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Abstract This paper deals with two main topics related to Diophantine approxima-
tion. Firstly, we show that if a point on an algebraic variety is approximable by rational
vectors to a sufficiently large degree, the approximating vectorsmust lie in the topolog-
ical closure of the rational points on the variety. In many interesting cases, in particular
if the set of rational points on the variety is finite, this closure does not exceed the set of
rational points on the variety itself. This result enables easier proofs of several known
results as special cases. The proof can be generalized in some way and encourages to
define a new exponent of simultaneous approximation. The second part of the paper
is devoted to the study of this exponent.

Keywords Exponents of Diophantine approximation · Rational points on varieties ·
Continued fractions
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1 Introduction

In this paper we study certain aspects concerning the simultaneous approximation of
vectors ζ ∈ R

k by rational vectors. In the classical setting of simultaneous approxima-
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942 J. Schleischitz

tion the approximating rational vectors are of the form (p1/q, . . . , pk/q) ∈ Q
k and the

maximum of |ζi − pi/q| is compared with the size of (large) q. In Sects. 1, 2 we stick
to this classical setting and derive a new result concerning very well approximable
points on varieties that generalizes several results that have been established. This
main result has a natural extension to the case where the denominators of the rational
approximations may differ. Motivated by this we will introduce a new exponent of
simultaneous approximation in Sect. 3 and study its properties.

We first introduce some notation.

Definition 1.1 Let k ≥ 1 be an integer. For a function ψ : R → R let H k
ψ ⊆ R

k be
the set of points ζ = (ζ1, . . . , ζk) approximable to degree ψ , that is such that

max
1≤ j≤k

|xζ j − y j | ≤ ψ(x)

has a solution (x, y1, . . . , yk) ∈ Z
k+1 for arbitrarily large values of x . If ψ(x) = x−μ

for μ > 0, we will also writeH k
μ forH k

ψ and refer to ζ as approximable to degree μ.

Dirichlet’s Theorem can be formulated in the way thatH k
1/k equals the entire space

R
k . Thus only functions ψ(x) ≤ x−1/k for large x resp. parameters μ > 1/k are of

interest. Furthermore it is known thanks to Khintchine [8] that the set H k
1/k+δ for

any fixed δ > 0 has k-dimensional Lebesgue measure 0. On the other hand, the set
∪δ>0H

k
1/k+δ often referred to as (simultaneously) very well approximable vectors,

has full Hausdorff dimension k, see [7]. As usual denote by ‖.‖ the distance of a real
number to the nearest integer. Next we define constants closely related to the setsH k

μ

that have been intensely studied.

Definition 1.2 Let k ≥ 1 be an integer. For ζ = (ζ1, . . . , ζk) ∈ R
k let ωk(ζ ) be

the exponent of classical k-dimensional rational approximation, i.e. the supremum of
ν > 0 such that

max
1≤ j≤k

‖xζ j‖ ≤ x−ν

has infinitely many integral solutions x . Similarly, let ω̂k(ζ ) be the supremum of μ

such that the system

0 < x ≤ X, max
1≤ j≤k

‖xζ j‖ ≤ X−μ

has an integral solutions x for every large parameter X .

The sets H k
μ coincide with the sets {ζ ∈ R

k : ωk(ζ ) ≥ μ} for every μ > 0,
respectively. For the special case of ζ successive powers of a real number this leads
to the quantities λk,̂λk defined by Bugeaud and Laurent [5].
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Rational approximation to algebraic varieties and a new exponent… 943

Definition 1.3 Let k ≥ 1. For ζ ∈ R define λk(ζ ) as the supremum of real μ such
that

max
1≤ j≤k

‖xζ j‖ ≤ x−μ

has arbitrarily large solutions x . Similarly, let̂λk(ζ ) be the supremum of μ such that
the system

0 < x ≤ X, max
1≤ j≤k

‖xζ j‖ ≤ X−μ

has an integral solutions x for every large parameter X .

In particular the classic one-dimensional approximation constants λ1(ζ ) for ζ ∈ R

is defined as the supremum of real μ such that ‖xζ‖ ≤ x−μ has arbitrarily large
solutions x . For k = 1 obviously ω1(ζ ) = λ1(ζ ) and consequently the sets H 1

μ

coincide with the set {ζ ∈ R : λ1(ζ ) ≥ μ}. Clearly 1/k ≤ ̂λk(ζ ) ≤ λk(ζ ) for all k
and ζ such as

λ1(ζ ) ≥ λ2(ζ ) ≥ · · · , ̂λ1(ζ ) ≥̂λ2(ζ ) ≥ · · ·

for every ζ . Moreover, we havêλ1(ζ ) = 1 for every irrational ζ and λk(ζ ) = 1/k for
almost all ζ in the sense of Lebesgue measure [17]. For further results concerning the
spectrum of the exponents see for example [3,5,14].

Finally we introduce the absolute degree of a polynomial.

Definition 1.4 For a monomial M := aX j1
1 · · · X jk

k with a ∈ Q\{0} let j1 + · · · + jk
be the total degree of M . For P ∈ Q[X1, . . . , Xk] define the absolute degree of P as
the maximum of the total degrees of the monomials involved in P .

