
Bull Math Biol (2015) 77:230–249
DOI 10.1007/s11538-014-0058-0

ORIGINAL ARTICLE

Conducted Vasoreactivity: the Dynamical Point of View

D. E. Postnov · A. Y. Neganova · O. V. Sosnovtseva ·
N.-H. Holstein-Rathlou · J. C. Brings Jacobsen

Received: 12 September 2014 / Accepted: 18 December 2014 / Published online: 13 January 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Conducted vasodilation is part of the physiological response to increasing
metabolic demand of the tissue. Similar responses can be elicited by focal electrical
or chemical stimulation. Some evidence suggests an endothelial pathway for non-
decremental transmission of hyperpolarizing pulses. However, the underlying mecha-
nisms are debated. Here, we focus on dynamical aspects of the problem hypothesizing
the existence of a bistability-powered mechanism for regenerative pulse transmission
along the endothelium. Bistability implies that the cell can have two different sta-
ble resting potentials and can switch between those states following an appropriate
stimulus. Bistability is possible if the current–voltage curve is N shaped instead of
monotonically increasing. Specifically, the presence of an inwardly rectifying potas-
sium current may provide the endothelial cell with such properties. We provide a
theoretical analysis as well as numerical simulations of both single- and multiunit
bistable systems mimicking endothelial cells to investigate the self-consistence and
stability of the proposed mechanism. We find that the individual cell may switch read-
ily between two stable potentials. An array of coupled cells, however, as found in the
vascular wall, requires a certain adaptation of the membrane currents after a switch, in
order to switch back. Although the formulation is generic, we suggest a combination
of specific membrane currents that could underlie the phenomenon.
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1 Introduction

In the arteriolar bed, local application of vasoactive agents or current elicits local diam-
eter changes that spread up- and downstream along the vascular wall and eventually
may spread into adjacent vessels (Gustafsson and Nolstein-Rathlou 1999; Bagher and
Segal 2011; Hill 2012; Segal 1991; Emerson and Segal 2001; Emerson et al. 2002;
Wit et al. 2000; Figueroa et al. 2003; Figueroa et al. 2007; Dora et al. 2003). The
first observations of such remote effects of localized stimulation were made nearly
90 years ago by Krogh et al. (1922), while more detailed studies of such vascular
conducted responses (VCRs) only started in 1970s (Duling and Berne 1970). The
VCR is believed to play a central role in the local regulation of blood flow within a
tissue. If local metabolism of a tissue changes due to changes in activity, the vessels
of the upstream arteriolar network must change resistance in a coordinated manner
to continuously match perfusion to demand. In this process, the VCR is believed to
be critical by conveying information upstream to more proximally located feeding
arterioles (Bagher and Segal 2011). Vasodilator signals generated in the endothelium
can propagate over significant distances (several millimeters) along the vessel. In this
process, gap junction coupling between the cells of the vascular wall appears to be
crucial (Wit et al. 2000; Figueroa et al. 2003). Together with an apparently high speed
of propagation (more than 20 mm/s Emerson et al. 2002; Stevens et al. 2000; Tsuchiya
and Takei 1990), this points to an electrical nature of the phenomenon.

While the change in vessel diameter can decay with the distance from stimulation
site in many cases (Segal 1991; Emerson et al. 2002), it appears to be nondecay-
ing in other cases implying the involvement of some kind of regenerative process
(Emerson and Segal 2001; Figueroa et al. 2003; Figueroa et al. 2007). However,
since generally endothelial cells are considered to be electrically unexcitable (Nilius
and Droogmans 2001), lacking the spiking characteristics typical for excitable cells,
a regenerative process in the traditional sense with threshold characteristics and an
all-or-none response seems unlikely to underlie nondecaying VCR.

Hypothesized pathways for regenerative propagation of vasodilatory signals remain
controversial due to complex response of the endothelial cell to different stimuli and
due to high variability of endothelial cells depending on the specific vascular bed from
which they originate. Figueroa et al. (2007) suggested a neuron-like mechanism based
on the existence and functionality of voltage-gated sodium channels. This mechanism
implies a calcium rise in EC, as it has been observed in some cases (Zhang et al.
2006). Rivers (1997) suggested that inwardly rectifying potassium channels (Kir )
cause direct spread of hyperpolarization along the endothelium and subsequent spread
of the signal to the smooth muscle cell layer. This hypothesis was later supported by
Crane et al. (2004). On the other hand, a recent review by Hill (2012) suggested that
a true regenerative response may in fact not be needed and that experimental data can
be explained on the basis of a nonlinear relation between the strength of stimulatory
signal and the resulting mechanical response of the SMC.
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232 D. E. Postnov et al.

Taken together, it remains unclear what underlies the frequently observed apparently
nondecaying spread of vasodilation in some vascular beds.

