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Abstract

Main conclusion In this review, we compare knowl-

edge about the recently discovered strigolactone sig-

naling pathway and the well established gibberellin

signaling pathway to identify gaps of knowledge and

putative research directions in strigolactone biology.

Communication between and inside cells is integral for the

vitality of living organisms. Hormonal signaling cascades

form a large part of this communication and an under-

standing of both their complexity and interactive nature is

only beginning to emerge. In plants, the strigolactone (SL)

signaling pathway is the most recent addition to the clas-

sically acting group of hormones and, although funda-

mental insights have been made, knowledge about the

nature and impact of SL signaling is still cursory. This

narrow understanding is in spite of the fact that SLs

influence a specific spectrum of processes, which includes

shoot branching and root system architecture in response,

partly, to environmental stimuli. This makes these hor-

mones ideal tools for understanding the coordination of

plant growth processes, mechanisms of long-distance

communication and developmental plasticity. Here, we

summarize current knowledge about SL signaling and

employ the well-characterized gibberellin (GA) signaling

pathway as a scaffold to highlight emerging features as

well as gaps in our knowledge in this context. GA signaling

is particularly suitable for this comparison because both

signaling cascades share key features of hormone percep-

tion and of immediate downstream events. Therefore, our

comparative view demonstrates the possible level of

complexity and regulatory interfaces of SL signaling.

Keywords D53/SMXL � Hormonal signaling �
Long-distance communication � SCF complex

Abbrevations

GA Gibberellin

KAR Karrikin

SL Strigolactone

Introduction

SLs have a long research history in the context of inter-

actions between plants and other organisms. They were

identified in 1966 as plant-derived molecules used by

parasitic plants to interact with their hosts (Cook et al.

1966). Further emphasizing their importance for biotic

interactions, the role of SLs in the establishment of sym-

bioses between plants and arbuscular mycorrhizal fungi

was revealed in 2005 (Akiyama et al. 2005). Only in 2008

were SLs recognized as endogenous phytohormones when

their role as decisive hormones regulating plant architec-

ture was uncovered (Gomez-Roldan et al. 2008; Umehara

et al. 2008). Since then, research on SL signaling mecha-

nisms has revealed surprising parallels to other hormone

signaling cascades, with the most similar being mecha-

nisms of GA perception. Due to the instructive nature of

comparative approaches, we relate in this review GA and

SL signaling in order to accentuate emerging similarities

and differences between the two pathways. Due to the

striking parallels between both signaling cascades, we hope

that this approach will be helpful for understanding the

biological role of SL signaling during plant growth. For
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example, the presence of different bioactive GAs or the

parallel effects of GA on transcription and subcellular

localization of proteins demonstrates the complexity of

molecular events that should be considered for a compre-

hensive understanding of a hormonal signaling cascade.

It is important to note, however, that there is no reason

to think that SL signaling is more entangled with GA

signaling than with other hormonal signaling pathways.

Indeed, the interaction between auxin and SL signaling has

a long history of research (Waldie et al. 2014; Brewer et al.

2009, 2015; Domagalska and Leyser 2011). Furthermore,

the concept that nuclear hormone receptors, inducing the

degradation of signaling repressors, extensively discussed

in this review, is not restricted to GA and SL signaling but

also found in jasmonic acid and auxin signaling cascades

(Larrieu and Vernoux 2015). However, for the sake of

conciseness we focus on the GA-SL comparison in order to

guide the potential routes of SL research and demonstrate

gaps in current knowledge. For the same reason, we do not

focus on mechanisms of GA or SL biosynthesis, although

this is an essential level of regulation, as this has been

recently presented in excellent and comprehensive over-

views (Seto and Yamaguchi 2014; Hedden and Thomas

2012).

Similar but different—families of related
molecules

More than 100 different GAs have been isolated from

vascular plants (MacMillan 2001) from which gibberellin

A1 (GA1), GA3, GA4, GA5, GA6 and GA7 are biologically

active. These GAs show different affinities to their

receptors (Ueguchi-Tanaka et al. 2005, 2007; Nakajima

et al. 2006) and their occurrence and abundance varies

between different plant species (MacMillan 2001). For

example, whereas GA1 is the most widespread gibberellin

among species, GA4 is the most abundant and relevant

bioactive GA in Arabidopsis (Eriksson et al. 2006; Talon

et al. 1990). The structural requirements for a bioactive

GA are clearly defined. These diterpenoid acids must

possess a carboxyl group at position C6, a hydroxyl group

at position C3 in b-orientation and a c-lactone ring.