2 A result on approximation to varieties

Theorem 2.1 is the main result of this section. Its proof is not difficult and based on the
fact that if a polynomial with rational coefficients of absolute degree r does not vanish
at some point (y1/x, . . . , yk/x) then the evaluation is bounded below essentially by
x−r . We partly state it because in view of Theorem 3.5 below it will help to motivate
the new exponent we will introduce in Sect. 3.

Theorem 2.1 Let P ∈ Q[X1, . . . , Xk] of absolute degree r and V be the variety
defined by

V = {(X1, X2, . . . , Xk) ∈ R
k : P(X1, X2, . . . , Xk) = 0}.

Denote T := V ∩ Q
k the rational points on V . Let ψ : R → R be any function

with the property ψ(t) = o(t−r+1) as t → ∞. Then T ⊆ H k
ψ ∩ V ⊆ T , where T

denotes the topological closure of T with respect to the usual Euclidean metric.
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944 J. Schleischitz

Proof Clearly wemay assume P ∈ Z[X1, . . . , Xk]. It also obvious thatT ⊆ H k
ψ ∩V

for an arbitrary function ψ , since given (p1/q, . . . , pk/q) ∈ T it suffices to take
(x, y1, . . . , yk) = (Mq, Mp1, . . . , Mpk) the integral multiples of the vector (M ∈
{1, 2, . . .}) in Definition 1.1. We must prove that H k

ψ ∩ V⊆T for ψ(t) = o(t−r+1).

Let ζ = (ζ1, . . . , ζk) ∈ V \T . We have to show ζ /∈ H k
ψ . Assume ζ ∈ H k

ψ . By
definition we have

∣

∣

∣ζ j − y j
x

∣

∣

∣ ≤ ψ(x)x−1, 1 ≤ j ≤ k

for arbitrarily large x . Hence we can write ζ j = y j/x + ε j with |ε j | ≤ ψ(x)x−1

for 1 ≤ j ≤ k. Since ζ /∈ T , there exists some open neighborhood U � x of x
such that U ∩ T = ∅, or in other words there is no rational point in U ∩ V . Observe
that P is C∞ on R

k , thus in U the partial derivatives Px1 , . . . , Pxk are uniformly
bounded by some constant C in absolute value. We may assume x to be large enough
that (y1/x, . . . , yk/x) ∈ U . With repeated use of (one-dimensional) Taylor Theorem
parallel to the coordinate axes we obtain

0 = P(ζ ) = P
( y1
x

+ ε1, . . . ,
yk
x

+ εk

)

= P
( y1
x

, . . . ,
yk
x

)

+ ε1Px1(t1) + · · · + εk Pxk (tk) (1)

where t j ∈ U . Thus

∣

∣

∣P(ζ ) − P
( y1
x

, . . . ,
yk
x

)∣

∣

∣ ≤ kC · max |ε j | ≤ kC · ψ(x)x−1. (2)

Since (y1/x, . . . , yk/x) ∈ V ∩U which has empty intersection with Qk we derive

P(y1/x, . . . , yk/x) = 0.

Thus and since P ∈ Z[X1, . . . , Xk] has absolute degree r we obtain |P(y1/x, . . . ,
yk/x)| ≥ x−r . Hence and since ψ(t) = o(t−r+1), for large x from (1) and (2) we
infer

|P(ζ )| ≥
∣

∣

∣P
( y1
x

, . . . ,
yk
x

)∣

∣

∣ −
∣

∣

∣P(ζ ) − P
( y1
x

, . . . ,
yk
x

)∣

∣

∣

≥ x−r − kC · x−1ψ(x) ≥ 1

2
x−r .

This contradicts P(ζ ) = 0. Hence indeed ζ /∈ H k
ψ and the proof is finished. ��

The theorem in particular applies if T is finite.

Corollary 2.2 With the definitions and assumptions of Theorem 2.1 assume that the
set T of rational points on V is finite. Then H k

ψ ∩ V = T .
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Rational approximation to algebraic varieties and a new exponent… 945

Corollary 2.2 contains various known results as special cases. For example the
Fermat curve defined as the set of zeros of P(X,Y ) = Xk +Y k − 1 has only possibly
the trivial points {(±1, 0), (0,±1)} approximable to degree greater k − 1, which was
established by Bernik and Dodson [1, p. 94]. Corollary 2.2 also implies one of the two
claims of the main result of [6, Theorem 1.1] by Druţu. Concretely it asserts that for
a quadratic form Q in arbitrary many variables, if there are no rational points on the
variety defined byQ(X)−1 = 0, then there are no points on this variety approximable
to degree greater than 1. In fact Theorem 2.1 generalizes [6, Lemma 4.1.1] which
readily implied this claim. However, it should be pointed out that the main and much
more technical result of [6, Theorem 1.1] is the other claim, which provides a formula
for the Hausdorff dimension for the variety as above in the case that it contains rational
points. Observe also that Corollary 2.2 implies that an elliptic curve of rank 0 contains
only finitely many points approximable to degree larger than 3 by rational vectors. We
want to add that a very similar result was proved for very well approximable points on
surfaces parametrized by polynomials with rational coefficients, see [2, Lemma 1].