1.1 Previous Modeling Studies of EC Dynamics

A number of modeling studies have focused on spreading vascular responses in order
to estimate conditions that are necessary to sustain decaying or nondecaying electrical
signals along a vascular bed.

Hirst and Neild (1978) applied traditional cable theory modeling a vessel segment
as a continuous wire. A similar approach was used for simulations of the spread
of membrane potential changes in microvascular trees (Crane et al. 2004). Diep et
al. (2005) developed a computational model of spreading vasodilation based on a
simplified representation of both smooth muscle cells and endothelial cells. Kapela
et al. (2010) suggested comprehensive multicellular model of vasoreactivity in rat
mesenteric arterioles and focused on quantitative simulation of the spread of a decaying
response. Hald et al. (2012) extended the latter model to include a more detailed
microanatomy as well as intracellular diffusion and analyzed the spread of changes in
membrane potential following electrical stimulation.

Although recently Hald et al. (2014) showed that under certain conditions the
length constant of a decaying signal may appear infinite, these above models have not
produced evidence of domains in which a regenerative component is present and the
question of the existence of a complete or partially regenerative mechanism remains
open.

1.2 Regenerative Pulse Transmission and Whole-Cell Electric Properties

It is convenient to represent both single cells and the vessel wall in the form of equiv-
alent electric circuits (Diep et al. 2005; Kapela et al. 2010). We use this approach to
illustrate some basic features needed for regenerative pulse transmission. Our approach
is based on the assumption that regenerative (nondecremental) pulse transmission is
possible only when there is some energy supply provided by ECs. Speaking in terms of
equivalent electric circuits, this implies the presence of negative whole-cell resistance
(or conductance), provided by an N -shaped whole-cell current–voltage curve.

In Fig. 1, a small fragment of a two-layer vascular wall is shown schematically.
Here, an endothelial cell (EC) is coupled to two adjacent ECs and with some of the
adjacent smooth muscle cells (SMCs).

The coupling between cells occur via endothelial gap junction with total resistance
Ree between two ECs and via myoendothelial gap junctions with total resistance Rme
between one EC and all the SMCs, to which it is coupled. The EC itself is characterized
by the whole-cell capacitance C and whole-cell resistance R. The latter incorporates
all membrane ionic currents (nonlinear and having their own kinetics) and, thus, can
provide a complex shape of the whole-cell current–voltage curve. For the sake of
simplicity, we neglect the current through myoendothelial gap junctions since the
corresponding resistance Rme is much higher (probably several hundred times) than
the endothelial–endothelial resistance Ree (Diep et al. 2005).
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Conducted Vasoreactivity: the Dynamical Point of View 233

Fig. 1 Schematic representation of coupled cells in the form of equivalent electric circuits. Ree and Rme
represent the resistances of gap junctions between endothelial cells and between endothelial cells and smooth
muscle cells, respectively. C and R denote endothelial whole-cell capacitance and resistance, respectively.
V , V1, and V2 denote the membrane potentials of the adjacent endothelial cells

The membrane potential V of the central EC is governed by the following equation:

C
dV

dt
= (V1 − V )/Ree − V/R − (V − V2)/Ree, (1)

where V1 and V2 are the membrane potentials at the two neighboring endothelial cells.
At the equilibrium, one can write:

V1 + V2 − 2V − Ree

R
V = 0. (2)

Suppose that, at time t = 0, the voltage V1 sharply rises (or drops) to some new value
and the system quickly reaches a new equilibrium, while V2 remains unchanged.
Introducing ΔV1 = V1|t>0 − V1|t<0 and the corresponding change ΔV = V |t>0 −
V |t<0, nondecremental pulse transmission implies that ΔV ≥ ΔV1. This can be
satisfied if (2 + Ree/R) ≤ 1, which immediately gives:

R + Ree ≤ 0. (3)

The only way to satisfy this relation is to have negative R.
The notion of negative (true or differential) resistance is long known paradigm in

physics to describe the processes in devices that supply energy to a signal http://en
.wikibooks.org/wiki/Circuit_Idea/Revealing_the_Mystery_of_Negative_Impedance.
In physically realizable systems, it comes in the form of S-shaped or N-shaped current–
voltage curves (CVC). Note that such CVCs have been known for a long time for living
cells (Fishman and Macey 1969).

1.3 Bistability Hypothesis

If a two-component nonlinear system has an N -shaped CVC, then its dynamical fea-
tures are mainly governed by the number and stability of equilibrium points. Namely,
if there is a single and unstable equilibrium point, then the system shows self-sustained
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oscillations arising in the endothelium. If the equilibrium point is single and stable,
then system can be excitable. If, with an N -shaped CVC and three equilibrium points,
the system does not show excitability or self-sustained behavior, then the only possi-
bility is bistability.

