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Abstract This paper presents a study aimed at comparing

the outcome of two geostatistical-based approaches,

namely kernel density estimation (KDE) and kriging, for

identifying crash hotspots in a road network. Aiming at

locating high-risk locations for potential intervention,

hotspot identification is an integral component of any

comprehensive road safety management programs. A case

study was conducted with historical crash data collected

between 2003 and 2007 in the Hennepin County of Min-

nesota, U.S. The two methods were evaluated on the basis

of a prediction accuracy index (PAI) and a comparison in

hotspot ranking. It was found that, based on the PAI

measure, the kriging method outperformed the KDE

method in its ability to detect hotspots, for all four tested

groups of crash data with different times of day. Further-

more, the lists of hotspots identified by the two methods

were found to be moderately different, indicating the im-

portance of selecting the right geostatistical method for

hotspot identification. Notwithstanding the fact that the

comparison study presented herein is limited to one case

study, the findings have shown the promising perspective

of the kriging technique for road safety analysis.

Keywords Crash hotspots � Kernel density � Kriging �
Performance measures

1 Introduction

Identification of hotspots is a systematic process of de-

tecting road sections that suffer from an unacceptable high

risk of crashes. It is a low-cost strategy in road safety

management where a small group of road network loca-

tions is selected from a large population for further diag-

nosis of specific problems, selection of cost-effective

countermeasures, and prioritization of treatment sites.

These identified sites are often known by various terms in

literature, such as hazardous locations, hotspots, black

spots, priority investment locations, collision-prone loca-

tions, or dangerous sites.

There are various approaches that are aimed at identi-

fying hotspots. One of the well-known approaches is using

statistical crash models. This approach focuses on relating

crashes as a function of potential variables such as road

characteristics, traffic level, and weather factors using

historical records [1–5] and subsequently uses these models

to identify relatively high-risk sections. The other alterna-

tive approach is a geostatistical technique. This technique

differs from the previous approach by considering the ef-

fects of unmeasured confounding variables through the

concept of spatial autocorrelation between the crashes

event over a geographical space. The focus of this study is

to identify crash hotspots using the latter approach. Here,

two distinctive geostatistical methods are evaluated and

compared: one is the most widely used kernel density es-

timation (KDE) method and the other is the kriging

method. The paper is arranged as follows. The following

section provides a review of the existing literature on
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hotspot identification. It is followed by a description of the

study methodology with a brief background of the KDE

and kriging methods. Then, detailed findings and compar-

isons are presented in the Results and Discussions section.

Lastly, conclusions are made in the last section.

2 Literature review

Hotspots, which are defined as relatively high-risk loca-

tions, are commonly identified on the basis of some specific

selection criteria. Many different methodologies and cri-

teria have been developed for improving the accuracy of

the hotspot identification process, thus the cost-effective-

ness of a safety improvement program [6]. One of the most

commonly used selection criteria is defined by the expected

collision frequencies at the sites of interest. This particular

criterion emphasizes on maximizing the system-wide

benefits of safety intervention targeted to the hotspots,

whereas another commonly implemented criterion is con-

sidering the expected collision rate (i.e., expected collision

frequency normalized by traffic exposure) which empha-

sizes on individual road user’s equity perspective [7].

The expected collision frequency at a site is commonly

estimated using a collision model-based approach, in which

collision frequency is statistically modeled as a function of

some relevant features such as road characteristics, traffic

exposure, and weather factors [1–5]. Roads are normally

divided into homogenous sections of equal length and in-

tersections as spatial analysis units. Various count models,

with negative binomial (NB) being the most popular, are

used to estimate the expected number of crashes over the

road network in a study area, and the estimates are sub-

sequently compared with a pre-specified threshold value

for determining if a site belongs to a hotspot. Note that the

NB models are normally used in empirical Bayes (EB)

framework to better capture the local experience of safety

levels [1, 6]. One of the most critical parts of this modeling

approach is the assumption of a probability distribution for

crash count and the functional specification of the model

parameters. If these components are incorrectly specified,

applying such count models could lead to incorrect hot-

spots. In addition, this approach is data intensive and re-

quires significant effort in collecting and processing the

related data and calibrating the corresponding models [8].