The case that T in Theorem 2.1 is infinite but consists solely of isolated rational
points that may have some non-rational limit point on V (observe V is closed) is
of interest. The question arises how large the set T \T of such limit points can be,
for example in sense of Hausdorff measure. It is already not obvious how to find an
algebraic variety where T is infinite and consists solely of isolated points.

3 A new exponent of simultaneous approximation

The proof of Theorem 2.1 can be extended in some way to a similar Diophantine
approximation problem that seems so far unstudied in the literature. We first define
the new exponent of simultaneous approximation below and derive some propoerties,
and will return to the connection with Sect. 2 in Theorem 3.5.

For a real function ψ(t) that tends to 0 as t → ∞ let Z k
ψ be the set of ζ =

(ζ1, . . . , ζk) ∈ R
k such that the system

0 < min
1≤ j≤k

|x j | ≤ max
1≤ j≤k

|x j | ≤ X, max
1≤ j≤k

‖x jζ j‖ ≤ ψ(X) (3)

has a solution (x1, . . . , xk) ∈ Z
k for arbitrarily large X . Moreover writeZ k

ν instead of
Z k

ψ whenψ(t) = t−ν with a parameter ν > 0. Further denote by χk(ζ ) the supremum

of exponents ν for which ζ ∈ Z k
ν , such that

Z k
ν = {ζ ∈ R

k : χk(ζ ) ≥ ν}.

ObviouslyZ k
ψ ⊇ H k

ψ for all k ≥ 1 and any ζ ∈ R
k for any function ψ , with equality

if k = 1. In particular χk(ζ ) ≥ ωk(ζ ) for all k ≥ 1 and all ζ ∈ R
k . Moreover

Z k
1 = R

k by the uniform version of Dirichlet’s Theorem applied to any single ζ j .
Furthermore the k-dimensional exponent is trivially bounded above by the minimum
of the one-dimensional constants λ1(ζ j ). As stated in Sect. 1 each of these single
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946 J. Schleischitz

exponents equals 1 also for almost all ζ ∈ R in terms of Lebesgue measure. Hence
for almost all ζ ∈ R

k we have χk(ζ ) = 1. Moreover by Roth’s Theorem χk(ζ ) = 1 if
there is at least one irrational algebraic element among the ζ j .

We can reformulate the above observations by the formula

max{1, ωk(ζ )} ≤ χk(ζ ) ≤ min
1≤ j≤k

λ1(ζ j ). (4)

Recall the one-dimensional constants λ1(ζ ) are determined by the continued fraction
expansion of ζ . Roughly speaking, the exponent χk somehow measures the distances
of denominators of those convergents p j/q j , which lead to very good approximation
|p j/q j − ζ j | of the ζ j , compared to the single q j . The situation is different for the
exponents ωk , where denominators of continued fractions of single ζ j lead to a large
exponent ωk only if their lowest common multiple is small compared to the smallest
single q j . Roughly speaking the exponents χk measure something in between the
separate one-dimensional best approximations λ1 of the single ζ j and the classical
simultaneous approximation constants ωk . Another relation between χk and ωk is
given by the following easy lemma where this phenomenon becomes apparent.

Lemma 3.1 Let k ≥ 1 and ζ ∈ R
k . We have

ωk(ζ ) ≥ χk(ζ ) − k + 1

k
.

Proof Assume the system

0 < max
1≤ j≤k

|q j | ≤ Q, max
1≤ j≤k

‖q jζ j‖ ≤ Q−ν,

is satisfied. Then 0 < q1 · · · qk ≤ Qk and

‖q1q2 · · · qkζ j‖ ≤ (q1q2 · · · q j−1q j+1 · · · qk)‖q jζ j‖ ≤ Qk−1−ν = (Qk)−(ν−k+1)/k,

1 ≤ j ≤ k.

The claim follows since we may let ν arbitrarily close to χk(ζ ). ��
Uniform exponents can be defined similarly to the classical simultaneous Dio-

phantine approximation constants, but since Dirichlet’s Theorem is uniform in the
parameter Q again (for irrational ζ j )

1 = max{1, ω̂k(ζ )} ≤ χ̂k(ζ ) ≤ min
1≤ j≤k

̂λ1(ζ j ) = 1,

and hence

χ̂k(ζ ) = 1
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Rational approximation to algebraic varieties and a new exponent… 947

for all ζ /∈ Q
k (for ζ ∈ Q we have ̂λ1(ζ j ) = ∞). We formulate some questions

concerning the constants χk similar to well-known (partially answered) problems for
the classic exponents ωk, λk , see for example [3, Problems 1–3]. By the spectrum of
χk wewill mean the set {χk(ζ ) : ζ ∈ Tk} ⊆ R of values taken by χk in the set Tk ⊆ R

k

of ζ ∈ R
k which are linearly independent together with {1} over Q.

Problem 3.2 Is the spectrum of χk equal to [1,∞]? Find explicit constructions of
ζ ∈ R

k with prescribed values of χk(ζ ).

Problem 3.3 Metric theory: For λ ∈ [1,∞] determine the Hausdorff dimensions of
the sets

dim({ζ ∈ R
k : χk(ζ ) = λ}), dim({ζ ∈ R

k : χk(ζ ) ≥ λ}).

