

Correlated x–y coordinates

The introduction of covariance between x and y coordinates
of the nodes results in a covariance matrix Cl presenting a
block-diagonal form 2. The application of formula 3 allows
for the derivation of an expression for the variance of the
length:

s2
l ¼ JxClJTx¼ 2

l2 Δx2 þΔy2ð Þs2 þ 2ΔxΔysxy

� �
¼ 2s2 þ 4 ΔxΔy

l2 sxy
: ð6Þ

By substituting correlation ρxy to covariance σxy and by
introducing the bearing θ (see Fig. 1), formula 6 can be re-
written as follows:

s2
l ¼ 2 1þ 2

Δx

l

Δy

l
rxy

� �
s2 ¼ 2 1þ rxy sin 2q

	 

s2 ð7Þ

showing that the uncertainty of length, in the case of
correlated x–y coordinates, depends on the correlation ρxy
and on the orientation of the segment with respect to the
adopted reference system. Furthermore, the contribution of
ρxy can be positive or negative in the evaluation of length
uncertainty.

Considering now that the goal of this paper is to
establish a method for computing the uncertainty of length
of a global network and not only of a single segment, we
attempt to evaluate the total contribution of a large number
of terms ρxysin2θ. In the hypothesis regarding a large

x 

y 

Pi 

Pk 

Pj 
dij 

djk 

θij 

θjk 

 

Fig. 1 The geometric model adopted for the parameterisation of
straight line segments through coordinates of nodes (Pi, Pj, Pk) and
bearing angles (θij, θjk)
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network, diverse possible scenarios might be grouped
into two main categories, as described in the following
paragraphs.

Correlations ρxy are independent from the geometry of the
network This case occurs when the coordinates of the network
nodes have been directly measured by a geodetic technique
(e.g. by global navigation satellite systems or by a theodolite).
In this case, the covariance matrix of each node will be
independent from its position in the network, only dependent
on the geometric layout of the adoptedmeasurement technique.

Otherwise, this is the case when the node coordinates are
read from existing maps. In a large urban network, we might
assume that bearings θ have a uniform probability distribution
function and all correlations ρxy are similar. Then, the global
contribution of the term ρxysin2θ can be reasonably neglected.

However, a network presenting a particular shape is
different, with one or more prevalent directions of segments.
In this situation, the problem should be analysed inmore detail
by considering the specific geometry of the network layout.

Correlations ρxy are dependent from the geometry of the
network This case might occur when nodes of the network
have been introduced in the GIS environment with respect
to the distances from other cartographic features (buildings,
roads, pavements, etc.). For example, a pipe could be
inserted on the basis of a pair of some distances of its nodes
from the nearest buildings. The covariance matrix of each
node would thus depend on three grounds:

& Accuracy of range measurements;
& Accuracy of reference points taken on the map; and
& Geometric scheme adopted for point positioning.

An analytical estimation of any covariance matrix that
takes into account all the above-mentioned aspects is not
practical because, usually, information about how each
node was inserted into the GIS environment is not
available. Moreover, different methods might be applied
together. We attempted to draw some considerations from
the analysis of the most typical configurations adopted for
positioning points, with respect to other cartographic
features (see examples in Fig. 2): (a) the intersection of a
set of ranges from points with known coordinates, (b) the

use of orthogonal ranges with respect to a pair of known
points on well-defined straight lines and (c) the polar
method. In all these cases, the resulting covariance matrices
of positioned point are strictly dependent on the position of
reference points, and usually, values of correlations are
quite small. Considering that, in a large network, several
geometric configurations for reference points are possible,
the global contribution of correlations can still be neglected.

Uncertainty of the length of two adjacent arcs

The following step considers two adjacent straight line
segments of a network sharing a common intermediate
point (see Fig. 1). Nodes are called indices i, j and k,
respectively. We consider the same assumptions established
for the case of a single segment presented in the
‘Uncertainty of a single linear feature’ subsection, resulting
in a covariance matrix 2 for each point in diagonal form.