Vascular endothelial cells are known as nonexcitable (Nilius and Droogmans 2001),
and there is no evidence of self-sustained oscillations. However, there is an experi-
mental evidence of N-shaped CVC’s by Voets et al. (1996) and a strong suggestion of
bistability by Jiang et al. (2001) in the form of a bimodal distribution of resting poten-
tials over the population of more than 700 cells. Additionally, Zhang et al. (2006)
demonstrated that endothelial cells can remain in the depolarized state for a long
period until the electrical stimulus is removed, which is not consistent with excitable
dynamics.

All this allows us to hypothesize that bistable dynamics of the endothelial vascular
layer might be an important component for the vasodilatory-conducted response. The
rest of this paper is focused on investigating the consistency and reasonability of
this hypothesis from the dynamical viewpoint. Specifically, we (i) suggest a minimal
model for an EC response suitable for theoretical analysis, (ii) analyze whether selected
model components are capable of producing bistable dynamics, (iii) check whether
the single bistable unit can provide amplification of an external stimulus, and (iv)
investigate under which conditions a discrete array of such units is capable of providing
a nondecremental propagation of pulses of arbitrary duration. All the above points
allow us to suggest a bistability-powered mechanism of conducted vasodilation, which
is not in conflict with available data.

With this approach, we focus on a direct spread of hyperpolarization from the site of
stimulation along the endothelium. According to this scenario, there is no substantial
change in EC calcium concentration at remote sites (i.e., far from the stimulation site)
reached by the hyperpolarization wave. Rather, the dilatatory response is caused by
the direct spread of the hyperpolarization to the smooth muscle cell layer through
myoendothelial gap junctions.

2 The Model

Since the number, roles, and contributions of specific ionic currents in the EC are
a matter of debate, we implement our model using a minimal number of functional
components, each being a simplified and linearized description of some prototypical
ionic current.

The cellular pathways that may contribute to the formation of a conducted response
are discussed in numerous papers (Rivers 1997; Figueroa et al. 2007; Crane et al.
2004; Bagher and Segal 2011; Hill 2012). A considerable part of these mechanisms
require cell depolarization. However, if we focus on conducted hyperpolarization and
assume that all depolarization-activated currents are completely closed at the resting
potential, then quite few dynamical components remain. We include just three currents
in our minimal model, being the voltage-gated hyperpolarizing current, Ivh, unspecific
background current, Ibg, and unspecific gap junction current, Igj (Fig. 2). With this
assumption, the membrane potential v is governed by the following equations:
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Fig. 2 Simplified representation of an endothelial cell, providing the functional model Eqs. (4)–(9). All
pathways and ionic currents that are not active at rest and are omitted in the hyperpolarized state. Igj—gap
junction current, Ivh—voltage-sensitive hyperpolarizing current and Ibg—nonspecific background current

C
dv

dt
= −Ivh − Ibg + Igj, (4)

Ivh = gvhw(v − vvh), (5)

Ibg = gbg(v − vbg), (6)

Igj = ggj

⎛
⎝

n∑
j

v j − vbg

⎞
⎠ , (7)

τvh
dw

dt
= w∞(v) − w, (8)

w∞(v) = 1

2δ
(δ + |v − h| − |v − h + δ|). (9)

C is the whole-cell capacitance, and Ivh, Ibg and Igj are ionic currents. In (7), j counts
the n neighbors of the cell under consideration. In Eq. (5), w is the gating variable
governed by the Eq. (9). A prototype for voltage-gated hyperpolarizing current Ivh is
the inwardly rectifying potassium current (Nilius and Droogmans 2001; Crane et al.
2004). Expression (9) describes the piecewise linear activation function w∞(v) that
is governed by two parameters h and δ. h describes the membrane potential above
which ion channels completely closed and δ describes the membrane potential range
between completely open and completely closed states.

This simplified description implies that the population of ion channels can be:

(i) completely closed if v > h since w∞(v) = 0,
(ii) completely open if v < (h − δ), since w∞(v) = 1, and

(iii) open with a fraction linearly proportional to the membrane potential if (h − δ) <

v < h.

With the selection of parameters in the range of vvh ∈ [−70; −90 mV],
gvh ∈ [0.25 nS; 0.35 nS], h ∈ [−20; −10 mV], and δ ∈ [30; 40 mV], the resulting
current–voltage plot for this current reproduces well the typical features of the inwardly
rectifying potassium channel (Silva et al. 2007; Crane et al. 2003; Yang et al. 2003).
The reversal point will be at the Nernst potential for potassium, the maximal outward
current will be of order of 10 pA and reached in the range of v ∈ [−40; −20 mV], and
the current vanishes at v more positive than [−20;−10 mV]. In Fig. 3, the solid curve
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Fig. 3 Model representation of
the voltage-gated
hyperpolarizing current Ivh as
an inwardly rectifying potassium
current. Solid curve is calculated
from Eqs. (5), (8), and (9)
(h = −10.0 mV, δ = 40.0 mV,
vvh = −70 mV and
gvh = 0.3 nS). Dashed curve is
the data-fitted exponential
approximation from Ref. Silva et
al. (2007) using vK = −70 mV
and gK ir = 0.3 nS

is calculated according Eqs. (5), (8), and (9), while the dashed curve shows data-fitted
exponential approximation used in Silva et al. (2007).

