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Abstract: Mode II fracture toughness (Kj;.) of fiber reinforced concrete (FRC) has been widely investigated under various
patterns of test specimen geometries. Most of these studies were focused on single type fiber reinforced concrete. There is a lack in
such studies for hybrid fiber reinforced concrete. In the current study, an experimental investigation of evaluating mode II fracture
toughness (Kj;.) of hybrid fiber embedded in high strength concrete matrix has been reported. Three different types of fibers;
namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns (S/G), (S/PP), (G/PP),
(S/G/PP) with constant cumulative volume fraction (V) of 1.5 %. The concrete matrix properties were kept the same for all hybrid
FRC patterns. In an attempt to estimate a fairly accepted value of fracture toughness Kj;., four testing geometries and loading types
are employed in this investigation. Three different ratios of notch depth to specimen width (a/w) 0.3, 0.4, and 0.5 were imple-
mented in this study. Mode II fracture toughness of concrete K. was found to decrease with the increment of a/w ratio for all
concretes and test geometries. Mode II fracture toughness K. was sensitive to the hybridization patterns of fiber. The (S/PP)
hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode
I fracture toughness (K.). The four point shear test set up reflected the lowest values of mode II fracture toughness Kj;. of
concrete. The non damage defect concept proved that, double edge notch prism test setup is the most reliable test to measure pure

mode II of concrete.

Keywords: fiber reinforced concrete, hybrid fiber, mode II fracture toughness.

1. Introduction

Almost all FRCs used today commercially involve the use
of a single fiber type. The decision to mix two fibers may be
based on the properties that they may individually provide or
simply based on economics (ACI committee 544 2011).
Clearly, a given type of fiber can only be effective in a
limited range of crack opening and deflection. The benefits
of combining organic and inorganic fibers to achieve supe-
rior tensile strength and fracture toughness were recognized
nearly 40 years ago by Walton and Majumdar (1975). After
a long period of relative inactivity there appears to be a
second wave of interest in hybrid fiber composites and
efforts are underway to develop the science and rationale
behind fiber hybridization.

In well-designed hybrid composites, there is a positive
interaction between the fibers and the resulting hybrid
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performance exceeds the sum of individual fiber perfor-
mances (Bentur and Mindess 1990; Xu et al. 1998). This
phenomenon is often termed as “synergy”. This might be
due to any of the following mechanisms.

11 Hybrids Based on Fiber Constitutive
Response

One type of fiber is stronger, stiffer and provides reason-
able first crack strength and ultimate strength, while the
second type of fiber is relatively flexible and leads to
improved toughness and strain capacity in the post-crack
zone.

1.2 Hybrids Based on Fiber Dimensions

One type of fiber is smaller, so that it bridges micro-cracks
controlling their growth and delays coalescence. This leads
to a higher tensile strength of the composite. The second
fiber is larger and is intended to arrest the propagation of
macro-cracks and therefore results in a substantial
improvement in the fracture toughness of the composite.
Fibers of small size (often called micro-fibers) delay crack
coalescence in the cement paste and mortar phases and
increase the apparent tensile strength of these phases (Ban-
thia et al. 1995; Shah 1991).

1.3 Hybrids Based on Fiber Function

One type of fiber is intended to improve the fresh and
early age properties such as ease of production and plastic
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shrinkage, while the second fiber leads to improved
mechanical properties.

In the past, many attempts have been made at identifying
fiber combinations that produce the maximum synergy (Lar-
son and Krenchel 1991; Feldman and Zheng 1993; Kamlos
et al. 1995; Qian and Stroeven 2000; Kim et al. 1999; Banthia
and Sheng 1991; Mobasher and Li 1996; Lawler et al. 2002).
More recently, Banthia and Soleimani (2005) investigated
three-fiber hybrids with carbon and polypropylene micro-
fibers added to macro-steel fibers. Their results showed that,
steel macro-fibers with highly deformed geometry produce
better three-fiber hybrids than those with a less deformed
geometry. Finally, Banthia and Gupta (2004) showed that the
strength of the matrix plays a major role in the optimization of
hybrid composites.

On the other hand, many researchers are now looking at
the sliding plane deformation state other than opening mode
which may be associated with crack propagation and fracture
known as mode II fracture. In considering this, there are two
major and interrelated problems: (1) determination of frac-
ture parameters for mode II and (2) verification both ana-
Iytically and experimentally that a crack can propagate due
to mode II deformation. Analytical models cannot function
successfully without valid mode II data such as values of
K. (Swartz et al. 1988). The authors’ knowledge to the
parameters controlling the concrete fracture toughness and
the fiber/matrix interface should enhance the development of
concrete technology.