Problem 3.4 What about Problems 3.2, 3.3 for the restriction of ζ to certain man-
ifolds in R

k? In particular the Veronese curve which consists of the vectors ζ =
(ζ, ζ 2, . . . , ζ k) for ζ ∈ R.

Concerning Problem 3.3, we point out that the estimates

k + 1

1 + λ
≤ dim({ζ ∈ R

k : χk(ζ ) ≥ λ}) ≤ k + 1

1 + λ−k+1
k

= k(k + 1)

1 + λ
(5)

hold, where the right inequality is non-trivial only for λ > k. Indeed Jarník [7] proved

k + 1

1 + λ
= dim({ζ ∈ R

k : λk(ζ ) ≥ λ}) = dim({ζ ∈ R
k : λk(ζ ) = λ})

for λ ∈ [1/k,∞], which in combination with χk(ζ ) ≥ ωk(ζ ) and Lemma 3.1 respec-
tively proves the inequalities in (5) respectively.

Concerning Problem 3.4 for varieties, a slight modification of the proof of Theo-
rem 2.1 shows the following.

Theorem 3.5 Let P ∈ Q[X1, . . . , Xk] of absolute degree r and V be the variety
defined by

V = {(X1, X2, . . . , Xk) ∈ R
k : P(X1, X2, . . . , Xk) = 0}.

Denote T := V ∩ Q
k the rational points on V . Let ψ : R → R be any function with

the property ψ(X) = o(X−kr+1) as X → ∞. Then T ⊆ Z k
ψ ∩ V ⊆ T .

Proof of Theorem 3.5 Proceed precisely as in the proof of Theorem 2.1, and notice
that for general fractions z := (p1/q1, . . . , pk/qk) we still have the lower bound
|P(z)| ≥ q−r

1 q−r
2 · · · q−r

k ≥ Q−kr . ��
Remark 3.6 The proof shows that for the large class of varieties the exponent kr − 1
can be readily improved. This is the case if the polynomial does not contain all
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948 J. Schleischitz

monomials a1Xr
1, a2X

r
2, . . . , ak X

r
k with non-zero coefficients ai = 0. More precisely

the condition ψ(x) = o(x−r+1), with r := ∑k
j=1 r j ≤ kr where r j ≤ r is the

degree of P(X1, . . . , Xk) in the variable X j , suffices to obtain the result of Theo-
rem 3.5. In particular if P is of the form P(X1, . . . , Xk) = Xr1

1 Xr2
2 · · · Xrk

k − l1/ l2
for l1/ l2 ∈ Q, then ψ(x) = o(x−r+1) is sufficient. More generally this applies for
P(X1, . . . , Xk) = (p/q)Xr1

1 Xr2
2 · · · Xrk

k + Q(X1, . . . , Xk) for p/q ∈ Q and any
Q ∈ Q[X1, . . . , Xk] of degree at most r j in the variable X j for 1 ≤ j ≤ k.

Wewant to point out some consequences and interpretations of Theorem 3.5, which
also aim to shed more light on the meaning of the exponent χk in general. Recall a
Liouville number is an irrational real (and thus transcendental by Liouville’s Theorem)
number that satisfies λ1(ζ ) = ∞. It is shown in [9] that for any countable set of
continuous strictly monotonic functions fi : A → B with A, B subsets of R, there
are uncountably many Liouville numbers ζ ∈ A such that fi (ζ ) is again a Liouville
number for all i . See also [13,16]. Let C be any curve in Rk for arbitrary k defined by
algebraic equations. Then C can be almost everywhere locally parametrized by such
functions f0 = id, f1, . . . , fk−1, in other words any (ζ1, . . . , ζk) ∈ C can be written
ζi+1 = fi (ζ ) for 0 ≤ i ≤ k−1. Hence there are uncountablymany Liouville points on
the curve, by which we mean that every coordinate is a Liouville number. On the other
hand, if C is a variety that contains no rational point, by Theorem 3.5 there are also no
points simultaneously approximable to a sufficiently large finite degree in the sense
of large χk (of course also not for ωk). This emphasizes that on algebraic curves there
is a huge difference between the minimum of the one-dimensional classical constants
λ1(ζ j ) and the constants χk(ζ ). For 0 ≤ i ≤ k − 1 denote by (pn,i/qn,i )n≥1 the
sequence of convergents of fi (ζ ). Then the above result means that for the Liouville
numbers ζ, f1(ζ ), . . . , fk−1(ζ ) in the parametrization there do not exist infinitely
many convergents p.,0/q.,0, . . . , p.,k−1/q.,k−1 whose denominators q.,i , 0 ≤ i ≤
k − 1 are all of “similar” largeness. The analogue phenomenon holds for all algebraic
surfaces of dimension larger one as well. Indeed, if the dimension of the variety is
locally k, then we can write the variety locally as (ζ1, . . . , ζk, ψ1(ζ ), . . . , ψr (ζ ))with
ζ = (ζ1, . . . , ζk) and C∞ functions ψ j in some open U subset of Rk . We fix the first
k − 1 coordinates as Liouville numbers in some open subset of Rk−1 (i.e. we pick
Liouville numbers in the open projection set V ⊆ U ofU to the first k−1 coordinates)
and the analogue result follows from the one-dimensional case.