3 Single-Cell Bistability

In this section, we investigate under which conditions the endothelial cell can show
bistable behavior. It can occur if total-cell (tc) current–voltage curve has three zeroes
at v1 < v2 < v3. This leads to bistability in the form of two coexisting stable resting
states at v1 and v3 and provides a segment with negative resistance (conductance) near
the v2.

First, we consider either an isolated cell or a population of cells with equal resting
voltage, i.e., gap junction current vanishes. The total-cell current is as follows:

Itc = Ivh + Ibg. (10)

Second, assuming fast activation of Ivh, according to (8), Spector et al. (1996) one can
write:

Itc = gvh(v − vvh)w∞(v) + gbg(v − vbg), (11)

where w∞(v) is defined by (9) (v omitted hereafter). In order to find points of minimum
and maximum, consider the derivative

dItc

dv
= gvh((v − vvh)

dw∞
dv

+ w∞) + gbg. (12)

Case 1 If v > h, w∞ = 0, and dw∞
dv

= 0 (the channel is completely closed) and

dItc

dv
= gbg. (13)

Thus, at nonzero gbg, there are no extrema at v > h.
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Case 2 If v < h − δ, w∞ = 1, and dw∞
dv

= 0 (the channel is completely open) and

dItc

dv
= gvh + gbg. (14)

Again, since we assume that both gbg and gvh are positive, there is no minimum or
maximum at membrane potential lower than h − δ.

Case 3 If h−δ < v < h, the channel is open with a probability linearly proportional

to the membrane potential and w∞ = (h − v)/δ, and dw∞
dv

= −1/δ. In that case, after

some algebraic calculations, we have a single zero point for dItc
dv

at:

v1 = 1

2
(δ(gbg/gvh) + h + vvh). (15)

This extremum exists if the condition h − δ < v1 < h is maintained; hence,

− 2δ < δgbg/gvh + vvh − h < 0. (16)

Since we are looking for conditions for an N -shaped current–voltage curve, we
expect two zero points for dItc/dv. However, due to piecewise nature of w∞, the
second of these points is at the discontinuity of dw∞/dv. Note that

dItc

dv
|v=h−0 = −gvh(h − vvh)/δ + gbg < 0, i f δ

gbg

gvh
< (h − vvh), (17)

dItc

dv
|v=h+0 = gbg > 0. (18)

If the condition (17) is satisfied, then d Itc/dv changes sign at v2 = h, and hence,
this is the second extremum. The existence of both v1 and v2 means that a plot of
Itc(v) is N -shaped.

The condition for bistability is as follows:

Itc(v1) > 0, Itc(v2) < 0. (19)

After some algebraic calculations, we get:

(
δgbg

gvh
+ h − vvh

)2

> 4
δgbg

gvh
(vbg − vvh) (20)

vbg > h. (21)

To summarize the results of analytical calculations, the model Eqs. (4)–(9) describe
a bistable system that has two coexisting stable resting states if all four conditions (16),
(17), (19), and (20) are satisfied. Note if (16) is true, then (17) is satisfied automatically.

The expressions above can be further simplified if one denotes: α = gbg/gvh,
β = (h − vvh)/δ, γ = (vbg − vvh)/δ. With this, finally, we have:
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(a) (b)

(c)

Fig. 4 (Color figure online) Hyperpolarization-induced bistability. a Whole-cell I − V curves at vbg =
−10 mV, h = −20.0 mV, δ = 30.0 mV, vvh = −80 mV and gvh = 0.3 nS. Curves 1, 2, and 3 correspond
to gbg = 0.1, 0.4, and 0.7 nS, respectively; b Estimated area of bistability on the (vbg, gbg) parameter plane
is shaded gray; c The numerically simulated response on an external hyperpolarizing stimulation (blue) of
increasing amplitude

α < β, (22)

α > β − 2, (23)

(α + β)2 > 4αγ. (24)

where α describes the ratio between conductances of the two currents, while β is the
relative width (i.e., voltage range) of the partially open state of Ivh.

How are strict these conditions? Inspection shows that they are satisfied within
a physiologically reasonable parameter range (in particular, in the range outlined in
the text of the model section). In other words, our model shows bistability if (i) the
reversal voltage for the background current is more positive than the outward segment
of the hyperpolarizing current Ivh and (ii) the conductance of the background current
is within some specified (not narrow) range.