To study Mode 1II fracture toughness, various approaches
have attempted to define testing geometries where self-
similar crack propagation occurs with only mode II defor-
mations (Sherbini 2014). Although there is a violent debate
around the validity of such a test in driving cracks under
pure mode II, the proposed test geometries briefed in Table 1
are considered the most important techniques in isolating
shear parameters (Reinhardt et al. 1997; Watkins 1983;
Prokopski 1991; Irobe and Pen 1992; losipescu 1967).

In a quick comparison between advantages and disad-
vantages of proposed Mode II fracture toughness test
approaches, Sherbini (2014) concluded in an earlier study
that, double notched cube (DNC) test setup showed higher
values than all other tests due to the crack propagation miss
alignment opposing sliding of crack surfaces. Regarding
Brazilian notched disc (BND) test setup, the addition of
fibers decreased the calculated values of Kj;. for all single
fiber types. Finally, four point shear (4PS) test set up reflects
the most reliable values of mode II fracture toughness Kj;. of
concrete. The biases of the various concrete toughness tests
developed is still unknown. Sufficient data should be gath-
ered and sufficient research conclusions should be collected
in order to define a reliable test standard (Lee and Lopez
2014).

The aim of this experimental investigation is to study the
effect of adding different combinations of fibers to concrete
on its mode II fracture toughness K. A comparison
between the estimated values of Kj;. of concrete according to
the proposed four different test techniques is reported in this

investigation attempting to find an answer for the confusing
argument, “which test set up is the most convenient to
evaluate mode II fracture toughness in case of hybrid fiber
reinforced concrete?”

2. Experimental Work

The present experimental program included Three dif-
ferent types of fibers; namely steel (S), glass (G), and
polypropylene (PP) fibers were mixed together in four
hybridization groups, (S/G), (S/PP), (G/PP), (S/G/PP) with
constant cumulative volume fraction (V) of 1.5 %. The
concrete matrix properties were kept the same for all
hybrid fiber reinforced concrete (FRC) patterns. The chosen
types of fibers, cumulative volume fractions (V}), properties
of raw materials, mix proportions, matrix properties, and all
other laboratory conditions (specimen preparation, casting
and compaction, curing, temperature, test setup, and day of
testing) were kept the same as reported from previous work
of Sherbini (2014) to achieve a solid comparison with his
earlier study for single fiber type. Each group contains,
standard cubes and cylinders to determine the mechanical
properties, in addition to four different mode II fracture
toughness test specimens (Reinhardt et al. 1997; Watkins
1983; Prokopski 1991; Irobe and Pen 1992; losipescu
1967). In the current study, three different (a/w) ratios 0.3,
0.4, and 0.5 were used in agreement with the conclusion of
Lee and Lopez (2014) that, the accuracy of the size effect
fracture energy determined using one size of notched beam
has recently been brought into question. As a further study,
a comparison of the size effect fracture energy as deter-
mined using multiple sizes of notched beams is recom-
mended. Five specimens per sample were used for each
tested parameter.

The cement used in all concrete mixes was ordinary
Portland cement of 450 kg/m>. Light gray silica fume with
specific surface area (SSA) of 18 m?/gm supplied from the
Ferro silicon alloys plant in Edfo zone, Egypt, was used with
10 % added percentage to the cement content to produce
HSC. The sand used was local natural siliceous sand with
specific gravity of 2.55, fineness modulus (FM) of 2.51, and
SSA of 50.47 cm*/gm. The coarse aggregate was dolomite
with nominal maximum aggregate size (NMAS) of 10 mm,
specific gravity of 2.6, FM of 6.69, and SSA of 6.54 cm?*/
gm. A superplasticizer called Adecrite PVF (naphthalene
sulphonated compound) was added to the mixing water to
improve the workability and to keep the slump almost
constant. The mixing, casting, and compaction recommen-
dations suggested by ACI Committee 544 (2011) were
adopted in the present work to prepare all mixes.

Plain mild steel, high zirconia alkali resistance glass (NEG
ARG) fibers and MC polypropylene fibers were used with
different combinations in this investigation. Table 2 shows
the properties of different fiber types used in the current
study as reported by manufacturers. Galvanized steel fiber
with a new shape was used in this work; two straight steel
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Table 1 Mode Il fracture toughness test geometries.