Concerning the spectrum of the quantities χk(ζ ) the next theorem is rather satis-
factory.

Theorem 3.7 Let k ≥ 2 an integer and λ1, λ2, . . . , λk, w real numbers that satisfy
1 ≤ w ≤ min1≤ j≤k λ j . Then there exist uncountably many vectors (ζ1, ζ2, . . . , ζk) ∈
R
k that are Q-linearly independent together with {1} and such that λ1(ζ j ) = λ j for

1 ≤ j ≤ k and χk(ζ1, . . . , ζk) = w.

The condition w ≤ min1≤ j≤k λ j is necessary in view of (4). It would be nice to
have some additional relation between χk and ωk included. In Theorem 3.9, which
treats the special case of the Veronese curve, a connection to the constants λk will be
given provided the parameter is at least 2. We emphasize that Theorem 3.7 answers
Problem 3.2.
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Corollary 3.8 The spectrum of χk equals [1,∞].

Nowwe turn towardsQuestion3.4.We restrict to ζ on theVeronese curve anddenote
the exponent χk(ζ ) = χ(ζ, ζ 2, . . . , ζ k). Since χk(ζ ) ≥ λk(ζ ), from [3, Lemma 1] we
infer

χk(ζ ) ≥ λ1(ζ ) − k + 1

k
. (6)

For large parameters λ1(ζ ) and special choices of ζ , very similarly constructed as in
the proof of [3, Theorem 1] by Bugeaud, we will show in Theorem 3.9 that there is
equality in (6). The proof of this is among other things based on the fact that there
cannot be two good approximations p/q, p′/q ′ to ζ with q, q ′ that do not differ much.
Some parts of the proof also involve similar ideas as the proof of [10, Theorem 6.2]
or [15, Lemma 4.10]. Our main result concerning Question 3.4 is the following.

Theorem 3.9 Let k ≥ 1 be an integer. For λ ∈ [2,∞] real transcendental ζ can be
explicitly constructed such that χk(ζ ) = λk(ζ ) = λ. In particular, the spectrum of χk

on the Veronese curve contains [2,∞].

See also the remarks subsequent to the proof of Theorem 3.9 that relate Theorem 3.9
and ζ constructed in the proof with classical approximation constants. We end by
stating the natural conjecture.

Conjecture 3.10 The spectrum of χk on the Veronese curve equals [1,∞].

4 Proofs of Theorems 3.7 and 3.9

The proofs heavily use the theory of continued fractions. Any irrational real number
has a unique representation as ζ = a0 +1/(a1 +1/(a2 +· · · )) for positive integers a j

that can be recursively determined. This is called the the continued fraction expansion
of ζ and we also write ζ = [a0; a1, a2, . . .]. The evaluation of any finite subword
rl/sl = [a0; a1, . . . , al ] is called convergent to ζ and satisfies |rl/sl − ζ | ≤ s−2

l . More
precisely we have

al+2

sl sl+2
≤

∣

∣

∣

∣

rl
sl

− ζ

∣

∣

∣

∣

≤ 1

sl sl+1
. (7)

Recall also the inductive formulas rl+1 = al+1rl + rl−1, sl+1 = al+1sl + sl−1. We
will utilize also the following well-known result.

Theorem 4.1 (Legendre) If for irrational ζ the inequality

|qζ − p| ≤ 1

2
q−1

has an integral solution (p, q) ∈ Z
2 then p/q is a convergent of ζ in the continued

fraction expansion.
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950 J. Schleischitz

Proof of Theorem 3.7 Firstwe do not take care of theQ-linear independence condition
and in the end describe how tomodify the constructions below to ensure this additional
condition. Without loss of generality 1 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk . Let

ζ j = [0; 1, 1, . . . , 1, h j,1, 1, 1 . . . , 1, h j,2, 1, . . .]

for the positions at which the h j,i = 1 are such as the values h j,i to be determined later.
For i ≥ 1 denote r j,i/s j,i the convergent [1, . . . , 1, h j,i ]. Observe that by elementary
estimates for continued fractions related to (7), for any convergent r/s not equal to
some r j,i/s j,i we have |sζ j − r | ≥ (1/3)s−1. Hence and by Theorem 4.1, for w > 1,
every large solution of the system (3) for ψ(t) = t−(1+w)/2 has each x j an integral
multiple of some s j,i . Similarly, if w = 1, the argument applies with ψ(t) = t−1−ε

for every ε > 0. Hence we may restrict x j of the form s j,i .
First define h1,i with sufficiently large differences h1,i+1 − h1,i recursively in a

way that

lim
i→∞ − log |ζ1s1,i − r1,i |

log s1,i
= λ1.

This is clearly possible and leads to ζ1 = limi→∞ r1,i/s1,i that satisfies λ1(ζ1) = λ1.
Now we choose h j,i of the remaining ζ2, . . . , ζk with the properties

lim
i→∞ − log |ζ1s j,i − r j,i |

log s j,i
= λ j , (8)

and

lim
i→∞

log s j,i
log s1,i

= w

λ j
. (9)

Such a choice is again possible. To satisfy (9) we just have to stop reading ones in the
continued fraction expansion at the right position, which is possible since by reading
only ones two successive denominators of convergents differ by a factor at most 2.
Then to guarantee (8) we just have to take the next partial quotient, that is some h j,i ,
of the right order.