Figure 4 illustrates the above results at the specific choice of parameters: vbg =
−10 mV, h = −20.0 mV, δ = 30.0 mV, vvh = −80 mV, so β = 2, and gvh = 0.3 nS.
The panel (a) illustrates the changes in whole-cell current with increasing gbg. One
can see that at gbg = 0.1 nS [curve 1, all conditions (22)–(24) are satisfied], the Itc(v)

curve is N -shaped and has three zeroes. This is the case we associate with bistability.
At gbg = 0.4 nS [curve 2, (22) and (23) are true, but (24) is not] there is still a segment
with negative slope, but the curve has a single zero point; thus, there is only one resting
state at v = −10 mV. At gbg = 0.7 nS [curve 3, (22) and (24) are not true], there
are no minima or maxima on the total-cell current–voltage curve, and the hyperpo-
larizing current does not considerably affect the behavior caused by the background
current.
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The panel (b) shows the bistability zone on the plane of parameters of the back-
ground current vbg and gbg. The upper limit of this area is determined by Eq. (24),
while the lower limit is given by gbg = 0. One can see that the maximal value of
gbg becomes lower while for large vbg, it still has a considerable range, and thus, the
regime of bistability is one of the main operating regimes of the model.

In order to confirm theoretical predictions, we simulate an external excitation of
a single cell by rectangular pulses of increasing strength. We assume nonzero gap
junction conductance and use some appropriate value for the term

∑n
j v j in (7) during

hyperpolarizing pulses each of 10 ms length, which is sufficient for the model to reach
a new equilibrium state. The panel (c) in Fig. 4 illustrates the results of a numerical
simulation using the same set of parameter values, gbg = 0.1 and ggj = 0.2 nS. v j

periodically takes either the value of the v at the more positive of two resting states,
v j = v = vbg (so the coupling current vanishes), or an increasingly negative value
[−10; −27 mV]. This is seen as blue horizontal segments. The response of the model
is shown as black solid line. One can observe that the first 8 negative pulses cause a
response that is smaller than the stimulus. However, at stimulus value ≈23 mV, the
response amplitude increases drastically and reaches a value more negative than 50
mV. We can relate this behavior to possible regenerative pulse transmission by an array
of endothelial units.

4 Regenerative Pulse Transmission: an Array of Bistable Elements

The bistable features of the single unit discussed in the previous section are cru-
cial for the hypothesized mechanism of regenerative pulse transmission, but they
are not sufficient to provide the expected behavior. An array of bistable units can
behave differently in comparison with the behavior of an individual unit. In this
section, we define conditions for a hyperpolarizing pulse of arbitrary duration con-
ducted along an array of model units (Fig. 5a, b). This means that an array of cou-
pled EC’s should support a propagated transition to a stable hyperpolarized state,
and then, possibly after some recovery, it should equally support a propagated tran-
sition back to the initial resting state. We denote these transitions as well as the cor-
responding spatiotemporal patterns with letters H (hyperpolarized) and R (resting),
respectively.

Similar problems of propagating bistable fronts has been addressed in physics with
respect to spatiotemporal dynamics of reaction–diffusion systems, and the so-called
nonequilibrium Ising–Bloch bifurcation (Coullet et al. 1990; Hagberg and Meron
1994). A vascular bed is best approximated by an array or grid of discrete bistable units
but not by a continuous medium. Thus, our description is related to coupled ordinary
differential equations (ODEs), rather than partial differential equations (PDEs). In
such systems, there is a parameter region where front fails to propagate due to discrete
description of the media (Keener 1987; Laplante and Erneux 1992; Hagberg and Meron
1998). Recently, relevant results were published using bistable FitzHugh–Nagumo
(FHN) model (Müller et al. 2013).

The main findings can be summarized as follows: (i) there is a critical cou-
pling strength that defines a parameter range, where propagation of bistable fronts is
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(a) (b)

(c)

Fig. 5 On propagation of a hyperpolarizing pulse along an array of one-component bistable units. a An
array of bistable elements. b Hyperpolarizing pulse traveling from left to right (from the ( j − 1)-th unit
toward the ( j + 1)-th unit). H and R denote the hyperpolarizing and resting fronts, respectively. c The
schematic current–voltage curve and the equilibrium points for the single bistable unit

supported; (ii) in an array of one-component bistable units1, only one type of transi-
tion (in our notations, H or R) can propagate due to asymmetry of coexisting states;
(iii) in an array of two-component bistable units with symmetric coexisting states, the
propagation of both types of transition is possible. In FHN model, this is due to the
dynamics of the inhibitor (slow variable) that provides an overshoot during transition
of the unit to a new stable state.