Furthermore, they must not be hydroxylated at position

C2, since hydroxylation at this position is critical for

inactivation of GA in planta (Ueguchi-Tanaka and Mat-

suoka 2010) (Fig. 1). The stability of different GAs is

also important to consider. GA3, for instance, shows a

lower affinity than GA4 to its receptor GIBBERELLIN-

INSENSITIVE DWARF1 (GID1) but a higher bioactivity.

This is presumably due to increased GA3 stability caused

by a double bond at the C2 position (Ueguchi-Tanaka

et al. 2005).

Although identification of SLs is technically very chal-

lenging, around 20 naturally occurring SLs have been

described so far (Zwanenburg and Pospisil 2013; Ueno

et al. 2014). They all share an ABC scaffold consisting of

three carbon rings attached to a butenolide (ring D) by an

enol ether bridge (Fig. 1) (Zwanenburg et al. 2015; Xie and

Yoneyama 2010). The enol ether bridge determines the

bioactivity of SLs, since hydrolytic cleavage between ring

C and D is crucial for SL perception and specificity

(Zwanenburg et al. 2013, 2015; Mangnus and Zwanenburg

1992). The importance of the CD rings becomes obvious

by the finding that an additional methyl group on ring D

can significantly decrease the molecule’s ability to induce

parasitic seed germination (Zwanenburg et al. 2013).

Depending on the stereochemistry of the BC junction, SLs

fall into the strigol and orobanchol classes, which show an

opposing C-ring orientation determining functional speci-

ficity (Zwanenburg et al. 2015; Zhang et al. 2014; Scaffidi

et al. 2014). 5-Deoxystrigol (5DS) and 4-deoxyorobanchol

(4DS) are most likely the parent molecules that are con-

verted into both classes, respectively, with overlapping but

not identical biological activities (Zhang et al. 2014;

Zwanenburg et al. 2015; Scaffidi et al. 2014). For instance,

Fig. 1 Similarities between SL and GA perception. a Molecular

structures of SL and GA are exemplified by (?)-5-Deoxystrigol and

GA3, respectively. The ABC scaffold of SL is connected to ring D by

an enol ether bridge (indicated in orange). b A schematic comparison

between SL- and GA-signaling is shown. Unlike GID1, the a/b-
hydrolase D14 preserved its catalytic activity. Bound SL is

hydrolyzed through a nucleophilic attack by Ser147 (visualized in

orange) at the enol ether bridge. Marvin was used for drawing,

displaying and characterizing chemical structures, substructures and

reactions, Marvin Beans (15.9.28.0), 2015, ChemAxon (http://www.

chemaxon.com). Abbreviations, see main text

1340 Planta (2016) 243:1339–1350

123

http://www.chemaxon.com
http://www.chemaxon.com


members of the strigol class most effectively stimulate

germination of the parasitic weed Striga hermonthica,

whereas orobanchol derivatives show the highest activity

in stimulating mycorrhizal hyphal branching (Nomura et al.

2013; Akiyama et al. 2010). Beside these canonical SLs, a

major role of non-canonical SLs, like methyl carlactonate,

has been discussed especially for Arabidopsis (Abe et al.

2014; Zhang et al. 2014).

It is important to note that, although the bioactivity of

individual SLs and in vitro receptor binding was shown in

some cases (see below), the identification of the active

forms in planta is a challenging enterprise. This is, in part,

because plants may quickly convert applied compounds. A

deeper understanding of the SL biosynthetic pathway and

analysis of respective mutants will be essential to clarify

which features are crucial for bio-availability of naturally

occurring SLs (Seto and Yamaguchi 2014). For example, in

addition to 2b-hydroxylation, bioactive GAs are also

inactivated by methylation (Varbanova et al. 2007) and

epoxidation of the C-16,17 double bond (Zhu et al. 2006).

GA-methyl transferase activity mediated by GIBBER-

ELLIN METHYLTRANSFERASE1 (GAMT1) and

GAMT2 appears to be restricted to developing seeds

(Varbanova et al. 2007; Nir et al. 2014) whereas 16,17-

epoxidation has only been demonstrated in rice (Zhu et al.

2006). In the case of SLs it has not been determined if there

are essential regulatory modulations of bioactive SL

molecules.

Due to the high variability and specificity within the SL

family, artificially produced SL analogs of simplified

structure have to be used cautiously (Conn et al. 2015;

Zwanenburg et al. 2015). Plants do not produce these

analogs, which may, therefore, act very differently from

endogenous SLs. For instance, the synthetic and broadly

used SL analog GR24 consists of a racemic mixture of

natural strigol-like GR245DS as well as its unnatural

enantiomer GR24ent-5DS (Scaffidi et al. 2014; Conn et al.

2015). The natural GR245DS is most active in repressing

SL-dependent shoot branching, whereas GR24ent-5DS

preferentially activates the karrikin (KAR)-dependent

pathway inducing germination after wildfires (Conn et al.