The expected crash frequency could also be estimated

using a geostatistical technique by considering the effects

of unmeasured confounding variables through the concept

of spatial autocorrelation between the crash events over a

geographical space [9–13]. KDE is an example which has

been used in road safety to study the spatial pattern of crash

and identify the hotspots [8–12]. Similarly, there are other

geostatisical methods such as clustering methods that

evaluate relative risk based on their degree of association

with its surroundings. Examples of these methods used in

road safety studies are K-mean clustering [14, 15], nearest

neighborhood hierarchical (NNH) clustering [16–18],

Moran’s I Index, and Getis-Ord Gi statistics [19–21].

Anderson et al. [11] applied KDE method in the City of

Afyonkarahisar, Turkey. In this study, the authors were

able to detect highly crash risk sections which were highly

concentrated in road intersections. Similarly, Keskin et al.

[13] and Blazquez and Celis [12] used KDE and Moran’s

Index method to observe temporal variation of hotspots

across the road network. Khan et al. [21] used Getis-Ord Gi

statistics to explore the spatial pattern of weather-related

crashes, specifically crashes related to rain, fog, and snow

conditions. A special pattern was revealed for each

category of weather conditions which further suggested the

need of prioritizing the treatments based on different

weather conditions and locations. Pulgurtha et al. [9], Pu-

lugurtha and Vanapalli [22], and Ha and Thill [23] em-

ployed KDE method to investigate the spatial variation of

pedestrian crashes and hazardous bus stops. These studies

have shown the potential to effectively and economically

address pedestrian and passenger safety issues. Another

study by Levine [17] and Kundakci and Tuydes-Yaman

[18] used NNH clustering method to detect crash hotspots

across the road network.

A noticeable difference in aforementioned geostatistical

methods is how spatial correlations are considered. For

example, in the KDE method, a symmetrical kernel func-

tion, which is a function of bandwidth, is placed on each

crash point generating a smooth intensity surface. Then, for

a given point of interest, the crash intensity is a summation

of the entire overlapping surface due to the crashes. In

contrary, in the clustering technique such as NNH, a

threshold value, which determines the extent of clustering

in the neighborhood, is pre-specified. If the distance be-

tween crash data point pairs is smaller than the threshold

value, then these crashes are grouped into the same cluster.

Additional criteria such as minimum number of points to

be in a cluster can also be specified. This variation in al-

locating different weights to the crashes occurring in its

neighborhood (e.g., KDE method) or simply grouping

crashes into certain clusters clearly indicates that these

techniques are likely to have different results in terms of

size, shape, and location of hotspots. One of the attractive

parts of the KDE method as compared to other variants of

clustering methods is that it takes into consideration of

spatial autocorrelation of crashes (see Sect. 4.1 for more

detailed explanations). Moreover, this method is simple

and easy to implement. This could be one of the reasons

that KDE method is being widely used in road safety.

In the past efforts on geostatistical based methods, an-

other popular technique called kriging has been rarely

94 L. Thakali et al.

123 J. Mod. Transport. (2015) 23(2):93–106



explored in road safety analysis. As one of the most ad-

vanced interpolation methods, kriging has been utilized

widely across many different fields of studies in necessity

of spatial prediction. With little prior information, this

technique is able to provide a best linear unbiased estimator

(BLUE) for variables that have tendency to vary over space

[24, 25].

3 Study area and data description

The region of interest for this study is Hennepin County,

Minnesota, which encloses the City of Minneapolis, the

14th largest metropolitan area in the United States Census

Bureau [26]. The county has a dense road network with

high crash potentials, making it an ideal location for the

intended study. The study is based on historical crash data

from 2003 to 2007 occurring in major highways, as de-

picted in Fig. 1. These crash data were originally collected

by Minnesota Police Department, and maintained and

archived by the Department of Transportation of Min-

nesota (Mn/DOT). The crashes in the dataset were already

geocoded and included some important information such as

severity of crashes (i.e., fatality, injury (three different

categories) and property damage only), and weather con-

ditions at the time of crashes. Figure 2 shows that more

than two-third of crashes occurred in clear weather

conditions. Similarly, more than two-third of crashes were

property damage only.