The mean value for the total length lijk ¼ lij þ ljk of both
arcs can be computed by the sum of two terms of type 1.
Consequently, the variance of the length d is given by:

s2
lijk

¼ s2
lij
þ s2

ljk
þ 2s lijljk : ð8Þ

The variances of each component can be expressed as a
function of node variances due to Eq. 5, obtaining the
following:

s2
lij
¼ s2

ljk
¼ 2s2; ð9Þ

while the covariance can be computed as follows:

s lijljk¼
@lij
@xj

	 

@ljk
@xj

	 

s2 þ @lij

@yj

	 

@ljk
@yj

	 

s2

¼ � ΔxijΔxjk þΔyijΔyjk
� �

s2

lij ljk

: ð10Þ

In a similar way to that adopted in Eq. 7, by introducing
the bearings θij and θjk and by applying a simple
trigonometric relation, the covariance between lengths of
components can be re-written as:

s lijljk ¼ � sin qij sin qjk þ cos qij cos qjk
� �

s2

¼ � cos qij � qjk
� �

s2: ð11Þ
The expression of the variance of the total length of the

pair of consecutive segments then becomes:

s2
lijk

¼ 4s2 � 2 cos qij � qjk
� �

s2 ð12Þ

where the contribution of the covariance term might play a
positive or negative role, according to the difference between
bearings and then depending on the relative rotation between
two adjacent arcs. In Fig. 3, all configurations corresponding

Q1 

P 

Q2 

Q3 

(a) 

Q1 P 

Q2 

(b) (c)

Q1 

P 

θ

r1 

r2 
r3 

r1 

r2 

r1 

Fig. 2 Different techniques adopted for the positioning of a point P
with respect to other cartographic features. Points Qi have known
positions, while distances rj are observed on the field
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to a change in the sign of covariance term 11 are reported.
The most favourable case is that with two aligned segments
because a possible error in one of two lengths is compensated
for by the other. The sign of the covariance term remains
negative, as long as the second segment has the same direction
as the first; the sign changes in the case of inversion
(moreover, in real FM networks, this case seldom happens).
When the pair of network arcs is orthogonal, the covariance is
naught and the variance of the length can be computed by
merely summing up the variances of each segment.

Uncertainty of the length of open and closed polylines

A polyline is a set of consecutive and adjacent straight line
segments. When the initial node is coincident with the last
one, the polyline is said to be closed, but is otherwise
termed open. The evaluation of the uncertainty of the length
of a polyline can be considered as a further development of
the case concerning a single linear segment.

First, we define the variance of the length for an open
polyline made up of n arcs and n+1 nodes. All the
assumptions previously established still hold. By generalising
formula 10, the variance of the length is the sum of the
variances of each arc and correlations between pairs of
adjacent arcs:

s2
l ¼ 2ns2 � 2s2

Xn�1

i¼1

cos qi;iþ1 � qiþ1;iþ2

� �
: ð13Þ

It is very interesting to note that the correlation term is
nil in the case of a polyline with arcs that are always
mutually orthogonal, a situation very common in real FM
networks in urban areas.

In the case of a closed polyline, the last node is identical
to the first, and correlations between this pair of arcs must
be taken into account. Then, the variance can be found
through the following expression:

s2
l ¼ 2ns2 � 2s2

Xn
i¼1

cos qi;iþ1 � qiþ1;iþ2

� �
: ð14Þ

With the analysis of polylines, all the variances of length
for any basic arc configuration have been presented. Now,

the paper will continue to discuss the use of these
fundamental relations in the evaluation of UNLM in real
networks.

Uncertainty of the length of complex networks

Modern energy distribution systems are based on com-
plex networks, which can be modelled by a graph
structure, made up of a set of nodes and arcs with their
topological relations. The graph may be either connected
or unconnected. Nodes can be classified as external and
internal, the latter prevalently grouping nodes linking two
or three arcs; nodes with a higher number of connections
are rare.

The process of evaluating the uncertainty in GIS can be
carried out by a ‘rigorous’ approach (‘‘Rigorous’ method’
subsection) by using the theory proposed in the first part of
the paper. The procedure will be presented in the next
subsection, and it is quite applicable to operational GIS
environments. Given a table of node coordinates, the
topological structure of the network and some assumptions
about the stochastic model, the global UNLM, can be easily
evaluated.

Some simplifications that can be introduced in the
computation of covariances for configurations of real networks
allow for a rough estimation of the UNLM by an ‘approxi-
mate’ method (‘‘Approximate’ method’ subsection). This can
be useful when a first estimate of the UNLM is needed or
when functions for its computation by the ‘rigorous’ method
cannot be implemented.

‘Rigorous’ method

Let us consider a network made up of n arcs and m nodes;
at this turn, each node may link k arcs, usually up to three.
According to the results of the first part of the paper, the
UNLM is given by the sum of two components:

& Sum of the variance of every arc length (S2); and
& Sum of the covariances between arcs connected to the

same node (COV).