Let us explain some of the above results.
Suppose, we have an array of bistable units coupled as shown in Fig. 5a. If the

coupling is weak enough, we can consider interaction only with nearest neighbors.
For j-th unit, one can write:

dv

dt
C = −Itc + ggj(v j−1 + v j+1 − 2v j ). (25)

Assume that C = 1.0. Here, the N-shaped Itc has three equilibrium points: vR at rest,
vH at the hyperpolarized state, and an unstable state, vu, somewhere in between. The
coupling term provides the driving force for switching, depending on the states of the
( j − 1)-th and the ( j + 1)-th units. If all units of the array are in the same state (either
vR or vH), then coupling current vanishes. If, say, the left part of the array, including
the ( j −1)-th unit, is in the vH state, but the right part of array, including the ( j +1)-th
unit is in the resting state vR , then the driving force F is

F = 2ggj(vc − v j ), (26)

where vc = (vR + vH)/2. Note that

– In order to provide an escape from the stable state, F should be strong enough to
drive the unit through the extrema I+ or I−, which means that 2ggj(vc −v+) > I+
or 2ggj(vc − v−) < I−. This relation gives the minimal value for ggj;

1 ”one-component units“ refer to one-component reaction–diffusion equations concerning the concentra-
tion of a single substance.

123



Conducted Vasoreactivity: the Dynamical Point of View 241

Fig. 6 Nullclines and phase portrait for the model Eqs. (5)–(9) at C = 0.1, τw = 0.1, gvh = 0.3,
vvh = −80, gbg = 0.1, vbg = −10, hvh = −20, δvh = 30. Thick solid and dashed curves represent
v−nullcline and w−nullcline, respectively. Thin curves with arrows are the representative phase trajectories.
Filled and open circles denote the stable and saddle equilibrium states, respectively

– At v j = vc, the driving force vanishes, and the behavior of j-th unit depends on the
sign of Itc(vc). In turn, it is determined by the location of vu . If (vu −vH) > (vR −
vu), then vu > vc and j-th unit tends to be the depolarized state. In the opposite
case, vu < vc, the j-th unit tends to the hyperpolarized state. In the completely
symmetric case, F vanishes at vu = vc and the behavior is undetermined.

The above consideration means that the possibility of spatial spreading of a
H -front, for example, is completely determined by parameters of individual model
[Eqs. (4)–(9)]. More importantly, if conditions for switching by a H -front are satisfied,
then, automatically, conditions for switching by a R-front are not. Thus, a sequential
propagation of H and R fronts is not possible, and hence, the propagation of hyper-
polarizing pulses along an array of one-component model units cannot be observed.

In Fig. 6, the model nullclines are shown together with the bunch of the represen-
tative phase trajectories. It is seen that the behavior of the single unit is essentially
one-dimensional. Although the plot shows the case of C = τw (no fast-slow behavior),
the structure of the phase portrait indicates that there will not be significant changes
for the case of C �= τw.

Figure 7 shows nullclines intersection for different vbg and for increasing ggj. The
unit under consideration is assumed to be located between the two other units, one of
which is in the resting state and the other is in the stable hyperpolarized state. It is
clearly seen that strengthening of gap junctional coupling removes the bistable fea-
tures, leaving only one point of intersection of nullcline. This describes the single stable
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(a) (b)

Fig. 7 On the possibility of coupling-induced transition. The changes of v-nullcline position when ggj =
0.0 nS (thick solid line), ggj = 0.05 nS (dash-dotted line), and ggj = 0.1 nS (thin solid line), for two
different vbg a −10 mV and b 20 mV

state (open circle) with activated (a) or inactivated (b) voltage-gated hyperpolarizing
current Ivh.

To summarize, in spite of the bistable features of the individual unit, an array of
gap junction coupled units described by Eqs. (4)–(9) seems to be unable to provide
dynamical patterns associated with regenerative pulse transmission, which implies an
equally possible propagation of both H- and R-fronts. Numerical simulations confirm
the analysis presented above. Successful propagation of H-front was observed at the
set of parameters also used for Fig. 7a, but all attempts to trigger reversal of the system
by an R-front were unsuccessful.

5 Regenerative Pulse Transmission: Extended Model

The results of the previous section show that our model is too minimalistic and lacks
some essential functional components to simulate regenerative pulse transmission. The
qualitative consideration of the mechanisms of propagation of bistable fronts suggests
that we should add some mechanism, providing an adaptation of the bistable unit to
the recently achieved state, thus facilitating the transition back. From a dynamical
point of view, this means the introduction of a slow variable that could re-balance the
system after the transition from one state to another has occured. It could be achieved
by means of:

(i) Slow inactivation of the hyperpolarizing current (a slow decline of gvh);
(ii) Inactivation of the hyperpolarizing current by inclusion some additional w-

independent part into Ivh;
(iii) Slow activation of the background current (slow increase of gbg);
(iv) Activation of the background current by introducing some additional part.