2015; Umehara et al. 2015; Waters et al. 2014) and

important for recruiting arbuscular mycorrhizal fungi in

rice (Gutjahr et al. 2015). Therefore, the effects observed

after GR24 application are not necessarily natural SL

responses.

It has not been reported that different bioactive GAs

trigger different responses (Nakajima et al. 2006). All

GID1 family members display a similar profile of binding

affinities (Nakajima et al. 2006). This is interesting, as

triggering specific subsets of downstream responses by

different GAs could provide an advantage by providing

regulatory flexibility. However, GAs are not only produced

by plants but also by fungal pathogens to manipulate plant

growth (Bömke and Tudzynski 2009). Prevention of

sophisticated growth manipulation by pathogens may be a

reason for this lack of signaling complexity among GA

molecules. Although KAR receptors may sense fungus-

derived signals (see below) (Gutjahr et al. 2015), there is

no indication that non-plant pathogens produce SLs. The

more complex set of SL-related molecules may be impor-

tant for the recruitment of host- and/or growth stage-

specific sets of symbiotic fungi (Gutjahr 2014) on the one

side and the avoidance of parasitic plants (Cardoso et al.

2011) on the other side. Therefore, a spectrum of different

SLs with slightly different activity is likely to be under

positive selection (Akiyama et al. 2010; Nomura et al.

2013). The presence of canonical SLs in rice, which hosts

mycorrhizal fungi, and their apparent absence in the non-

host plant Arabidopsis (Abe et al. 2014) may be an

example for species-specific adaptation.

The importance of hormone distribution

GAs move over long distances (Ragni et al. 2011; Proeb-

sting et al. 1992) and recently it was suggested that GA12,

the precursor of bioactive GAs, is the main form traveling

along the vasculature (Regnault et al. 2015). Importantly,

the finding that fluorescently labelled and bioactive GAs

accumulate particularly in the root endodermis suggests

that differential accumulation of GAs in plants occurs

(Shani et al. 2013). The endodermis is also the most potent

tissue for influencing GA-dependent root elongation

(Ubeda-Tomas et al. 2008) and a site for GA production

(Zhang et al. 2011). Overall, the fundamental role of spatial

regulation of hormone levels and signaling is an emerging

picture in many contexts (Savaldi-Goldstein et al. 2007;

Iyer-Pascuzzi et al. 2011) and is especially established for

auxins (Adamowski and Friml 2015).

The spatial distribution of SLs has not been revealed

with high resolution; but novel fluorescent and bioactive

SL analogs may provide an angle for filling this gap of

knowledge (Prandi et al. 2013; Rasmussen et al. 2013b;

Artuso et al. 2015; Fridlender et al. 2015). The expression

of SL biosynthesis genes is usually highest in roots and

partially associated with vascular tissues (Booker et al.

2005; Kohlen et al. 2012). Indeed, SL-like bioactivity has

been found in the Arabidopsis xylem sap (Kohlen et al.

2011). Although an important role of canonical SLs in

Arabidopsis was questioned in later studies (Abe et al.

2014), orobanchol was identified directly in the tomato and

Arabidopsis xylem sap, pointing out a possibility for long-

distance movement (Kohlen et al. 2011, 2012). In any

case, movement of SLs—or their precursors—is able to

completely suppress effects of SL-deficiency in grafting
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experiments with a preferred directionality for traveling

from roots to shoots (Foo and Davies 2011; Turnbull et al.

2002; Booker et al. 2005). The low pH usually found in the

xylem sap (Jia and Davies 2007) would support SL sta-

bility (Zwanenburg et al. 2015). Candidates for moving

long distances are carlactonoic acid and orobanchol, the

suggested products of MORE AXILLARY GROWTH1

(MAX1)-like enzymes, which catalyze the last step in the

SL biosynthetic chain (Abe et al. 2014; Zhang et al. 2014;

Booker et al. 2005). Consequently, the diverse regulatory

roles of SLs, such as inhibiting shoot branching, promoting

cambium activity and regulating root growth, partly in

response to environmental cues (Umehara et al. 2010),

would provide a means for coordinating plant growth

processes in a systemic manner (Agustı́ et al. 2011;

Gomez-Roldan et al. 2008; Rasmussen et al. 2013a;

Umehara et al. 2010). However, the relevance of hormone

movement under natural conditions is difficult to demon-

strate without a possibility to manipulate this movement in

a very specific manner. The lack of knowledge on how GA

travels through the plant has hampered research in this

direction so far. The discovery that the ABC transporter

PLEIOTROPIC DRUG RESISTANCE1 (PDR1) from

petunia (Petunia axillaris) is involved in SL secretion into

the rhizosphere (Kretzschmar et al. 2012) and localizes

polarly in plasma membranes (Sasse et al. 2015) may

provide a novel avenue in this context. Thus, in addition to

a passive long-distance movement, mechanisms for estab-

lishing local SL maxima may exist, which are relevant for

local and cell type-specific responses.