The first component can easily be evaluated by a list of
all arcs with related nodes, as an extension of formula 7:

S2 ¼ 2
Xn
i¼1

s2
i ð15Þ

where s i
2 is the variance of the generic coordinate of a

single arc. Nevertheless, when all nodes have the same
covariance matrix Ci=diag(σ

2,σ2) and considering the
hypotheses presented at the beginning of the ‘Fundamental
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ρ=-1

ρ=1 

ρ=0 

ρ=0 

ρ<0 

ρ<0 

ρ>0 
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ρ = - cos(θ ij – θ jk) 

Fig. 3 Contribution of the
correlation term in the
uncertainty of the length of two
consecutive segments (Eq. 11).
The first segment is PiPj, and
the second PjPk

n (n=1, 2, 3, 4)
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hypotheses’ section, the term S2 can be simplified as
follows:

S2 ¼ 2ns2: ð16Þ

The second term of the UNLM accounts for all
correlations between arcs related to the same node. The
covariance introduced by a link between two arcs in node j
can be derived from expression 11:

COVdoubleð Þj ¼ �2 cos qij � qjk
� �

s2: ð17Þ

When a node is composed of three related arcs, the total
covariance term will be the sum of each combination of
terms (Eq. 17):

COVthreeð Þj ¼
X3
p¼1

COVdoubleð Þp: ð18Þ

This formula can also be adapted to encompass nodes
having more than three linking arcs; in this case, it is
enough to consider all covariances arising from any
possible pair-wise combinations of arcs.

The global covariance term COV will be the sum of the
components of all nodes.

Finally, the total variance of the network length can be
evaluated, resulting in the following:

s2
NL ¼ S2 þ COV ¼ S2 þ

Xm
p¼1

COVð Þp: ð19Þ

Formula 19 shows that, in UNLM evaluation, the contribution
of the term COV is not a priori negligible; moreover,
covariances in most cases reduce σNL, so their omission
could result in overestimating the UNLM. Examples reported
in the ‘Results on simulated and real datasets’ section will
demonstrate the real contribution of the COV term.

The proposed method is completely suitable for imple-
mentation in a GIS environment. While the structure of the
network can be modelled by a graph, the stochastic problem
can be reduced to one of the following cases.

All coordinates of nodes with the same planimetric
standard deviation

The term S2, representing the sum of the variance of each
arc length, can be computed by formula 16. In all terms
contributing to the global covariance COV, the specific
variance of each node coordinates can be replaced by the
general value σ2. This term can be introduced by the user
on the basis of considerations about the construction
process of the map (see De Knecht et al. 2001).

Coordinates of nodes with different standard deviations

Even though only the case with σxi=σyi=σi is dealt with
here, formulas 17 and 18 can still be applied, considering
the real standard deviation of each node. These values can
be stored as attributes of nodes in the geodatabase from
which data for network modelling are retrieved.

‘Approximate’ method

To define a method to evaluate an approximate value for
UNLM, some preliminary considerations should bementioned.

First of all, in the ‘‘Rigorous’ method’ subsection, the
global UNLM was given as a function of the variance of
each arc considered as a single element and of covariances
between different arcs converging to the same node. The
term S2 can be easily computed through Eq. 16 in the case
all nodes would present the same diagonal covariance
matrix. The term COV must be simplified because its
computation requires knowledge of the bearing of each arc.

The second consideration arises from observing that in
an urban utility network, the mutual directions of arcs are
prevalently parallel or orthogonal. Nevertheless, also when
these conditions are not exactly verified, directions are very
close to them. As the covariances are due to nodes, three
main cases must be analysed; the first two will concern
double nodes, and the third, the T-junctions (triple nodes).

Double nodes can be divided between those encompassing
two aligned arcs (1) and two orthogonal arcs (2). In the case 1,
the covariance introduced by the node is −2σ2. This results in
a nil contribution of the node to the computation of UNLM
because variances of both arcs' length and covariance are
exactly opposite. Practically, a double node of type 1 could
be neglected. Unfortunately, very often, adjacent arcs do not
exactly lie on the same straight line, even though differences
between their bearings are negligible. As a result of Eq. 17,
the COV term is based on the cosine function, which
assumes a value very close to 1, even in the case of
arguments significantly far from 0° (e.g. a difference of
α=±20° results in a value of cosα=0.94). Then, it is possible
to erase from the graph all nodes presenting a difference
between the bearings of arcs converging to it, which are
under a fixed threshold (e.g. 180±20°). The underestimation
of the contribution of the cancelled covariances could be
compensated for by introducing a corrective term:

C ¼ ne � rsts
2 ð20Þ

where ne is the number of eliminated nodes of type 1 and ρst
is an average value for correlation between arcs converging
to each node that was eliminated. On the other hand, in the
‘approximate’ method, the evaluation of bearings is omitted
to simplify its application. Consequently, all double nodes
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are excluded from the computation of both S2 and COV
terms.