We prove that the implied ζ j have the desired properties. Observe that since w ≤
λ1 ≤ . . . ≤ λk and the gap between s1,i and s1,i+1 can be arbitrarily large, we may
assume

s1,i > s2,i > s3,i · · · > sk,i , sk,i+1 > sλ1
1,i . (10)

For X = s1,i and q j = s j,i for 1 ≤ j ≤ k we have by construction

lim
i→∞ − log |ζ1s j,i − r j,i |

log X
= lim

i→∞ − log |ζ1s j,i − r j,i |
log s j,i

log s j,i
log X

= λ j
w

λ j
= w.

Hence χk(ζ1, . . . , ζk) ≥ w by the definition of the constant χk . On the other hand, we
carried out above that we have to take each x j = s j,i for some i . Thus the optimal
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choices are given by X = s j,i for some j . But (10) implies j = 1 since otherwise if
X = s j,i for j = 1 then s1,i > X but

lim
i→∞ − log |ζ1s1,i−1 − r1,i−1|

log X
< 1.

This would imply χk(ζ1, . . . , ζk) = 1. In case of w > 1 this indeed gives a contradic-
tion. It follows in fact the choices carried out are optimal and thus χk(ζ1, . . . , ζk) ≤ w,
such that there is equality. Finally, in the case w = 1 the above construction implies
χk(ζ1, . . . , ζk) = 1 very similarly.

Finally we carry out how to guarantee that the vector ζ can be chosen Q-linearly
independent together with {1}, by a slight modification of the above construction. In
the process we can recursively choose ζ j for 1 ≤ j ≤ k in turn not in the Q-span of
{1, ζ1, . . . , ζ j−1}. First observe that ζ1 must be transcendental if λ1(ζ1) > 1 by Roth
Theorem, and otherwise the claim of the theorem is a trivial consequence of (4) for
anyQ-linearly independent vector ζ with first coordinate ζ1 anyway. For the recursive
step note that the span of j − 1 numbers is countable but we have at infinitely many
positions at least two choices of positions where to put h j,i (it follows from the proof
that the positions are not completely determined but there is some freedom). Pigeon
hole principle implies there must be uncountably many choices for ζ j and repeating
this argument we obtain uncountably many vectors that have Q-linearly independent
coordinates. ��

Now we turn towards the proof of Theorem 3.9. It needs some preperation. First
recall Minkowski’s second lattice point Theorem [11] asserts that for a lattice 
 inRk

with determinant det
 and a central-convex body K ⊆ R
n of n-dimensional volume

vol(K), the product of the successive minima t1, . . . , tn of K relative to
 are bounded
by

2k

k!
det


vol(K )
≤ t1t2 · · · tk ≤ 2k

det


vol(K )
.

Applied in dimension 2 and for the lattice 
 := {x + ζ y : x, y ∈ Z} and the 0-
symmetric convex body KQ := {−Q ≤ x ≤ Q,−1/(2Q) ≤ y ≤ 1/(2Q)} it yields
the following.

Theorem 4.2 (Minkowski) Let ζ be a real number. Then for any parameter Q > 1
the system

|q| ≤ Q, |ζq − p| ≤ 1

2Q
(11)

cannot have two linearly independent integral solution pairs (p, q).

Moreover, we need some facts on continued fractions which can be found in [12].

Theorem 4.3 For irrational ζ and every convergent p/q of ζ in lowest terms we have

|qζ − p| ≤ q−1.
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More generally, for any parameter Q > 1 the system

1 ≤ q ≤ Q, |qζ − p| ≤ Q−1

has a solution (p, q) with p/q a convergent of ζ .

Call q ∈ N a best approximation of ζ if ‖qζ‖ = min1≤q ′≤q ‖q ′ζ‖. As q → ∞
this induces a sequence of best approximations (that uniquely determines ζ ). The
following connection to the continued fraction expansion of ζ is well-known.

Lemma 4.4 (Lagrange) The sequence of best approximations is induced by the
sequence of convergents to ζ . More precisely, the j-th element of the sequence is
the denominator of the j-th convergent to ζ .

The next Proposition is in fact also well-known. However, we give a proof based
on Theorem 4.3, Theorem 4.1 and the fact that for ζ = [a0; a1, . . .] with convergents
rn/sn we have sn+1 = an+1sn + sn−1 (where formally s−2 = 1, s−1 = 0). Observe
by Lemma 4.4 we have sn = qn for qn the n-th best approximation.

Proposition 4.5 Let q1, q2, . . . be the sequence of best approximations of ζ =
[a0; a1, · · · ]. Let

νn := − log ‖qnζ‖
log qn

, ηn := log qn+1

log qn
, τn := log(an+1qn)

log qn
.

Then ηn − νn = o(1) and ηn − τn = o(1) as n → ∞.