The time-of-day that each crash occurred is also known

from the dataset, which gives an opportunity to explore

temporal trend of hotspots patterns across the highway

network. Figure 3 shows total number of crashes that oc-

curred within 5 years of time period based on different

times of day. Relatively, the morning crashes are concen-

trated from a time period of 7–9 AM and evening crashes

from 4 to 6 PM. Therefore, we categorized crashes as

morning peak hours (7–9 AM), evening peak hours

(4–6 PM), and rest as off peak hours. A total of 38,748

crashes were recorded for 5 years, where 5,331 crashes

occurred in morning peak, 7,712 in evening peak, and

25,705 in off peak hour. From Fig. 4, it is clear that the

peak hours have higher rate of crashes (i.e., per year per

hour) than the off peak, which could be due to higher traffic

exposures.

4 Methodology

Figure 5 presents an outline of methodology for the in-

tended study. As mentioned previously, two geostatistical

methods, KDE and kriging methods, were used to estimate

crash intensity over the whole region. A brief description of

each method is presented in Sects. 4.1 and 4.2. Following

the crash estimation, a buffer of 400 m on either side of the

Fig. 1 Study area—Hennepin County, Minnesota
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highways was used to demarcate the estimated outputs

from the two methods. A primary intent of choosing a

buffer size of 400 m was to match a predefined spatial

analysis unit, which was used to aggregate and produce the

resulting outputs (i.e., estimates of crashes) from the two

methods considered in this study. In addition, other areas

that do not enclose highway segments are less likely (or

unlikely) to have any record of crashes; therefore excluding

those areas from the analysis was deemed inevitable by

considering only the buffered areas. In a real-world ap-

plication, use of 400 m can be considered reasonable for

carrying safety treatments and providing sufficient preci-

sion for identifying actual locations of crashes. A smaller

cell may be more prone to the problem of producing

inaccurate crash statistics, while a larger cell may likely

exhibit a loss of detailed information. Most importantly, as

one of our objectives is to compare the performance of the

two methods, a selection of the equal-sized cell was

essential to enforce a fare comparison. A further explana-

tion on selecting a cell size is further discussed in Sect. 4.1.
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Fig. 2 Percentage of crash occurrences based on weather conditions and crash severities
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Estimated results obtained from each method represent a

quantitative measure of a risk level reflecting the magni-

tude of the potential to crash occurrence. Thus, a road

section with a larger value indicates that there is a higher

chance of crashes than that with a lower value. A risk level

along the highways was classified into 10 different levels

using a quantile classification method. In this method, the

entire set of estimated grid cells (ordered in respect of

estimated values) was divided into ten groups with each

group having an equal number of cells. Then, the top-most

level (i.e., level 10) representing the highest risk highway

sections was selected as hotspots. Finally, the selected two

estimation methods (i.e., KDE and kriging methods) were

compared using prediction accuracy index and ranking

process. Details specific to the proposed methods are ex-

plained in the following sections.

4.1 Method I: Kernel density

The KDE, a non-parametric approach, is one of the most

common used and well-established spatial techniques used

to estimate the crash intensity for hotspot identification [9–

13]. In this method, a circular search area defined by a

kernel function is placed over each crash (discrete points)

resulting in individual smooth and continuous crash density

surface (see Eq. (1) and Fig. 6 for 2D visualization).Then,

a grid of cells is overlaid over the study area. For a given

cell, density is estimated by summing the overlapping

density surface resulted from each crash point. This pro-

cedure is repeated for all reference grid cells. Note that

kernel functions are symmetrical mathematical functions.

f ðx; yÞ ¼
Xn

i¼1

1

n� 2� ph2
�Wi � K

di

h

� �
; ð1Þ

where f(x,y) is the density estimate at the location (x,y); n is

the number of observations; h is the bandwidth; K is the

kernel function and di is the distance between the location

(x, y) and the ith observation; and Wi is the intensity of the

observation. For the crash count, Wi is unit, whereas this

may vary when we consider different weights for different

severities of crashes.

There is a wide choice of kernel functions such as

normal, uniform, quartic, epanichnikov, and triagular.

Among them, the most popular is normal [16, 17] used

in CrimeStat and quartic functions [20] used in ArcGIS.

According to Silverman [27], the selection of kernel

function is less sensitive to the outcomes. In our study, we

initially considered normal and quartic kernels using

bandwidth of 400 and 800 m to estimate the density for all

crash cases. As shown in Fig. 7, a general pattern of den-

sity estimation represented by the color-coded map appears

to be very much similar. For example, if we look at the

highest risk zones in red, they appear to be very similar.