However, double nodes could be categorised as a second
type (2), i.e. those featuring a difference of bearings close to
90° or 270° (mutually orthogonal arcs). These give a
covariance term that is approximately nil. We observed that,
in a utility network, the number of double nodes (2) is small,
with respect to the total number of double nodes. Neglecting
them would result in a negligible underestimation of the term
S2, which is compatible with the level of approximation of
this method.

In the case of nodes made up of three arcs (3), such as
T-junctions, the ‘rigorous’ evaluation of the covariance
should be based on three terms: the covariance between two
aligned arcs, i.e. −2σ2, and two zero covariances between
two pairs of orthogonal arcs. The covariance introduced by
each T-junction is then −2σ2, resulting in a global
contribution depending on their number nT; this can be
derived by the graph information from the GIS system.
Thus:

COVT ¼ �2nTs
2: ð21Þ

By considering the hypothesis of a large network, the
remaining configurations of nodes are negligible.

The approximate evaluation of global length uncertainty
can be given as follows:

s 02
NL ¼ 2 n� nTð Þs2: ð22Þ
In the following, all steps required for the computation

of s 02
NL are reported:

1. Input data: A network stored in a geodatabase is
needed. The stochastic problem is reduced to the
simplified conditions reported in the ‘Fundamental
hypotheses’ section, with the assumed standard devia-
tion of the generic x–y coordinates and σxy=0;

2. Graph analysis: The total number of nodes (n) and that
of T-junctions (nT) must be evaluated (see the ‘Results
on simulated and real datasets’ section); and

3. UNLM evaluation: Once all basic elements have been
acquired, the UNLM can be evaluated by applying the
simplified formula 22.

Some examples reported in the ‘Results on simulated and
real datasets’ section will show the amount of error
introduced in the evaluation of UNLM when using the
‘approximate’ method with respect to the ‘rigorous’ method.

Systematic errors

The proposed method for the UNLM evaluation is based
on the retrieval of information from a geodatabase. Here,

the problem has been considered only for position, neglecting
the influence of elevation. This introduces two sources of
possible systematic errors due to (1) the reduction to the
ellipsoid of any distance represented on the map and (2) the
slope gradient of each segment. Furthermore, the length of an
arc on the map is scaled to a factor depending on the adopted
mapping projection (3).

In the evaluation of the total length of a network, the
distances between connected points are computed through
Eq. 1. To correctly consider the aforementioned effects, all
distances evaluated this way must be analytically compen-
sated for by using information from the geodatabase, i.e.
elevation of points for errors 1 and 2, grid coordinates for
error 3. On the other hand, in the following, an estimate of
errors introduced when omitting these corrections is made.
This is relevant when applying the ‘approximate’ method
presented in the ‘‘Approximate’ method’ subsection, as this
tries to give a simple evaluation of the UNML.

In the following paragraphs, error 3 is discussed in the ‘Error
due to linear deformation of the adopted map projection’
subsection because its compensation is a preliminary task that
must be completed before correcting errors 1 and 2. The
discussion of these is presented in the ‘Errors due to
elevation’ subsection, while in the ‘Considerations’ subsec-
tion, some considerations will be explored.

Error due to linear deformation of the adopted map
projection

A first systematic error that could be introduced in the
evaluation of network length depends on the linear
deformation (m) of maps. Disregarding the specific map
projection adopted, linear deformation usually depends on
two main factors: a global isotropic scale (misot), which is
used to reduce the uncertainty of points under the
draughting error, and an anisotropic deformation, which
depends on the projection (Pearson 1990). In a Gauss
projection, the relation between a differential length on the
ellipsoid (dLe) and the corresponding one on the map
(dLmap) is given by:

dLmap ¼ m� dLe ¼ misot 1þ E � E0ð Þ2
2rN

 !
� dLe ð23Þ

where E is the eastern coordinate of the infinitesimal line
dLmap, E0 is the East false origin adopted in the mapping
grid (e.g. E0=500,000 m for UTM projection) and ρ and N
are the two principal curvatures of the reference ellipsoid in
the region where the network is located (Wolf and Ghilani
2006). Because a complex utility network can be considered
as the sum of many small line segments located in a region
featuring roughly the same value for E, ρ and N, Eq. 23 can
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be extended from differential to finite quantities. Then, the
total length of the network on the ellipsoid surface would be:

Le ¼ 1

m
Lmap ¼ 2rN

misot E � E0ð Þ2 þ 2rN
h i Lmap: ð24Þ

Thus, the error εm due to the neglect of this scaling effect
can be expressed as:

"m ¼ 1� Lmap

Le
¼ 1� m: ð25Þ

In Fig. 4, the amount of error εm is shown for different
distances from the central meridian of the projection fuse.
Here, the influence of the latitude is not taken into account
because this does not significantly influence the result of
Eq. 24. As one can see, the presence of an isotropic scale
misot=0.9996 results in a map contraction close to E0 that
might reach 0.4‰ and a dilatation towards the borders of
each fuse up to 1.1‰. Considering as an example a
network with Lmap=100,000 m, errors due to the neglect
of this scaling effect would result in an underestimation of
the length of 40 m or in an overestimation of 110 m,
according to the distance from the central meridian.

In case any another projection was adopted instead of the
Gauss projection, Eqs. 23 and 24 must be replaced by the
corresponding formulas for the implemented projection
(Pearson 1990).

Errors due to elevation

The map plane is considered to be a 2D transformation of
the reference ellipsoid, so if the real length of the network
(and its uncertainty) has to be evaluated, some corrections
must be considered. First of all, the relation between the
length (LQ) of a finite line located at an average elevation

Qav (with respect to the reference ellipsoid) and the length
(Le) of the corresponding segment on the ellipsoid can be
computed through the formula (Bezoari et al. 1989):

LQ ¼ Qav

R
þ 1

� �
Le ð26Þ

where R ¼ ffiffiffiffiffiffiffi
rN

p
is the average radius of the local sphere.

As demonstrated by Eq. 27, the error εQ committed when
the real length of a line LQ is replaced by the length Le, read
on the map without correction, results in underestimating L
for positive elevations:

"Q ¼ 1� Le
LQ

¼ Qav

Qav þ R
: ð27Þ

Equations 26 and 27 still hold when considering the total
length of a network, instead of a single line segment. Then,
to give a rough evaluation of the error εQ, we have
considered a set of locations at different elevations ranging
from 0 to 500 m over the reference ellipsoid. The influence
of the radius variation according to latitude is completely
negligible for the problem under investigation. As shown in
Fig. 5, the underestimation of LQ can reach up to 0.08‰ of
the total length of the network located at an elevation of
500 m on the ellipsoid. Practically, for a network with a
length Le=100,000 m, this means a maximum error of 8 m.

A second systematic error related to the elevation is due
to the inclination of line segments on the real world, an
effect that cannot be compensated for by Eq. 26 only.
Taking the drawing in Fig. 6 as an example, the real 3D
length (L3D) of the straight line segment AB is a function of
the length LQ of its projection to a surface parallel to the
ellipsoid (locally approximated by a tangent plane) and
passing through the medium point of AB. The length
LQ is that derived from the geodatabase, but corrected by
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Fig. 4 Error (εm) in the evaluation of the network length, when the
correction for scaling due to the linear deformation introduced by the
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means of Eq. 26. The relation between LQ and L3D is as
follows:

L3D ¼ LQ
cos g

¼ LQ
cos a tan s

ð28Þ

where s is the mean slope gradient ΔQ/LQ. When
considering the total length of a network in urban areas
with smooth slopes, Eq. 28 still holds. In a similar manner
as in Eq. 27, a new error ε3D can be defined as follows:

"3D ¼ 1� LQ
L3D

¼ 1� cos a tan s: ð29Þ

By considering a slope average gradient s ranging from 0%
to 5%, the maximum increment of the 3D length with
respect to the planimetric length will reach 1.2‰ (see Fig.
7). For a network featuring LQ=100,000 m, this means an
underestimation of its length up to 120 m.

Considerations

In this section, three different kinds of systematic errors
imputable to the uncorrected or uncompleted transforma-
tion from the map plane to the real world have been
analysed. Considering some common conditions of the
local topography, typical of most urban areas, the maximum
amount of these errors is 1.1‰ for the scaling due to
the adopted mapping projection, 0.08‰ for neglecting the
compensation for the mean elevation and 1.2‰ for the
mean ground inclination. In a network featuring a length of
100,000 m, the pessimistic concurrence of all these errors
will lead to a maximum error not larger than 150–200 m,
i.e. 1.5–2‰ the network length.

Results on simulated and real datasets

In order to assess the effectiveness of both presented
methods to evaluate the UNLM, three different tests were
conducted.