Proof The second claim follows from the fact that for ζ = [a0; a1, . . .] the convergents
pn/qn satisfy the recurrence qn+1 = an+1qn +qn−1 (where formally q−2 = 1, q−1 =
0). Indeed this implies an+1qn ≤ qn+1 ≤ (an+1 + 1)qn and further by mean value
theorem of differentiation for the logarithm function 0 < ηn − τn ≤ 1/ log qn which
tends to 0. For the first claim note that if ηn − νn > 2δ > 0 for fixed δ > 0 and
large n, there is a contradiction to Theorem 4.3 for the parameter Q = q1+δ

n for large
n. On the other hand if ηn − νn < −2δ < 0, then for the parameter Q = q1−δ

n
there would be two good approximations pn/qn and pn+1/qn+1, contradicting the
Minkowski Theorem 4.2. ��

Now we are finally ready to prove Theorem 3.9.

Proof of Theorem 3.9 Wemay restrict to k ≥ 2 since for k = 1 clearly λ1(ζ ) = ω1(ζ )

for all ζ and the claim follows even for λ ∈ [1,∞] either by elementary constructions
with continued fractions or ζ = ∑

n≥1 2
−an with an = �(1 + λ)n�, see [4] for the

latter.
Let k ≥ 2 and λ ∈ [2,∞]. We define the continued fraction expansion of

suitable ζ recursively similar to [3]. Write ζ = [a0; a1, a2, . . .] and (rn/sn)n≥0
the sequence of convergents as above. Let a0 = 0, a1 = 1, a2 = 2 such that
r0/s0 = 0, r1/s1 = 1, r2/s2 = 2/3, and recursively define a j+1 = �skλ+k−2

j � for
j ≥ 2. By Proposition 4.5 we have

lim
n→∞ − log |snζ − rn|

log sn
= kλ + k − 1. (12)
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Hence Lemma 4.4 implies λ1(ζ ) = kλ + k − 1 (see also [3]). Since λ > 1, by [14,
Corollary 1.9] we conclude λk(ζ ) = λ. In particular χk(ζ ) ≥ λ. It remains to be
proved that χk(ζ ) ≤ λ.

To show this estimate, we partition the positive real numbers in successive intervals,
and in each interval give an asymptotic upper bounded atmostmax{2, λ} = λ for the 1-
dimensional constant λ1 of some ζ i . Since trivially for every parameter Q the optimal
exponent in the system (3) restricted to q ∈ [1, Q] is bounded by the minimum of the
related 1-dimensional constants in this intervals (parametrized version of right hand
side of (4)), this indeed implies the upper bound λ for χk(ζ ).

Let n ≥ 1 be a large integer. Denote rm, j/sm, j the m-th convergent of ζ j , such that
rm,1 = rm and sm,1 = sm . Observe that using the identity A j −B j = (A−B)(A j−1+
· · · + B j−1) and rm, j �ζ sm, j , from (12) we obtain

|s jn ζ j−r j
n | �ζ s j−1

n |snζ−rn|=s−kλ−k+ j+o(1)
n =(s jn )−(kλ+k− j+o(1))/j , 1≤ j ≤ k.

(13)
Since

kλ + k − j

j
≥ kλ + k − k

k
= λ > 1, 1 ≤ j ≤ k,

by Legendre Theorem 4.1, for 1 ≤ j ≤ k the fraction r j
n /s jn is a convergent of ζ j if

we have chosen n sufficiently large. Hence we may write r j
n /s jn = rm, j/sm, j where

everym = m(n, j) depends on n and j (for simplicity we write onlym. For j = 1 we
will identify m with n such that we simply have sm,1 = sn or m(n, 1) = n.) Moreover
(13) and Proposition 4.5 imply

sm+1, j = skλ+k− j+o(1)
m,1 = skλ+k− j+o(1)

n , 1 ≤ j ≤ k, n → ∞. (14)

In particular sn+1 = skλ+k−1+o(1)
n as n → ∞ and

sm,1 < sm,2 < · · · < sm,k < sm+1,k < sm+1,k−1 · · · < sm+1,1. (15)

We partition the interval [sn, sn+1) = [sm,1, sm+1,1) in the successive pairwise disjoint
intervals

[sm,1, sm+1,1) = [sm,1, sm,2) ∪ . . . ∪ [sm,k, sm+1,k) ∪ [sm+1,k, sm+1,k−1)

∪ . . . ∪ [sm+1,2, sm+1,1).

Wewill prove for Q in each such interval separately the upper bound λ for the expres-
sion

min
1≤ j≤k

− log |ζ j q j − p j |
log Q

with 1 ≤ q j ≤ Q for 1 ≤ j ≤ k. Assuming this is true, since n was arbitrary and
[s1,∞) is obviously the disjoint union of the intervals [sn, sn+1) = [sm,1, sm+1,1) over
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n ≥ 1,wehave thatλ is the uniformupper bound forχk(ζ ) as desired. For the following
proof of this fact keep in mind that by construction and Lagrange Lemma 4.4, for any
1 ≤ j ≤ k and Q in the interval [sm, j , sm+1, j ), for ζ j the optimal approximation in

the system (3) with X = Q is attained for q j = sm, j = s jn (and p j = r j
n ).