With this supportive information, we choose to consider

normal kernel for the rest of the KDE estimations. Note

that CrimeStat and Arcmap were used as the GIS platform

for the analysis.

The two main parameters which affect the KDE are

bandwidth and cell size. The output of KDE is presented in

a raster format consisting of a grid of cells. Intuitively, the

size of cell has to be reasonable to represent crash cluster

occurring in reality. The selection of size is also a trade-off

between the computation time, sample size, and the in-

formation to retain. Having larger grid cell size saves the

processing time; however, the information is likely to be

averaged in a larger area, thus resulting in loss of infor-

mation. Meanwhile, too small grid cell size increases the

computation time. Also, a lower level of granularity may

not be necessary from the aspect of designing a safety

program. Considering safety treatments for a reasonable

length of section and keeping some space for the potential

inaccuracy in geocoding of the crash location, 400 m of

grid cell was used. Sizes could vary from one study to

another (e.g., Anderson [11] used 100 m; Erdogan et al.

[10] used 500 m; Blazquez and Celis [12] used 100 m).

Fig. 5 Flowchart of the comparison study
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Another important parameter in the KDE method is the

selection of bandwidth which determines the extent of

search area. Depending on the type of kernel estimate used,

this interval has a slightly different meaning. For the

normal kernel function, the bandwidth is the standard de-

viation of the normal distribution. For the uniform, quartic,

triangular kernels, the bandwidth is the radius of the search

area to be interpolated. The choice of bandwidth is quite

D
en

si
ty

Relative spatial position of crash 

Kernels over individual 
crash Kernel density estimate

Fig. 6 Kernel density estimation method

Bandwidth= 400m

Bandwidth= 800m Bandwidth= 800m

Bandwidth= 400m

Fig. 7 KDE estimation using two different kernels (left Quartic kernel and right Gaussian kernel function)
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subjective [11, 28, 29]. Typically, a narrower bandwidth

interval will lead to a finer mesh density estimate with all

the peaks and valleys detected, whereas a larger bandwidth

interval will lead to a smoother distribution and, therefore,

detect less variability between areas. While smaller band-

widths show greater differentiation among areas, one has to

keep in mind the statistical precision of the estimate. Bri-

micombe [30] suggested that the bandwidth to be 6, 9, or

12 times the median of nearest neighbor distance.1 In

general, it is a good idea to experiment with different fixed

intervals to see which results make the most sense [28].

Previous researchers have used values ranging from 20 to

1,000 m (e.g., Xie and Ya [22] used 20, 100, 250, and

500 m; Ha and Thil [23] used 400 and 800 m; Erdogan

et al. [10] used 500 m; Keskin et al. [13] used 200 m;

Blazquez and Celis [13] used 1,000 m). In our study, we

considered two different bandwidth values, i.e., 400 and

800 m (equal and double the cell size). It is reasonable to

consider that the correlation of crashes within a short

length of 200 m on either side exists (i.e., 200 m on either

sides of road section means total section length of 400 m).

Moreover, 800 m was used to study the sensitivity band-

width in the hotspots pattern.

4.2 Method II: Kriging

Kriging is a generic term coined by geostatisticians for a

family of generalized least squares regression algorithms in

recognition of the pioneering work of a mining engineer,

Danie Krige [31]. The main idea behind kriging is that the

predicted outputs are weighted average of sample data, and

the weights are determined in such a way that they are

unique to each predicted point and a function of the

separation distance (lag) between the observed location and

the location to be predicted. In other words, kriging pro-

vides estimates at unknown locations based on a set of

available observations by characterizing and quantifying

spatial variability of the area of interest. Let x and xi be

location vectors for estimation point and a set of observa-

tions at known locations, respectively, with i = 1,… n. In

this study, x indicates a single point/location where a

number of crashes likely to occur is estimated using nearby

observations, xi.

Based on n number of available crash frequencies, we

are interested in estimating a number of crashes at any

given location, denoted by ẐðxÞ. The expression of a

general kriging model is as follows [32]:

ẐðxÞ ¼ mðxÞ þ
Xn

i¼1

ki½ZðxiÞ � mðxiÞ�; ð2Þ

where m(x) and m(xi) are expected values of the random

variables Z(x) and Z(xi), and ki is a kriging weight as-

signed to datum Z(xi) for estimation of a crash frequency

at any location x. The random field, Z(x), can be de-

composed into two components namely residual compo-

nent R(x) and a trend component m(x), and expressed as

Z(x) = R(x) ? m(x). Each of three main variants of

kriging namely simple kriging (SK), ordinary kriging

(OK), and universal kriging (UK) can be distinguished

according to the model considered for the trend compo-

nent, m(x).