Test geometries

Calculation equation

Dimensions mm

% 2h

double-edge notched prism

(m)l/z
If h > 2a, w < ma Ky, :%Wl/z

Proposed by Reinhardt et al. (1997)

Ifh > 2a, w > ma. K. =

2h = 200
2a = 140, 120, 100
w = 100

Thickness = 100

(DENP)

Ky = 5.213}5;9 (mz)l/2 Cube 150 mm
Proposed by Watkins (1983) and Prokopski (1991) a =45, 60, 75

w =150

B B=w-—a
W
Double notched cube
(DNC)

B =30

By — 7*(Bo +1By) + 2*(—1Bo + 1By +3B4) k=7

- 2 8 3 8 . _
Kpe=—2,/% +7%(By — B, + 1By + 2 Bs) Thickness = 60
+ 23 (= 8By +3By — 35 Ba + 5 Bs + 55 Bs) 2a = 45, 60, 75

Brazilian Disc Specimen
with inclined centered notch

(BND)

). = a/R, and f: the notch inclination angle = 30

By = sin 2f3, B, = 2 [sin4ff — sin2f3],
By = 3 [sin6f — 2sindf].

Bs = 4 [sin8f — 3sin6f5], Bg = 5 [sin10f — 4sin8f].
Proposed by Irobe and Pen (1992)

Four-Point Shear Beam
(4PS)

Ky = Yyo/ma
Proposed by losipescu (1967)

Prism 100 x 100 x 500
a = 30, 40, 50
Loaded span = 400
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Table 2 Properties of the used steel, glass and polypropylene fiber.

Properties Fibers type
Plain mild steel NEG ARG glass MC polypropylene*
Fiber length (mm) 25 25 15

0.5 mm/filament
1 mm/bi-filament

Fiber diameter

10-12 pm/filament 0.0965 £+ 10 %**

1-1.2 mm/strand

Specific gravity (t/m°) 7.8 2.7 0.90
Tensile strength (MPa) 3600 1400 550-600
Young’s modulus (MPa) 200,000 74,000 3600-3900
Strain at failure (%) 69 2 14-25

Geometry Bi-filament Chopped strands Monofilament
* Master Chemicals Technology Company.
** Fiber thickness (mm).
Table 3 Fiber combination percentages.
S/G S/PP G/P S/G/P
Volume fraction (V) 1 % steel & 0.5 % glass 1 % steel & 0.5 % PP [0.75 % glass & 0.75 % PP|0.5 % steel & 0.5 % glass &
0.5 % PP

fibers of 265 MPa yield strength were twisted around each
other to form a bi-filament fiber of 25 mm length. This new
shape of fiber produces a good bond between the matrix and
the fiber due to the development of interlock mechanical
bond depending on the fiber geometry. Chopped strands
alkaline resistance glass fiber (NEG ARG) achieves its high
alkali resistance from the high zirconia’s content in its glass
composition. “MC” polypropylene Synthetic fiber meets the
requirements of ASTM C 1116 and C 1399.

The mix proportion by weight for all mixes was
1:1.92:2.00:0.38 [cement:sand:dolomite:water/(cementations
materials)] as reported by Sherbini (2014). The fiber com-
bination percentages are illustrated in Table 3.

A vertical mixer of revolving blades type was used in
mixing. Materials of the specified mix were weighed first
and then mixed in the following procedures. Mixing differ-
ent fiber types in hybrid combinations was really a chal-
lenge. The used fibers with widely varied aspect ratios are
hard to blend together due to their different behavior during
mixing. Polypropylene fibers representing high aspect ratio
fiber (L/d = 167) should be mixed with the fine dry
components.

First of all: sand, cement, silica fume, and polypropylene
fibers were dryly mixed together for about 3 min to achieve
uniform distribution of fibers through the mix.

Then, the coarse aggregate is added gradually during dry
mixing. In the second step, one-third of the water content is
added to the mixture. In the following step, the admixtures
are added to the residual two-thirds of the water content then
added to the mixture to achieve a slump greater than the final
desired slump by 50 mm. Finally, Chopped glass and steel
fibers (representing low aspect ratio fiber (L/d = 25) are
added in small increments by sprinkling them onto the sur-
face of the mix until all the fibers were absorbed into the

matrix. This technique was performed to prevent balling or
interlocking of the fibers and achieve homogeneous disper-
sion of the fibers through the matrix. The freshly mixed
concrete was tested for slump as a quality control test; the
desired slump was (100 mm) to avoid segregation during
casting and compaction. The mixed materials were then
placed in the molds, compacted using external vibration,
leveled, and cured in water for 28 days before testing
according to the recommendations of ACI committee 544
(2011). Figure 1 represents the uniform distribution of fibers
along the cross section of the tested specimens reflecting
that, the fiber segregation was avoided and the desired
homogeneity was achieved.