Close inspection reveals that the variants (ii), (iii), and (iv) are essentially equivalent,
since they can be transformed one into another by suitable adjustment of gbg and vbg.
Thus, we can limit our consideration to only two variants of the model extension. The
model equations are as follows:
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(a) (b)

Fig. 8 (Color figure online) a The nullclines and b the “voltage-clamped” total-cell current for the modified
model. a w- and x-nullclines are given in gradient-colored surface, while v-nullcline is shown as a surface
outlined by the set of black lines. b the solid colored surface indicates the zero level, while the surface
outlined by the set of black lines represents the “voltage-clamped” total-cell current

C
dv

dt
= −(1 − kx)Ivh − (1 + mx)Ibg + Igj, (27)

τx
dx

dt
= x∞(v) − x, (28)

x∞(v) = 1

2δ
(δ + |v − h| − |v − h + δ|), (29)

where the new gating variable x with characteristic time τx � τw is introduced. Ivh,
Ibg, and Igj are as described previously by Eqs. (5)–(9). Note that, for the sake of
simplicity, we use the same step-like activation functions for both w∞ and x∞.

Depending on the choice of the newly introduced parameters k and m, we can
simulate both Ibg additional activation (k = 0, m > 0) and Ivh inactivation (k > 0,
m = 0). Figure 8 shows the nullcline surfaces (a) and a 3D plot of total-cell current (b)
for k = 0 and m = 0.4. Since the nullclines for the w and x variables coincide, they
are represented by the same gradient-shaded surface, while the v-nullcline surface is
given by a set of black curves. One can observe that, for x increasing from 0 to 1,
the intersections of nullcline surfaces come close. The plot for the total-cell current
shows a clear reduction of its maximum, thus facilitating the back transition of the
system from the hyperpolarized state (both states as well as transitions between them
are presented by open circles and arrows). All this confirms the proposition that the
extended model should be able to show expected behavior.

6 Simulation Results

In order to confirm the predictions made and to study the model behavior, numerical
simulations are performed on an array of 60 coupled units for different combinations of
control parameters. Note that the set of core model parameters has the same values as
described in Sect. 2, while the extended model parameters k, m, τx , and the duration of
the hyperpolarizing stimulus Δtstim are varied in order to observe different propagation
patterns.
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The simulation results are presented as color-coded diagrams (Fig. 9), where x axis
is time, while the number of units within the array increases along the vertical axis.
The red and blue colors correspond to the resting and hyperpolarized state of the unit,
respectively. The numbers in the maps (a–d) indicate different propagation patterns
shown in the inserts.

Let us describe first what happens in the area labeled (3) in all diagrams. The state
near the bottom line of the diagram (a) and (c) corresponds to the vanishing both k
and m and shows the behavior previously observed in two-component version of the
model. Namely, the H-front of hyperpolarization successfully propagates, while the
R-front triggered stops after Δtstim at second or third unit of the array and does not
propagate any further. Such behavior can be observed up to some critical value of
k = 0.33 or m ≈ 0.33. What is observed at higher values of those parameters depends
on τx describing how slow the adaptation is.

In the area labeled (1), if τx < 4, then the increasing of both k and m blocks the
propagation of the H-front, which stops at some (parameter dependent) distance from
the initial point and even moves back in some cases [top insert in the panel (c)]. This
can be explained by the fact that adaptation does not only facilitate the backward (R)
transition, but also complicates the forward (H) transition, if the adaptation develops
too fast.

The area labeled (2) corresponds to the successful propagation of both H- and R-
fronts. This is a dynamical image of the hypothesized regenerative pulse transmission:
Irrespective of the specific duration of the hyperpolarizing pulse, it is transmitted along
an array of bistable units. Note that, since the propagation speed for the H- and R-
fronts may be not equal, the original duration Δtstim of the hyperpolarizing pulse is
not maintained along the array. In the inserts for the panels (a) and (c), the R-front
moves faster, so the duration of hyperpolarized state decreases while one moves away
from the stimulus point.

A small area labeled (4) shows a specific case when the R-front catches the H-
front and, thus, terminates the propagated hyperpolarization. Note the flat top of the
hyperpolarization ”tongue.“ It indicates that the H-front completely stops before anni-
hilation with R-front. Interestingly, the panels (b) and (d) indicate that close matching
of Δtimp and τx prevents the propagation of R-front, at least for values of k and m
selected for these plots.

The simulation results described above confirm the ideas and propositions of the
extended model, demonstrating the applicability of the hypothesized bistability-based
mechanism as a possible mechanism of conducted vasodilation.