The most widely used kriging approach, OK, assumes

the constant mean over each local neighboring area,

whereas SK assumes a constant mean over the entire study

area, a characteristic that often limits the wide application.

UK is a hybrid method which is based on point observa-

tions and regression of the target variable on spatially ex-

haustive auxiliary information [25]. In our analysis, OK

was used as it is relatively simple yet powerful and less

data intensive.

As mentioned previously, a fundamental assumption for

geostatistical methods is the existence of spatial autocor-

relation. The investigation of autocorrelation is essential in

most geostatistical analyses that are done by modeling the

spatial dissimilarities (semivariogram) based on the avail-

able sampling of the attribute of interest [24]. A most

commonly adopted tool for capturing the spatial data that

exhibit weak stationarity is semivariogram given in

Eq. (3).

ĉðhÞ ¼ 1

2nðhÞ
XnðhÞ

i¼1

½Zðxi þ hÞ � ZðxiÞ�2; ð3Þ

where ĉðhÞ is the sample semivariogram, z(xi) is a crash

frequency measurement taken at location xi, and n(h) is the

number of pairs of available crash frequency observations

separated by the lag distance h. Typically, a mathematical

model is utilized to describe the sample semivariances, and

a few examples of those are exponential, Gaussian, and

spherical models.

Esri’s ArcGIS 10.2 comes equipped with a geostatistical

analyst package that offers a user-friendly kriging inter-

polation tool. OK is utilized to obtain the interpolated

surface for all data with different temporal units at an ag-

gregation level of 400 m2. The extensive amount of

heuristic trial and error is carried out to ensure that the

semivariogram model and the parameters selected produce

unbiased results (i.e., the mean prediction error should be

close to 0, while the RMSE should be close to 1). There are

several parameters that need to be carefully determined

when constructing a semivariogram model and some are

sill, range, and nugget. Sill represents the level of the

plateau (if it exists), while range represents the distance

1 Nearest neighbor distance is the distance from each point of event

to its nearest neighbor.
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where the semivariogram reaches the sill, also commonly

interpreted as degree of spatial correlation. Nugget repre-

sents that there is to account micro-scale variation and

measurement errors or any spatial variability that exists at a

distance smaller than the shortest distance of two mea-

surements. For more information on how to build a good

semivariogram model, readers are advised to refer to a

comprehensive work done by Olea [33].

4.3 Hotspots selection criteria

After estimating the number of crashes over the grid

cells, the outputs are presented in a color coded map. In

both the methods, the estimation takes place over the

entire study region. Those areas without the road net-

work are likely to have mostly zero values except re-

gions which are very close to the network. Meanwhile,

those areas outside of networks are not of an interest.

Such areas are discarded by extracting the results lying

only within a buffer of 400 m on each side of highways.

This particular value was selected as to make sure that

all the grid cells of 400 by 400 m in the vicinity of

highways are included. Note that only the major roads

under the jurisdiction of Minnesota Department of

Transportation in Hennepin County have been considered

in this study.

The next step is selecting a set of high-risk zones (i.e.,

the hotspots). There is no universal rule or threshold values

to benchmark for what should be the hotspots. It is an

arbitrary selection of a cutting off value that screens

relatively higher risk areas over the given study area. An

example of this value could be considering an overall av-

erage of the estimated output [6]. When the estimated value

for a given location is higher than this threshold value, then

it is considered as hotspot. However, in a real world, this

could be decided based on budget availability. Another

alternative method, which is used in this study, is using

quantile method where we classify the estimated values in

different classes. For this, we pick a certain number of

classes to be created, and then the data are distributed

equally between the classes resulting into equal numbers of

grid cells in each class [9, 34]. Note that in both the

methods we use the same grid cell size (i.e., 400 by

400 m2), thus controlling the numbers of total cells for the

comparison. Each class represents the order of severity

based on crash risk level. We label these categories as risk

level 1, risk level 2, and so on. ‘‘Hotspot’’ is then deter-

mined by the top thematic risk level, i.e., level 10. As we

are comparing the performance of KDE and kriging

method with different output units, this approach makes a

fair comparison from the perspective of consistency in

hotspot coverage.