The first case study concerned a simulated small network
(test ‘SIM’), while the second and third tests were based on
data derived from two existing gas networks in urban areas
(tests ‘REAL1’ and ‘REAL2’), which are located in a small
town (~15,000 inhabitants) and in a mid-sized town
(~100,000 people), respectively. For the sake of reservation,
the locations of both test sites are anonymous. However, they

are both in flat areas at mean geographic coordinates ’=45°,
1=10°, h=100 m. In both tests, either the ‘rigorous’ or
‘approximate’ method was applied to compare the results. In
test ‘REAL2’, the computation of UNLM was carried out on
the overall network, as well as on a portion of it. With this
approach, the influence of the network size on the accuracy
of results could also be evaluated.

The objectives of these experiments are twofold: firstly,
a comparison between both proposed methods (‘rigorous’
and ‘approximate’) and, secondly, to give an evaluation of
the UNLM in the case of operational distribution gas
networks and to compare it with the systematic errors
described in the ‘Systematic errors’ section (see the ‘Effects
of systematic errors’ subsection).

The computation of the UNLM was performed by using
a code developed and running it in MATLAB®. This
basically requires, as input, three tables describing the
structure of the network graph: the node table (ID_NODEi,
Ei, Ni), which gives the position of each node i; the arc
table, which lists all the elementary straight line segments j
of the network with their nodes (ID_ARCj, ID_NODE1j,
ID_NODE2j); and the link table, which stores the nodes
connected to each node i and the number of connections
(ID_NODEi, ID_NODEJi, ID_NODEKi, ID_NODELi,
NLINK). A data model where each node can have no more
than three connected nodes was implemented here. All
tables needed for the evaluation of UNLM can be easily
derived from data exportable from all commercial GIS
packages where the topology of the considered network has
been previously constructed.

Test ‘SIM’

A graph corresponding to a small size gas distribution
network was generated, featuring a global length of
2,922.1 m (Fig. 8). The simulation was performed by
directly building up the three tables described in the
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Fig. 6 Real length of a line (L3D) and the one readable from maps (L)
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Fig. 7 Underestimation error (ε3D) of the length of a network when
neglecting the average incline of the network lines
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introduction of this section. The geodatabase of the
network was thought to be derived from digitising the
analogue maps, resulting in a hypothesis for the standard
deviations of point coordinates of 0.40 m. Both coor-
dinates have been assumed as not being correlated. This
value is typical of maps at the 1:2,000 scale that are
frequently adopted as reference for utility network
representation. All characteristics of the simulated graph
are reported in Table 1.

The application of the ‘rigorous’ method to evaluate
the UNLM resulted in 4.3 m, corresponding to 1.5‰ of the
network length (see Table 2). The contribution of all the
covariances (term COV) is approximately 44% of the sum of
the arc variances (term S2), showing that neglecting the COV
term would result in an exaggerated estimation of the UNLM.

By using the ‘approximate’ method, a value of the
UNLM=4.9 m was obtained, which overestimates the
uncertainty by 14% (see Table 3).

Tests ‘REAL1’ and ‘REAL2’

Both tests were carried out on gas distribution networks that
are fully operational in two Italian towns. Layouts of both
can be seen in Figs. 9 and 10, respectively. To apply the
algorithm for the computation of UNLM, preliminary data
pre-processing was needed to create the tables of nodes,
arcs and links. The network digital maps were exported in
CAD format (DWG) from the GIS systems, where they
were stored and used, and then loaded into Autodesk
Autocad Map 3D®. The maps featured a scale of 1:2,000,
then a standard deviation of point coordinates σ=±0.40 m
was defined, as common for Italian standards. On the other
hand, in all the elementary formulas adopted in the
‘rigorous’ (Eqs. 16 and 17) and ‘approximate’ methods
(Eq. 22), results are linearly proportional to σ2. Conse-
quently, a change in σ2 will affect only the absolute value
of UNLM, but not the ratio between results obtained with
different approaches. No grounds were found to consider
correlations between both coordinates of each node.