The conversion of enzymes into receptors

The most striking analogy between GA and SL signaling is

the mechanism of perception. The nuclear-localized and

soluble protein GID1 is a catalytically inactive a/b-hy-
drolase identified in rice, which binds bioactive GAs

(Ueguchi-Tanaka et al. 2005; Shimada et al. 2008). In

comparison to rice, which possesses only one GID1 gene,

there are three redundant GID1 genes (GID1a,-b and

-c) in Arabidopsis (Nakajima et al. 2006; Griffiths et al.

2006). Single mutants show only mild phenotypic alter-

ations, but the gid1a/b/c triple mutant displays an extre-

mely dwarfed growth habit and complete GA insensitivity

(Griffiths et al. 2006; Ueguchi-Tanaka et al. 2005). This

indicates that these proteins are the only GA receptors. The

crystal structure of the GID1 receptor has helped to

understand its function and the structural requirements that

define a bioactive GA (Shimada et al. 2008). GA binding

triggers a conformational change in the GID1 protein. This

change promotes direct interaction of the GA-GID1 com-

plex with DELLA proteins acting as transcriptional

regulators (Harberd et al. 2009; Sun 2011). Formation of

the GA-GID-DELLA ternary complex, in turn, recruits the

SCFSLY1 (SKP1, CULLIN, F-box and RBX1 RING-do-

main) ubiquitin ligase (E3) complex via the F-box protein

SLEEPY1 (SLY1), which provides substrate specificity to

the complex (Dill et al. 2004) (Fig. 1).

As described below, physical contact of DELLA pro-

teins with the SCFSLY1 complex results in their ubiquiti-

nation and degradation by the 26S proteasome (Harberd

et al. 2009; Dill et al. 2004). Removal of the nuclear

DELLA proteins results in massive changes in gene

expression and, among other things, culminates in cell

elongation (Harberd et al. 2009). In this respect, it is

remarkable that sly1 mutants (or gid2 mutants in rice) show

much milder phenotypic alterations than gid1a/b/c mutants

do, although they accumulate comparable or even higher

levels of DELLAs. Intriguingly, overexpression of the

GID1 receptor suppresses these alterations (Ariizumi et al.

2008; Ueguchi-Tanaka et al. 2008). Thus, GID1 proteins

may also play a GA-independent role in modulating

DELLA activity, by sequestering these repressors into an

inactive complex (Ariizumi et al. 2008; Ueguchi-Tanaka

et al. 2008; Hauvermale et al. 2014).

In analogy to GA perception, substantial evidence has

been provided that SLs bind to the a/b hydrolase

DWARF14/DECREASED IN APICAL DOMINANCE2

(D14/DAD2) (Kagiyama et al. 2013; Zhou et al. 2013;

Hamiaux et al. 2012). The binding pocket of D14/DAD2

contains the catalytic tirade Ser147, Asp268 and His297,

which hydrolyzes the enol ether bridge between the C and

D ring through a nucleophilic attack by Ser147 (Fig. 1)

(Kagiyama et al. 2013; Zhao et al. 2015). Any similar

activity has been lost in GID1 due to an amino acid sub-

stitution that replaced His by Val (Ueguchi-Tanaka et al.

2005). Because reaction products of D14/DAD2 do not

display any biological activity, the decisive step in signal

transduction is the conformational change of the D14/

DAD2 protein and not the generation of signaling mole-

cules (Hamiaux et al. 2012). D14/DAD2 is homologous to

the KAR receptor KARRIKIN INSENSITIVE2 (KAI2).

However, structure determination and binding analyses

revealed that only D14/DAD2 binds SLs (Guo et al. 2013;

Conn et al. 2015; Nakamura et al. 2013; Hamiaux et al.

2012; Toh et al. 2015; Zhao et al. 2015). In fact, it seems as

if diversification of SL receptor-like proteins was crucial

for the establishment of these distinct signaling cascades

(Conn et al. 2015; Waters et al. 2012), a situation not found

in the case of GID1. In addition to mediating KAR-de-

pendent seed germination in some species, still unknown

endogenous KAI2-binding molecules must exist because

kai2 mutants display also developmental defects (Nelson

et al. 2011; Waters et al. 2012). Interestingly, the KAI2

ortholog D14L in rice is essential for the recognition of
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arbuscular mycorrhizal fungi and the initiation of symbi-

otic interactions (Gutjahr et al. 2015). Thus, SL/KAR-re-

lated molecules do not only act as attractants during biotic

interactions but their endogenous perception machinery is

also important for recruiting symbiotic organisms. This

argues for an intensive SL/KAR-dependent cross talk

bridging species boundaries. The existence of a third D14/

DAD2-like protein in Arabidopsis designated as D14-

LIKE2 (DLK2), which does not contribute to SL or KAR

responsiveness (Waters et al. 2012), suggests an even more

complex situation on this level.