4.4 Comparisons

Prediction accuracy index (PAI) developed by Chainey

et al. [34] was used as a performance measure to compare

the performance of the two proposed methods (see Eq. (4)).

This was initially developed in crime mapping context [34,

35, 37] and has been used in road safety as well [18]. Here,

we have made a slight modification in the denominator

using length of road segment instead of using its area. This

is reasonable as highway network is better represented by a

linear 1-D feature rather than a 2-D feature. Meanwhile, we

also calculated the PAI in terms of area:

PAI ¼
n
N
� 100

m
M
� 100

; ð4Þ

where n is the number of crash in hotspots, N is the total

number of crashes, m is the length of highway section in

hotspots or area covered, and M is the total length of

highway section or total area covered.

As seen in Eq. (4), PAI is a ratio of percentage of

crashes occurring within the identified hotspots (say A) to

the percentage of area covered by it (say B). Intuitively, the

higher the PAI value, the better the performance. Note that

one of the reasons for normalizing ‘‘A’’ by ‘‘B’’ is that the

higher ‘‘A’’ value may not always necessarily indicate

better ability in identifying risk zones without the nor-

malization. For example, say we identify whole region as

hotspots (‘‘B’’ is 100), which means ‘‘A’’ is 100, then PAI

would have been 100. However, with the normalization by

‘‘B,’’ PAI index becomes 1, which is reasonable. Moreover,

PAI index measures an ability to locate high number of

potential crashes in a small area. A convincing example

could be, say we have 25 % of crash occurring in hotspots

which represents 50 % of total area, similarly 25 % crash

in 80 % of area, then PAI values will be 0.5 and 0.31,

respectively. Scientifically, we would choose the method

that results the first case (i.e., PAI 0.5) as road agencies can

allocate resources effectively by mobilizing them on a

smaller area in treating high crash potentials.

In addition, another measure, which aims to compare the

physical locations of hotspots delineated by KDE and

kriging, was used to see if their outcomes are similar or

different, and investigate if one approach can be used for

another. For this comparison, only those hotspot locations

commonly identified by both the methods were extracted,

and their matching rate was computed with respect to the

total area of hotspots.

5 Results and discussions

Two different geospatial techniques, the KDE and kriging

methods, were employed for the hotspot analysis. Figure 8
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Fig. 8 KDE estimation results for bandwidth 400 m: (a)–(d); kriging estimation results: (e)–(f) (where MP morning peak, EP evening peak, OP

off-peak)
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illustrates the estimated results on a temporal basis using

the two methods. For KDE method, two different band-

widths (i.e., 400 and 800 m) were considered to evaluate its

sensitivity in the estimation process but only the results for

400 m are presented here due to the limited space. One of

the reasons for using 400 m as a minimum spatial unit was

to sufficiently cover the size of the predefined grid cell. In

other words, a selection of bandwidth less than the size of

the grid cell would be worthless for KDEmethod because its

output would eventually be averaged over each grid. Note

that in both methods grid cell size of 400 by 400 mwas used.

The results presented are categorized into ten different

levels arranged in an increasing order of risk level, each of

which represents 10 % coverage of the total buffered area.

This classification in a color-coded map provides a clear

visualization of where the crash-prone areas are, for exam-

ple, increase in the degree of redness indicates higher risk

sections. Such crash risk mappings could be a value to

engineers and planners in road agencies in making a good

decision for planning road safety budget. In general, both the

methods showed that the high crash-prone zones are con-

centrated in the vicinity ofMinneapolis city. This is intuitive

as the higher level of traffic interactions generates more

safety problems. As the highways are extending outward

from the core urban areas, the risk level is decreasing. As

seen in the figures, this macro-level of visualizing safety

risks demonstrates little difference between the methods and

temporal units. Further close investigation and comparisons

are made by selecting a set of hotspots.

Criteria in selecting a set of hotspots may vary across

studies, as there is no any universal rule of selection.

Whatever the method is, the main controlling idea is to se-

lect a set of sections with higher safety risk. In our study, we

used a simple quantile method in which the top risk level

from the previously mentioned classes of risk levels was

selected. We could also use a threshold cutoff value ap-

proach where estimated values in each location are com-

pared with a critical value, and the locations exceeding the

critical value are screened as hotspots. In such cases, cutoff

values could be determined based on statistic of estimated

crash over the area, such as mean and standard deviation.