We start with the somehow distinguished middle interval Q ∈ [sm,k, sm+1,k). We
show that in this interval ζ k cannot be approximated too well by fractions. Indeed, the
optimal choices Q = skn and pk = rkn and qk = skn with (13) and (14) for j = k lead
to

min
1≤ j≤k

− log |ζ j q j − p j |
log Q

≤ − log |ζ kqk − pk |
log Q

= kλ

k
+ o(1) = λ + o(1)

as n → ∞. The claim follows for these intervals Q ∈ [sm,k, sm+1,k).
Next consider the intervals Q ∈ [sm+1,i+1, sm+1,i ) =: Jm,i for 1 ≤ i ≤ k − 1. We

show that for ζ i there is no too good rational approximation. First observe that Jm,i ⊆
[sm,i , sm+1,i ) in view of (15). Hence the optimal approximation choices (pi , qi ) in the
system (3) with 1 ≤ qi ≤ Q ∈ Jm,i are given by pi = r in and qi = sin . The estimate
Q ≥ sm+1,i+1 together with (13) and (14) for j = i lead to

min
1≤ j≤k

− log |ζ j q j − p j |
log Q

≤ − log |ζ i qi − pi |
log Q

≤ kλ + k − i

kλ + k − i − 1
+ o(1)

as n → ∞. Since λ ≥ 2 the right hand side is much smaller than 2+ o(1) ≤ λ+ o(1)
and the claim follows for those intervals as well.

The intervals of the form Im,i := [sm,i , sm,i+1) for 1 ≤ i ≤ k−1 remain. We show
that for Q in these intervals ζ i+1 has no too good approximations. More precisely for
arbitrary fixed ε > 0 and Q ∈ Im,i with m ≥ m0(ε) sufficiently large, we prove that
the estimate

|qζ i+1 − p| ≤ Q−(i+1)/ i−ε (16)

has no integral solution pair (p, q) with 1 ≤ q ≤ Q. Provided this claim holds,
with ε → 0 we infer that χk(ζ ) restricted to these intervals is again bounded by
(i + 1)/ i ≤ 2 ≤ λ and the claim is proved. Suppose (16) has a large solution. Since
Q ≥ sm,i = sin we conclude

|qζ i+1 − p| ≤ s−(i+1)−iε
n ≤ (si+1

n )−1−iε/(i+1) = s−1−iε/(i+1)
m,i+1 .

Hence for large m we have

1 ≤ q ≤ sm,i+1, |qζ i+1 − p| ≤ 1

2
s−1
m,i+1.

On the other hand, recall that rm,i+1/sm,i+1 is a convergent of ζ i+1 with good
approximation, in particular |sm,i+1ζ

i+1 − rm,i+1| ≤ (1/2)s−1
m,i+1. Clearly (p, q) =

(rm,i+1, sm,i+1) since q < Q ≤ sm,i+1 by assumption. Since rm,i+1/sm,i+1 is a con-
vergent in lowest terms, more generally the vectors (p, q) and (rm,i+1, sm,i+1)must be
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linearly independent. However, the existence of two linearly independent vectors with
such good approximation contradictsMinkowski’s Theorem 4.2 for Q = sm,i+1. Thus
the assumption was false and there cannot be a large solution of (16). This finishes
the proof. ��

We close with some remarks on the numbers ζ constructed in the proof, partly
concerning classical approximation constants.

Remark 4.6 The bounds for − log |ζ j sm, j − rm, j |/ log Q of the corresponding ζ j

in the intervals constructed in the proof are, apart from [sm,k, sm+1,k), by no means
considered to be sharp. It is reasonable that the claim of Theorem 3.9 for the numbers
ζ constructed within it extends to λ ∈ [1,∞].
Remark 4.7 A similar strategy of the proof of Theorem 3.9 provides bounds for the
constants λ1(ζ

j ) for the numbers ζ constructed in it. Considering each ζ i in the
intervals [sm,i , sm+1, i) = [sin, sm+1,i ) and [sm+1,i , sin+1) separately leads, apart from
λ1(ζ ) = kλ + k − 1, with (13) and (14) and Theorem 4.2 to

kλ + k − j

j
≤ λ1(ζ

j ) ≤ max

{

kλ + k − j

j
,
j (kλ + k − 1)

kλ + k − j

}

for 2 ≤ j ≤ k and any parameter λ ≥ max{1, (2 j − k)/k} in order to guarantee
that the left expression in the maximum is also at least 1. Clearly the arsing bound
max1≤ j≤k λ1(ζ

j ) (in case of λ ≥ k such that the condition is satisfied for 1 ≤ j ≤ k)
for χk(ζ ) is weaker than the one in Theorem 3.9 due to the less sophisticated chosen
intervals.

Remark 4.8 It is shown in [3, Corollary 1] that for ζ as in the proof with parameter
λ > 1 we have w1(ζ ) = w2(ζ ) = · · · = wk(ζ ) = kλ + k − 1, where wk(ζ ) are
the classical linear form approximation constants dual to λk(ζ ). In particular there is
equality in Khintchine’s inequality λk(ζ ) ≤ (wk(ζ )− k+1)/k. The new contribution
of Theorem 3.9 is that we can even have the equalities λk(ζ ) = χk(ζ ) = (wk(ζ ) −
k + 1)/k provided wk(ζ ) ≥ 3k − 1 (or λk(ζ ) ≥ 2).
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