Similar to GID1, D14/DAD2 changes conformation

upon SL binding which facilitates the interaction with the

F-box protein and SCF complex component DWARF3

(D3). D3 is the rice ortholog to MORE AXILLARY

GROWTH2 (MAX2) from Arabidopsis which is mainly

expressed in vascular tissues (Chevalier et al. 2014; de

Saint et al. 2013a, b; Zhou et al. 2013; Jiang et al. 2013;

Stirnberg et al. 2007). Binding of D3/MAX2 to D14/DAD2

occurs close to its lid domain (Zhao et al. 2015) (Fig. 1). In

comparison to SLY1, which can be partly replaced by the

F-box protein SNEEZY (SNE) (Ariizumi et al. 2011), D3/

MAX2 is the only F-box protein known to act in SL sig-

naling. In fact, D3/MAX2 plays a key role in both the D14/

DAD2 and KAI2-dependent signaling pathways (Waters

et al. 2012). Interestingly, an exclusive role of D3/MAX2

in SL/KAR-signaling is questioned by the observation that

max2 mutants respond to higher GR24 concentrations

(Ruyter-Spira et al. 2011; Agustı́ et al. 2011) for which the

basis still has to be determined. As explained in more detail

below, the SCFD3/MAX2 E3 ubiquitin ligase complex exe-

cutes SL-dependent ubiquitination of target proteins, such

as DWARF53 (D53) in rice (Jiang et al. 2013). Just as the

ubiquitination machinery of GA signaling and its DELLA

targets, D3/MAX2, D14 and D53 are nuclear localized

(Jiang et al. 2013; Stirnberg et al. 2007; Nakamura et al.

2013), thereby providing a potential link to a direct regu-

lation of gene transcription.

Of note, GA and SL signaling pathways have been

suggested to directly interact with each other. Hydrolyza-

tion of SL/GR24 enables D14 to bind not only to D53-like

proteins but also SLENDER1 (SLR1), the only DELLA

protein found in rice (Nakamura et al. 2013). Thereby, SLs

may contribute to GA signaling and suppress bud out-

growth in rice (Nakamura et al. 2013). However, D14-

SLR1 binding was only shown indirectly using heterolo-

gous expression systems, and there is no physiological or

genetic evidence that both pathways intertwine function-

ally. Instead, there are indications favoring an independent

action. SL signaling promotes internode elongation in peas

by increasing cell number, not by stimulating cell elonga-

tion as primarily done by GA (de Saint et al. 2013b).

Furthermore, GA, but not GR24, application destabilizes

DELLA proteins, GA responsiveness is not affected in SL

signaling mutants and their dwarfism is not correlated with

reduced GA levels (de Saint et al. 2013b). Further sup-

porting an independent action, SL signaling acts antago-

nistically rather than in concert with GA signaling in the

regulation of shoot branching in the woody plant Jatropha

curcas (Ni et al. 2015).

Direct targets of signaling—the reemerging motif
of repressing repressors

As mentioned, binding of GA or SLs to their respective

receptor complexes leads to the 26S proteasome-dependent

degradation of two distinct groups of signaling repressors:

DELLA proteins in the case of GA and D53-like proteins

in the case of SLs (Jiang et al. 2013; Zhou et al. 2013).

DELLA proteins belong to the larger family of GRAS

transcriptional regulators, which seem to have diversified

to allow the integration of GA signaling into transcriptional

regulation. DELLA proteins are named after their N-ter-

minally conserved amino acid sequence (D–E–L–L–A)

essential for binding to GID1 (Schwechheimer and Willige

2009; Wang and Deng 2011). In Arabidopsis, the GRAS

proteins GA-INSENSITIVE (GAI), REPRESSOR OF

GA1-3 (RGA), RGA-LIKE1 (RGL1), RGL2 and RGL3

carry such a domain (Dill et al. 2004). Although partially

redundant, the five DELLA proteins display a certain

functional specialization, such as the regulation of germi-

nation, stem elongation, leaf expansion, apical dominance

or floral development (Dill et al. 2004; Wang and Deng

2011). While this specialization appears to result rather

from their distinct expression patterns than from differ-

ences in protein properties (Gallego-Bartolome et al.