Figure 9 presents selected hotspots (i.e., represented by

red rectangles) locations using KDE and kriging methods.

As observed, the spatial locations of hotspots identified by

these two different methods are not identical, and it is im-

portant to make a decision of which method performance is

better based on their performance evaluation. One of the

common approaches of this is done by comparing the actual

values against estimated results. However, unlike in classi-

cal statistical modeling method (e.g., using NB Models)

which commonly uses this approach, it is not straightfor-

ward with geostatistical techniques. For example, in KDE

method, we estimate the density of crashes. As a result, it is

not convenient to evaluate its performance by comparing

output results (density) against its corresponding actual

(count) values. Most importantly, as we are comparing two

methods, a common measure is needed. This was addressed

by adopting a performance measure, i.e., PAI, which was

initially proposed by Chainey et al. [34].

Table 1 presents a comparison between these two

methods in terms of PAI using both the length of highway

section and buffer area coverage. A slight variation in

hotspot location is observed among different times of day,

suggesting that the hotspots may vary by the times of day.

Comparatively, most of the hotspots are located around

intersections and interchanges in both the methods; how-

ever, the hotspots from the kriging method are a little

spread out. In all the cases, kriging method has higher PAI

values compared to the KDE method. As explained in

Sect. 4.4, higher PAI value indicates better ability of a

method to locate high potential crash in a small area, which

practically helps road agencies to efficiently mobilize

limited resource. With this evidence of PAI values, kriging

method is better performing compared to KDE. Mean-

while, this method of identifying hotspots could be con-

cluded better in future by comparing with the statistical

modeling approach. A similar hotspot pattern was observed

with both the bandwidths in KDE method as presented in

Table 1 (only output map for 400 m is reported). The re-

sults obtained from both the bandwidths were comparable,

showing less sensitivity in the selected values as shown in

Fig. 10.

In addition, another bandwidth (i.e., 800 m) was tested

to check the sensitivity of different bandwidths but only a

small difference was observed in their performance. For

example, as shown in Table 1, the PAI (length) value for

all crash case for 400 m bandwidth, the PAI index was

found to be 2.75, while a comparative value of 2.72 was

found for 800 m bandwidth. The magnitude of their dif-

ference is very marginal (i.e., 1.09 %). A similar trend was

also observed when compared with other times of day as

presented in Fig. 10. From this, it can be asserted that the

PAI index seems to be higher when a smaller bandwidth is

implemented irrespective of time-of-day. This also shows

that a further analysis testing the sensitivity of different

bandwidth sizes may not be necessary for comparison with

the kriging method.

Note that the total areas of the selected hotspots are not

exactly the same (see Table 1) but this small discrepancy is

caused during GIS data processing. However, this minor

issue pertaining to an insignificant discrepancy in the total

area does not affect the resulting PAI indexes as they were

calculated using the normalized numerical figures (refer to

Eq. (4)).

As outlined previously, the hotspots identified by the

two methods are compared by matching their physical
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Fig. 9 Hotspots by KDE method for bandwidth 400 m: (a)–(d); kriging method: (e)–(f) (where MP morning peak, EP evening peak, OP off-

peak)
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locations for all four temporal groups. The intent of this

non-performance-oriented comparison is to see if there

exists a high (or low) match between the outcomes of the

two methods, and investigate the feasibility of using one

approach over another. The findings showed that the

matching rates between the outcomes of kriging and KDE

with 400 m bandwidth were found to be 52 %, 75 %,

66 %, and 71 % for All, MP, EP, and OP crash groups,

respectively. This clearly suggests that there exist sig-

nificant discrepancies between the two methods in identi-

fying common hotspots. Similarly, matching rates using

KDE with bandwidth 800 m were 45 %, 77 %, 62 %, and

69 % for All, MP, EP, and OP crash groups, respectively.

Note that the comparison outcomes using two different

bandwidths in KDE method were found comparable.

The above findings can be interpreted as follows: first,

the average matching rate of 65 % indicates that the out-

comes of the two test methods experience significant dif-

ference, suggesting that one method may not be used as a

replacement of another. Moreover, as the PAI measures

indicate that kriging method has better performance com-

pared to KDE, we may conclude that kriging method,

which is less explored in road safety, could be one of the

potential methods in hotspots analysis. However, an open

research question raises about which methods would pro-

duce more accurate results, should the reliability and

credibility of the PAI index be questioned. Therefore, a

further investigation is of high necessity to assert.