Cubes of 150 x 150 x 150 mm dimensions were pre-
pared to be tested under static compression. Cylinders of
150 mm diameter and 300 mm height were prepared to be
tested under indirect tension. The mean values and the
standard deviations of compressive and tensile strengths of
the hybrid FRCs are listed in Table 4.

For comparison, the mean values of compressive and
tensile strengths for high strength concrete matrix with sin-
gle fiber type addition tested by Sherbini (2014), with the
same constituents properties and mix proportions as the
current study, are listed in Table 5. It is clear that, the
strengths of hybrid FRCs are higher than those of individual
FRC. The compressive strength increased by (2—13 %), and
the tensile strength increased (up to 14.8 %) in comparison
with single fiber addition to concrete at the same fiber vol-
ume fraction. The keyword explaining that behavior is
“synergy”, i.e. synergistic effect.

Rao and Rao (2009) and Boulekbache et al. (2012),
studied the effect of steel fiber geometry (fiber aspect
ratio = 47 (Rao and Rao 2009) and 65 & 80 (Boulekbache
et al. 2012)) and matrix strength, i.e. f, ~ 20 MPa (Rao and
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Fig. 1 Distribution of fibers along the cross section of the tested specimens.

Table 4 Mechanical properties of hybrid FRCs in MPa (Mean + SD).

S/G S/P G/P S/G/P
Compressive strength 549 + 1.92 56.2 + 2.04 53 +2.00 545 £ 1.67
Tensile strength 58+02 6.2 +0.18 52 £0.16 5.1 £0.16
Shear strength (predicted) 16.1 16.6 15.5 16
Table 5 Compressive and tensile strengths in MPa (Sherbini 2014).

SRC GRC PRC
Compressive strength 49.7 50.3 51.8
Tensile strength 5.4 5.2 5.1

Rao 2009) and /. =~ 29, 60, and 82 MPa (Boulekbache et al.
2012), on shear behavior of fiber reinforced concrete. They
concluded that (Rao and Rao 2009; Boulekbache et al.
2012), the ultimate shear strength of FRC (t/) is a function of
V% and the ultimate shear strength of concrete matrix (7o),
To = k\/ 'feo Where k is constant and f,, is compressive
strength of concrete matrix, i.e., 1, = 79 + ¢ (V%)" where
¢ and n are constants.

Rao and Rao (2009), measured compressive, tensile, and
shear strengths of concrete, while, Boulekbache et al. (2012),
measured only compressive and shear strengths of the
reported three types of concrete. Furthermore, the mechan-
ical property of concrete that is designed or controlled is
typically its compressive strength, since this is the most
important material characteristic in concrete specification
and in building codes (Li 2012). Therefore, in the present
work regression analysis was carried out on their experi-
mental data points of 7 and compressive strength of FRC (f;)
(Rao and Rao 2009; Boulekbache et al. 2012). Through
regression analysis, the empirical relation obtained can be
expressed.

1 = 0.153 19 (D

Coefficient of determination (R?) of this proposed relation
is 0.89, suggesting a strong correlation between these two
mechanical properties. In the present study, steel fiber

represents the main fiber type due to its higher strength and
stiffness, and for all hybrid FRCs except S/G/PP, the ration
of ¥ of steel fiber to V' of other fibers is 2.0. Therefore, the
current regression analysis of the results reported by Rao and
Rao (2009) and Boulekbache et al. (2012) might herein be
acceptable. According to the above equation, the predicted
values of the present hybrid FRCs are tabulated in Table 4.

Concerning mode II of fracture (sliding mode), four test
methods have been investigated; four point shear (4PS),
Brazilian notched disc (BND), double notched cube (DNC),
and double edge notched specimens (DENP), in a trial to
avoid the limitations and sensitivity of each test. Test setups,
layout, loading conditions, and specimens’ dimensions are
illustrated in Table 1. The main parameter affecting K.
obtained from previous test setups are specimen geometry,
size effect, constraint condition, and the notch depth to
specimen width ratio (a/w). Looking closer at these methods,
it turned out that, most of them produce a mixed state of
normal and shear stress mainly due to unavoidable load
eccentricities, and hence bending moments which occur
either from the beginning or after some deformation of the
specimen.