2010), there is an indication that there are differences in

GA-induced degradation kinetics among the DELLA pro-

teins (Wang et al. 2009) although more accurate studies are

required to confirm these differences. Interestingly, in

contrast to SLY1 which targets all DELLAs equally, SNE

preferentially targets RGA and GAI, thus providing the

possibility for a differential regulation of DELLA protein

abundance on the level of the GA perception machinery

(Ariizumi et al. 2011).

The reasonable assumption that SL signaling depends on

the proteolysis of a set of repressor proteins was confirmed

by the seminal identification of the D53 protein in rice

which is nuclear localized and shows weak similarities to

Class 1 Hsp100/ClpB proteins (Jiang et al. 2013; Zhou

et al. 2013). Reminiscent of the GA-effect on DELLA

proteins, D53 interacts with both D3 and D14 in an SL-

dependent manner and is subsequently ubiquitinated and

degraded (Jiang et al. 2013; Zhou et al. 2013). The d53 rice

mutant carries a dominant-negative allele producing a
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protein with a deletion of five amino acids (GKTGI) and an

amino acid substitution that changes a positively charged

Arg into a Thr (Fig. 2). This alteration results in GR24-

insensitivity and a dwarfed and bushy phenotype indicative

of reduced SL signaling (Jiang et al. 2013; Zhou et al.

2013). Although both D53 and the mutated d53 protein are

able to interact with D14, only D53 undergoes SL-depen-

dent proteolysis (Jiang et al. 2013). This indicates that,

unlike the DELLA motif, the RGKTGI sequence is crucial

for the D14–D3-complex dependent ubiquitination but not

for the interaction with the SL receptor complex. In fact,

the part of D53-like proteins that interacts with the D14–

D3 complex is still to be determined.

Consistent with the idea that the SL signaling mecha-

nism is conserved across species boundaries, the D53

homologue SUPPRESSOR OF MAX2 1 (SMAX1) was

identified in Arabidopsis in an elegant forward genetic

screen for suppressors of effects of impaired SL/KAR

signaling (Stanga et al. 2013). SMAX1 defined the small

gene family of SMAX1-LIKE (SMXL) proteins consisting

of eight members in Arabidopsis (Fig. 2). Similar to the

DELLA proteins, differences in specificity and function

have been proposed for SMXL family members (Stanga

et al. 2013). The smax1 max2 mutant suppresses hypocotyl

and germination defects found in max2 mutants, but not the

typical increase in shoot branching, which is primarily

associated with SL-deficiency (Stanga et al. 2013).

Because SMAX1 and SMXL2, the two members of the D53/

SMXL sub-clade 1, are sufficient for regulating all KAR-

dependent responses, a functional separation of the D53/

SMXL family into KAR and SL-signaling factors is likely

(Stanga et al. 2013, 2016; Waters et al. 2014). Consistent

with this idea, triple mutants lacking the activity of the

clade 3-family members, SMXL6, SMXL7 and SMXL8,

fully suppress all SL-related growth alterations caused by

MAX2-deficiency (Wang et al. 2015; Soundappan et al.

2015). As with D53 in rice, the nuclear-localized SMXL6,

SMXL7 and SMXL8 proteins are ubiquitinated and

degraded upon the addition of GR24. Likewise, they

interact with D3/MAX2 and D14 proteins (Wang et al.

2015; Soundappan et al. 2015). Interestingly, artificial

miRNAs (amiRNAs) targeting SMXL6, SMXL7 and

SMXL8 transcripts suppressed the max2-specific increase in

shoot branching but not amiRNAs targeting the sub-clade 2

members SMXL4 and SMXL5 (Soundappan et al. 2015).

Although the third sub-clade member, SMXL3, was not

repressed in smxl45-ami max2 plants, these results are in

agreement with the idea that members of clade 3 mediate

SL signaling while other SMXL proteins fulfill different

functions (Wang et al. 2015; Soundappan et al. 2015).

Supporting this assumption, the RGKTGI motif identi-

fied to be important for SL/KAR-dependent degradation

(Jiang et al. 2013; Zhou et al. 2013; Soundappan et al.

2015) is not conserved in SMXL proteins belonging to

clade 2 (Fig. 2). This opens up the possibility that members

of this clade are SL/KAR-independent reminiscent to the

situation in the GRAS family from which only a subset is

GA-dependent. However, expression patterns of different

family members are very diverse (Stanga et al. 2013;

Soundappan et al. 2015) making it possible that, when

compared to the DELLAs, the emerging differences in

function are simply due to different sites of action. Looking

again at GA signaling, posttranslational modification is

important for DELLA activity. O-GlcNAcylation catalyzed

by the GlcNAc transferase SPINDLY (SPY) promotes

DELLA activity (Silverstone et al. 2007). Moreover, stress-

dependent SUMOylation of DELLAs allows stable binding

to GID1 independently from GA, resulting in reduced

degradation of non-SUMOylated DELLAs and, therefore,

decreased GA-sensitivity (Conti et al. 2014). Thus, pres-

ence or absence of SMXL proteins may not be the only

critical aspect for determining the level of SL signaling in

particular contexts.