6 Conclusions and recommendations

This paper describes a comparative analysis on two geo-

statistical-based approaches for estimating the expected

collision frequency of individual road sections and identi-

fying crash hotspots in a highway network. In contrast to

the widely adopted safety model-based approach, a geo-

statistical-based hotspot identification method is less data

intensive and easier to implement, as it does not require

extensive information about the underlying road network

such as road geometry and traffic volume. The two geo-

statistical methods considered in this analysis are called

KDE and kriging. The KDE approach has been applied in a

Table 1 Performance comparisons of KDE and kriging methods

Time-of-day No. of crashes

in hotspot

Total

crashes

Length of highway

(km, two way)

Area coverage

(km2)

PAI

(length)

PAI

(area)

KDE method (Bandwidth 400 m)

All crash 14,239 38,748 107.04 16.32 2.75 3.69

MP crash 1,611 5,331 88.17 13.76 2.74 3.60

EP crash 2,700 7,712 82.79 13.28 3.38 4.32

OP crash 9,376 25,705 102.27 15.68 2.85 3.81

Total (T) & Avg. (A) – – 799.67 (T) 163.96 (T) 2.93 (A) 3.86 (A)

KDE method (Bandwidth 800 m)

All crash 12,504 38,748 94.70 15.36 2.72 3.44

MP crash 1,175 5,331 82.89 11.84 2.13 3.05

EP crash 2,252 7,712 75.04 12.00 3.11 3.99

OP crash 8,146 25,705 89.26 14.24 2.84 3.65

Total (T) & Avg. (A) – – 799.67 (T) 163.96 (T) 2.7 (A) 3.53 (A)

Kriging method

All crash 14,839 38,748 100.62 14.88 3.04 4.22

MP crash 1,907 5,331 106.61 15.36 2.68 3.82

EP crash 3,558 7,712 108.71 16.00 3.39 4.73

OP crash 10,886 25,705 107.17 16.64 3.16 4.17

Total (T) & Avg. (A) – – 799.67 (T) 163.96 (T) 3.07 (A) 4.23 (A)

The area coverage is not exactly 10 % due to loss of some cell sections during GIS processing

0

0.5

1

1.5

2

2.5

3

3.5

4

All Crash MP Crash EP Crash OP Crash

PA
I (

le
ng

th
) 

Bandwidth 400 m Bandwidth 800 m

Fig. 10 Sensitivity of bandwidth in KDE method
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few prior road safety studies while kriging, one of the least

explored methods in road safety studies, was introduced in

this research as a promising alternative because of its ad-

vantages in handling spatially autocorrelated datasets and

success in other applications.

The two methods were compared in a case study for

identifying crash hotspots in the road network of the Hen-

nepinCounty,Minnesota. Five years of historical crash data,

which were aggregated by different times of day, were used

for geostatistically inferring the spatial distribution of the

expected crash frequency using the two methods. The esti-

mated crash frequencies were then used for subsequent

hotspot identification, and the identification resultswere then

compared using two criteria, namely PAI and percentage

difference in hotspots identified. It was found that, according

to the PAI criterion, kriging is superior in its ability to pin-

point the hotspots than that of the KDE. A comparison on

hotspot ranking indicates that the two methods have resulted

in moderately different lists of hotspots.

Regardless of the credibility of the evaluation criteria, it

is worthwhile to note that kriging, which has seldom been

used for road safety analysis, was shown to be a promising

technique. The findings suggest that a further investigation

is required to achieve more definite conclusions.

This research can be further extended to several directions

to overcome a few limitations of the study conducted herein.

First, a further investigation is needed to address the issue of

how to incorporate the severity of individual crash data in

hotspot identification. Second, instead of using the PAI

measure, the performance of kriging can be benchmarked

with the outcomes from the conventional crash model-based

approach. Third, if we have historical geocoded data for po-

tential crash influencing factors such as traffic exposure and

weather conditions, we could apply universal kriging method

and identify if these factors make significant contribution to

hotspots. Suchweather-related crash studies could bevaluable

for road agencies, especially in cold countries, for planning

proactive winter road maintenance.
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