7 Discussion

Throughout our work, we addressed the possible dynamical (rather than physiological)
mechanisms that may underlie the phenomenon of conducted vasodilation. Our study
was inspired by the existence of controversial hypotheses and incomplete knowledge
of specific ionic currents that could contribute to this phenomenon.

We showed that a simple model that incorporates (i) unspecified background current
and (ii) a voltage-gated hyperpolarizing current, representing an inwardly rectifying
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potassium current, is able to reproduce the total-cell current–voltage curves obtained
experimentally (Voets et al. 1996) and to show bistable behavior consistent with exper-
imental observations (Jiang et al. 2001).

Note that for the sake of simplicity, electrical coupling to the SMC layer through
myoendothelial junctions, necessary to cause SMC hyperpolarization and hence
vasodilatation, was not included in the theoretical analysis. We performed, however,
the simulation test if the proposed mechanism was stable under a relatively strong
coupling to the SMC layer. Such simulations showed that myoendothelial coupling
provided no qualitative changes in the propagated wave pattern. We conclude that the
results are valid under a certain loss of current to the SMC layer.

In order to simulate the hyperpolarization-based mechanism of conducted vasodi-
lation (Crane et al. 2004), we arranged the individual cell models in a gap junction
coupled array and tested whether such a system can support the propagation of hyper-
polarizing pulses. We have found, however, that an additional slow adaptation process
is needed in order to support the repolarization wave. With inclusion of such a process,
our model shows the expected behavior.

The model variable that describes slow adaptation process was introduced for
dynamical reasons and needs further physiological justification. Note, however, that
the assumptions we used were rather generic and several EC ionic currents as well
as feedback responses from the connected SMCs can potentially be suitable in this
regard.

As regards time scales, we observed that the propagation speed for both the H- and
the R-fronts is about 50 units per 10 ms. Assuming 40µm working length of each EC,
i.e., the distance between the gap junctions located near the opposite ends of the cell,
we obtain an estimated speed of 20 mm per second, which is consistent with available
experimental data. With this, the slow adaptation should have a characteristic time
around 5–10 ms, which seems to be realistic.

From a dynamical viewpoint, alternative mechanisms, such as repolarization of an
EC by SMC-generated spikes, that provide the capability of the bistable model for
propagation of long pulses, can also be suggested. However, we focused here on the
slow adaptation mechanism since it seems to be the most relevant and could cover
many physiological pathways.

The basic criterion for bistability is an N-shaped current–voltage curve with three
crossings of the voltage axis (please see Fig. 4 as well as review by Bernd and Droog-
mans and references herein Nilius and Droogmans (2001). We focused on the potential
role of an inwardly rectifying potassium channel in providing the endothelial cells
with this particular current–voltage curve. The endothelial cell, however, has numer-
ous other ion channels, pumps, and transporters, and specific combinations of these
may equally well provide the cell with this specific property. Also, bistable features is
unlikely to be universally present in the microcirculation; in many cases, the current–
voltage curve may rather be monotonically increasing leading to a simple decay of the
signal along the endothelium (Behringer et al. 2012; Behringer and Segal 2012).

To initiate a dilatation in the bistable case, an initial hyperpolarization is necessary
to move the system past the unstable fix-point located where the descending part of the
current–voltage curve crosses the voltage axis. What exactly causes this initial small
hyperpolarization is unclear, but it may either be a direct influence on the endothelium
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originating in some form from tissue metabolism and/or this influence may be mediated
through the surrounding smooth muscle cell layer. As the threshold is passed (Fig. 4
lower panel), the signal passes without decay along the vascular wall even if some
current is lost to the SMC layer. The cells at the wave front provide the initiating small
hyperpolarization to their neighbors causing them to switch to the fully hyperpolarized
state and so forth. This naturally raises the question as to how the signal is terminated,
avoiding it from running into and affecting flow inappropriately in tissue regions where
an increase in flow is not needed. To that end, one mechanism may simply be that the
signal terminates at branch points where it meets a larger vessel. The larger endothelial
mass of the larger vessel may act as a current sink to a degree that prevents passage
across the threshold and hence prevents initiation of propagation in the larger vessel.
In contrast, if the signal arrives simultaneously from two downstream vessels, it may
propagate. Alternatively, the signal may terminate by entering into areas where the
endothelium does not show bistable behavior, causing it to decay along the vessel.

Finally, our results showed that a bistability-powered mechanism for regenerative
vasodilatory pulse transmission is self-consistent from dynamical viewpoint. Which
specific currents, besides the explicitly used in the model background and potassium
inwardly rectifying currents, could provide all this? May hyperpolarizing currents
such as calcium-sensitive potassium currents play some role? Is there some kind of
SMC-mediated positive feedback, supporting the bistability? All these questions are
of evident interest for further studies on the topic.
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