A preliminary check of the data geometry was performed
in order to identify possible duplicate features, false
crossings, imperfect connections to nodes, etc. Further-
more, each polyline was decomposed into its elementary
straight line segments because intermediate nodes might
also contribute to the UNLM. Secondly, a network
topology was defined and applied to both datasets. This
step allowed for the extraction of all data needed for
computing the UNLM. Indeed, by a topological query, it
was possible to generate in Autocad Map 3D® an output
table where each arc j of the network is associated with its
nodes and with their coordinates (ID_NODEj, ID_NODE1j,
ID_NODE2j, X1j, Y1j, Z1j, X2j, Y2j, Y2j). From this table, it
is then possible to automatically derive the node, arc and
link tables, a task that is performed by a MATLAB®
routine. This procedure generates twomain datasets (‘REAL1’
and ‘REAL2’) whose characteristics are depicted in Table 1.
From the case study ‘REAL2’, four subsets have been
derived (‘REAL2a’, ‘REAL2b’, ‘REAL2c’ and ‘REAL2d’)
by considering only a portion of it. Approximately each of

Fig. 8 Geometric layout of the simulated network of the test ‘SIM’;
the size of each grid cell is 100×100 m

Case
study

No. of
arcs

No. of
nodes

No. of single
nodes

No. of double
nodes

No. of
T-junctions

SIM 101 102 30 46 26

REAL1 6,707 6,318 2,127 3,143 1,048

REAL2 8,448 7,823 2,078 4,165 1,580

REAL2a 4,252 4,262 1,017 2,417 828

REAL2b 1,715 1,605 514 765 326

REAL2c 788 753 238 363 152

REAL2d 427 413 149 179 85

Table 1 Characteristics of the
networks adopted for tests
described in the ‘Results on
simulated and real datasets’
section
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these accounts for a number of elements (arcs and nodes),
which is half of the dataset from which it originates. The new
datasets have been generated to test both proposed methods
for UNLM computation with respect to the size of the
network.

The application of the ‘rigorous’ method to both original
datasets resulted in a very similar value of UNLM (34.3 m
for ‘REAL1’ and 37.1 m for ‘REAL2’), despite the
different lengths (40 km for ‘REAL1’ and 220 km for
‘REAL2’), leading to a very different ratio between the
UNLM and the network length (0.8‰ versus 0.2‰,
respectively). On the other hand, an important difference
exists between the two network structures due to the
number of single nodes that are bigger, in the case of
dataset ‘REAL1’ (see Table 1). Indeed, this network is
smaller than that of ‘REAL2’, but it comprehends all the
final pipes connecting the gas network to buildings;
network ‘REAL2’ does not include all final pipes because
they are stored in a separated layer, which has not been
considered here. In formula 19, single nodes do not
contribute to increase the negative term COV, while they
contribute positively to S2. The contribution of all the
covariances (COV) with respect to the arc variances (S2) is
slightly smaller for case study ‘REAL1’ (49%) than for
‘REAL2’ (52%). The comparison of the results obtained for
different datasets of case study ‘REAL2’ provides evidence
of a relative increment in the ratio between UNLM and the
network length, which ranges from 0.2‰ for the full

dataset up to 0.7‰ for the smallest dataset, ‘REAL2d’. This
difference is motivated by the larger fraction of single
nodes in the total number of nodes featured in the smaller
datasets (see Table 1).

The use of the ‘approximate’ method gave an underestima-
tion of the UNLM that was quite similar in both cases (see
Table 3). However, the size of the error (about 7–8%)
committed when using this method, instead of the ‘rigorous’
one, is acceptable for most applications. It should be observed
that, the smaller the size of the network, the lower the
underestimation error. For the smallest dataset (‘REAL2d’),
this became a slight overestimation error, as occurred with the
simulated dataset ‘SIM’.

Effects of systematic errors

Different systematic errors that can affect the evaluation of the
network length can be properly corrected if the information
needed to model them is available from the geodatabase.
Scaling errors due to the adopted mapping projection can
be compensated for by the knowledge of grid coordinates, and

Case study NL [m] UNLM [m] UNLM/NL [‰] S2 [m2] COV [m2] COV/S2 [%]

SIM 2,922.1 4.3 1.5 33.28 −14.8 45

REAL1 40,572.7 34.3 0.8 2,146.2 −969.7 49

REAL2 219,850.8 37.1 0.2 2,703.4 −1324.6 52

REAL2a 121,431 25.5 0.2 1,360.6 −708.2 45

REAL2b 50,393.2 17.4 0.3 548.8 −246.7 49

REAL2c 24,348 11.3 0.5 252.2 −124.0 47

REAL2d 12,663.2 8.5 0.7 136.6 −63.6 44

Table 2 Results of the
application to the case studies
of the ‘rigorous’ method to
evaluate the UNLM

Table 3 Results of the application to the case studies of the
‘approximate’ method to evaluate the UNLM, and a comparison with
those achieved by using the ‘rigorous’ method