Fig. 2 Comparison of D53/SMXL family members. a A maximum

likelihood phylogenic tree based on an amino acid sequence

alignment of the Arabidopsis SMXL proteins. The scale bar indicates

a branch length with 0.5 amino acid substitutions per site. The three

putative sub-clades are emphasized by blue brackets. CLC Main

Workbench 7.6.1 (CLC Bio Qiagen, Denmark). b Shown is the motif

important for D3-dependent ubiquitination of D53 from rice identified

previously (Jiang et al. 2013; Zhou et al. 2013). Aligned are the eight

SMXL family members from Arabidopsis, the SMXL rice homolog

D53 (OsD53) and the mutated d53 protein in which this motif is lost

(indicated by a red bracket). Note that the RGKTGI motif is not

present in members of sub-clade 2. CLC Main Workbench 7.6.1

(CLC Bio Qiagen, Denmark)
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The complexity of downstream processes

DELLAs, similarly to D53/SMXL proteins, do not contain

a canonical DNA binding domain. However, DELLAs

interact with several groups of transcription factors,

thereby, preventing their DNA binding (Xu et al. 2014).

Famous examples are the PHYTOCHROME INTER-

ACTING FACTORS (PIFs). GA-dependent DELLA

degradation releases these basic helix-loop-helix (bHLH)

transcription factors and induces the transcription of genes

which are conversely regulated by light through phy-

tochrome-dependent PIF degradation (Huq and Quail 2002;

Khanna et al. 2004; de Lucas et al. 2008; Feng et al. 2008).

Thus, GA- and light signaling converge on the level of PIF

transcription factors, nicely demonstrating how opposing

stimuli are integrated on the molecular level. Likewise,

DELLAs stimulate jasmonic acid (JA) signaling by titrat-

ing away JA ZIM-domain (JAZ) proteins acting as JA

signaling repressors (Hou et al. 2010) and dampen brassi-

nosteroid (BR) signaling by binding to the BRASSINA-

ZOLE-RESISTANT1 (BZR1) transcription factor

important for BR-dependent gene activation (Gallego-

Bartolome et al. 2012; Bai et al. 2012). These findings

reveal an astonishing broadness of direct interactive con-

nections between different hormone-dependent transcrip-

tional regulators and underline the necessity for integrative

approaches to understand downstream responses.

In addition to interfering with the activity of other

transcription factors, evidence for a direct stimulation of

transcription has been documented, for example for SLR1

from rice (Hirano et al. 2012). The mystery of how DEL-

LAs interact with DNA in this context has been elucidated

recently by the identification of the DNA-binding INDE-

TERMINATE DOMAIN (IDD) family proteins, which

serve as transcriptional scaffolds in Arabidopsis (Yoshida

et al. 2014). This study shows that IDD proteins are

important for GA signaling and bind to both, the promoter

of the SCARECROW-LIKE3 (SCL3) gene and to the RGA

protein (Yoshida et al. 2014).

Beyond the direct or indirect regulation of transcription,

DELLAs also titrate away proteins that move from the

nucleus to the cytoplasm upon DELLA degradation to

execute their function. In particular, the prefoldin complex

(PFD), a co-chaperone required for tubulin folding,

translocates after GA-induced DELLA degradation and

increases the amount of active tubulin subunits promoting

cell expansion (Locascio et al. 2013). Thus, DELLAs act as

central hubs for executing GA signaling and integrating

various signaling pathways on multiple cellular levels.

The molecular role of D53/SMXL proteins is still

obscure. They are large (around 1000 amino acids) pro-

viding plenty of opportunities for interactions with other

molecules. Indeed, D53/SMXL proteins carry a putative

ethylene-responsive element binding factor-associated

amphiphilic repression (EAR) domain that can interact

with TOPLESS (TPL) (Jiang et al. 2013; Soundappan et al.

2015; Wang et al. 2015). TLP and TLP- RELATED (TRP)

proteins are well studied repressors of transcription in

plants and were found to specifically interact with tran-

scription factors to regulate many growth processes (Cau-

sier et al. 2012). D53, SMAX1, SMXL6, SMXL7 and

SMXL8 interact with TLP proteins in heterologous

expression systems and in vitro (Jiang et al. 2013;

Soundappan et al. 2015; Wang et al. 2015). Although the

functional relevance of these interactions remains to be

tested, this connection may help identifying downstream

targets of SL-signaling and mechanisms of SL-dependent

gene regulation.