Case study UNLM′ [m] (UNLM−UNLM′)/UNLM [%]

SIM 4.9 −13.9
REAL1 31.9 7.0

REAL2 34.2 7.8

REAL2a 24.3 4.7

REAL2b 16.4 5.7

REAL2c 11.2 0.9

REAL2d 8.7 −2.3

Fig. 9 Geometric layout of the real network of test ‘REAL1’; the size
of each grid cell is 500×500 m, while different colours (red and
green) represent two coexisting sub-networks, both considered in the
evaluation of UNLM
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elevation errors can be corrected if nodes have 3D coordi-
nates. Furthermore, the error due to the reduction to the
ellipsoidal surface (see the ‘Errors due to elevation’ subsec-
tion) can also be compensated for by using an average
elevation on the area of the network.

Here, an evaluation of the amount of these errors when
they are not compensated for in all case studies is
presented. As mentioned in the introduction of this section,
all case studies are located in flat areas at approximate
geographic coordinates ’=45°, 1=10°, h=100 m. The map
projection adopted is UTM (Fuse 31), based on the WGS84
ellipsoid, with a global isotropic scale misot=0.9996.
Application of formula 25 gives an error εm=−3‰; note
that, due to the distance from the central meridian (ΔE=
78,815 m), in this case, εm results in an overestimation of
network length. The elevation error computed through
formula 26 gives εQ=0.016‰. If we consider a flat
topography, an average slope of 1% can be used for the

accounting of ramps and bridges. By introducing this value
in Eq. 28, an error ε3D=0.05‰ is obtained.

The results of the systematic error evaluation are
reported in Table 4 where a comparison to the estimated
UNLM is done. As evident, omitting the correction for the
map projection scale always results in a significant error;
moreover, in the case of large networks (like case study
‘REAL2’), its effect is more than one time the UNLM.
Other errors are less relevant in the cases of short and
medium-length networks, but they cannot be neglected for
large networks. On the other hand, all case studies are in
favourable locations; when a network is positioned in a
hilly area and where map deformation m are larger, the
correction of systematic errors becomes extremely vital in
order to avoid a biased estimation of the UNLM.

Conclusions

In the paper, two different approaches for computing the
UNLM have been proposed, discussed and validated on
simulated and real datasets. The first method (‘rigorous’) is
based on propagating the variance of the length of each arc
of the network, which is computed on the basis of the
standard deviations of both nodes. Furthermore, the con-
tributions of the covariances due to adjacent arcs are
considered here, which usually reach approximately 50%
of the sum of the variances. Due to the geometric layouts of
the utility networks in urban areas, covariances reduce the
UNLM, so they cannot be omitted. Even though, in the
literature, several more involved theoretical models to
define the positional accuracy of points and arcs have been
presented, the simple model assumed here makes the
proposed approach very operational and completely suitable
for implementation in a GIS environment. Indeed, the
structure of the network can be modelled by a graph and a
table of point coordinates, and the topological relationships
between different arcs can be exported with ease. This
information is enough for the computation of UNLM that
can be performed in the GIS where data are stored by
programming a suitable routine or in an external mathematical
environment or stand-alone software.

Fig. 10 Geometric layout of the real network of test ‘REAL2’; the
size of each grid cell is 1,000×1,000 m, while different colours
represent the main (medium pressure, in orange) and the secondary
(low pressure, in purple) distribution networks, respectively

Table 4 Total amount of systematic errors described in the ‘Systematic errors’ section on the case studies

Case study NL [m] UNLM [m] Total effects of different systematic errors on NL evaluation (% of the NL)

Map projection scale [m] Elevation [m] Slope [m]

Δεm ΔεQ Δε3D

SIM 2,922.1 4.3 −0.8 (−20%) 0.0 (1%) 0.1 (3%)

REAL1 40,572.7 34.3 −12.2 (−35%) 0.6 (2%) 2.0 (6%)

REAL2 219,850.8 37.1 −66.0 (−178%) 3.5 (9%) 3.5 (30%)
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The second method (‘approximate’) allows for the
evaluation of the UNLM on the basis of the total number
of nodes and of T-junctions, in addition to the standard
deviation of point coordinates. Despite the simplicity of
this approach, it has yielded errors that are in the order
of 7–8% (underestimation) for the largest networks,
while they have decreased to become overestimation
errors for the smallest networks. This method can then be
properly used to give a preliminary and rapid evaluation
of the UNLM.

Future work will study in more detail the error distribution
of points and the effect of line simplification (Douglas and
Peucker 1973) during the digitisation process, here omitted.
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