Interestingly, SL signaling has been proposed to act in

parallel to light perception by preventing the E3 ubiquitin-

ligase CONSTITUTIVE PHOTOMORPHOGENIC1

(COP1) from entering the nucleus and degrading the light-

responsive protein LONG HYPOCOTYL5 (HY5) (Tsu-

chiya et al. 2010; Jia et al. 2014). HY5 is a bZIP tran-

scription factor antagonizing PIF activity by competing for

the same promoter binding sites (Toledo-Ortiz et al. 2014).

One of its best-known functions is the inhibition of hypo-

cotyl elongation, which is used as a common readout to

determine light- and/or SL/KAR-sensitivity in Arabidopsis

(Jia et al. 2014; Scaffidi et al. 2013). GR24 suppresses

hypocotyl elongation in a light- and MAX2-dependent

manner (Jia et al. 2014). Moreover, hy5 and max2 mutants

display an additive effect regarding GR24-insensitivity

(Shen et al. 2012). Thus, although the exact molecular

mechanism is so far unknown and highly debated, it has

been hypothesized that MAX2 regulates photomorphogen-

esis (Jia et al. 2014; Waters and Smith 2013; Tsuchiya et al.

2010; Shen et al. 2012). However, as mentioned above,

GR24 effects and a role of MAX2 are not necessarily

indicative of a role of SL signaling in mediating the effect

of light, as both are not specific for this pathway. Indeed,

SL-deficient mutants usually do not display canonical

light-related phenotypic alterations in a broad spectrum of

species including Arabidopsis and pea (Urquhart et al.

2015; Shen et al. 2012). Furthermore, although hy5 and

photoreceptor mutants are hyposensitive against GR24 and

KAR treatments with respect to the repression of hypocotyl

elongation (Jia et al. 2014; Waters and Smith 2013),

molecular responses are not affected (Waters and Smith

2013) suggesting that SL-signaling, as such, is not part of

the classic light signaling network.

Apart from being secreted by plant roots and their role

in biotic interactions (Xie and Yoneyama 2010), SLs are

best known as branching inhibitors (Brewer et al. 2009;
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Gomez-Roldan et al. 2008). In this case, a negative effect

on polar auxin transport by reducing the amount of PIN-

FORMED (PIN) auxin exporters in the plasma membrane

has been demonstrated (Bennett et al. 2006; Shinohara

et al. 2013). Computational modeling supports the idea that

limiting auxin transport capacities is a crucial function of

SLs in branching control. In this context, SLs enhance

competition of branches for auxin transport capacities

rather than acting as constitutive inhibitors (Crawford et al.

2010; Shinohara et al. 2013; Prusinkiewicz et al. 2009). In

addition, local transcriptional activation of genes influ-

encing branching, such as the TCP transcription factor

BRANCHED1 (BRC1), has been described (Braun et al.

2012; Dun et al. 2012). Although the two roles of SL

signaling in the regulation of branching has been discussed

controversially (Brewer et al. 2015; Waldie et al. 2014), the

multitude of direct targets of GA signaling, their parallel

mode of action and spatial differences in the signaling

process, provides a glimpse of the possible complexity and

argues for an integration of different approaches.

Conclusion

Due to recent fundamental breakthroughs in SL biology

research, we expect the unfolding of another complex

signaling network in plants soon. In particular, the identi-

fication of the D53/SMXL protein family as repressors of

SL signaling and direct targets of SL-dependent proteolysis

opens up novel avenues to core events in the signaling

cascade. Their characterization will be tremendously

helpful for integrating the SL pathway into known regu-

latory networks and for understanding primary effects of

SL signaling. Comparisons to other signaling cascades, like

GA signaling, are certainly helpful as a first guideline in

this regard. Such a comparison demonstrates the degree of

complexity possible on the level of transport, perception,

and targeted processes and emphasizes experimental pit-

falls to be taken into consideration. For example, it will be

essential to decipher the roles of the different SLs in planta

and unwrap their distinct adaptive values. The spatio-

temporal dynamics of SL signaling is another interesting

aspect for which hardly any information is available. Do all

cells have the capacity to sense SLs or is this mainly

restricted to vascular tissues? Does sensitivity change over

time or in different environments? The identification of

events downstream of D53/SMXL proteolysis will cer-

tainly provide important insights and tools for addressing

these questions. The dissimilarity of D53/SMXL proteins

to any other group of known developmental regulators

suggests the existence of unique molecular mechanisms

and argues for surprising findings in the future.
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