To examine the reliability of these four mode II fracture
toughness tests, the maximum undamaged defect size (dmax)
suggested by Sallam (2003), Al Hazmi et al. (2012), Sallam
et al. (2014), Sallam and Mubaraki (2015) will be compared
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Fig. 4 Notch depth to specimen width ratio (a/w) versus mode Il fracture toughness ;. for different hybridization patterns.

with the NMAS. Here, d.x is calculated by incorporating
the strength of the material, £, instead of the critical applied
stress along with the fracture toughness of the material, K¢,
hence, d,,.x instead of the notch depth is as follows:

Kc =Yo,\/ma = Yf\/ T dmax (2)

Applying this concept in the present case, i.e. K¢ = Kjc
and f'= 74 hence

P (@) 3)

T\Y

3. Results and Discussion

A comparison between the values of K. of concrete
according to four different test techniques is reported to
make further assessment of the resulting data. Highlighting
the effects of controlling the matrix fracture toughness, the
fiber/matrix interface, and the matrix flaw size on the com-
posite behavior might also enhance the production of engi-
neered cementitious composites (ECC) (Li 2012).

Figure 2 shows the relation between a/w and mode II
fracture toughness K. for different test setups and
hybridization patterns. For all hybrid patterns of FRC, a
significant discrepancy of mode II fracture toughness Kj;.
values (13—43 %) is clearly observed with small values of a/
w, i.e. a/w = 0.3. while it ranges from (19-24 %) with high
values of a/w, i.e. a/w = 0.5. This is evidence that mode II
fracture toughness K. is affected by a non material char-
acteristic parameter (a/w), indicating that mode II fracture
toughness K. in hybrid fiber reinforced concrete can not be

assumed as a material property. Mode II fracture toughness
K. 1s inversely proportional to a/w for all concretes and test
configurations, which strengthens the previous argument.
This argument is in good agreement with the reported works
by Swartz et al. (1988) and Reinhardt et al. (1997). By
increasing a/w. The mode II fracture toughness K.
decreasing rate reduces. This behavior may be due to that, by
increasing a/w both length and severity of crack increase,
while the defense zone represented in the crack forehead
ligament decreases.

Hybrid FRC containing steel fibers in combination of
either glass or pp showed higher values of mode II fracture
toughness kj;. than all other hybrid patterns, i.e. synergistic
effect. The increment percentages ranges from (11.5-16 %)
for DENP test (20-30 %) for DNC test (17-18 %) for BND
test, and (25-30 %) for 4PS test. Steel fiber represents the
fiber type with higher strength and stiffness, while either
glass or pp fiber represents the relatively flexible type. In
accordance with the 1st synergic mechanism (Hybrids based
on fiber constitutive response), this hybridization pattern
leads to improved toughness and strain capacity in the post-
crack zone. For different test geometries the (S/PP) results
are higher than those of all other hybridization patterns. The
2nd synergic mechanism (Hybrids based on fiber dimen-
sions) explains that phenomenon, the pp fiber represents the
smaller type that bridges micro-cracks and therefore controls
their growth and delays coalescence leading to a higher
tensile strength of the composite. Steel fiber represents the
larger type that is intended to arrest the propagation of
macro-cracks and therefore results in a substantial
improvement in the fracture toughness of the composite. In
this specific hybridization pattern (S/PP), a dual synergic
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(d)

Fig. 5 Crack patterns in different mode Il specimens under various test setups. a DNC specimens. b 4PS specimens. ¢ BND

specimens. d ENP specimens.

mechanism takes place resulting supreme values of mode II
fracture toughness k.. For different test setups, the (G/PP)
showed lower mode II fracture toughness &;;.. Both glass and
pp are deficient in the required stiffness to provide reason-
able crack propagation arrest. The S/G/PP hybrid FRC
showed lower values of mode II fracture toughness k. for
most geometries due to the reduction of V,of steel fiber from
1 to 0.5 %. For all hybrid FRCs except S/G/PP, the ration of
Vyof steel fiber to ¥ of other fibers is 2.0, while, that ration
is 1.0 in S/G/PP hybrid FRC. For both DNC and 4PS test
setups, a wide gap between (S/PP & S/G) on one hand and
(G/PP & S/G/PP) on the other hand is observed, which
support the idea of dual synergic mechanism when adding
steel fibers to the hybrid. In the other test setups DENP &
BND, that gap exists but with narrower range.

In comparison with reported test results of single FRC by
Sherbini (2014), the mode II fracture toughness k. values
fitted in those gaps as shown in Fig. 3 for almost all
geometries. The difference between compressive strengths
for different hybridization patterns reported in the current
study is minimal (less than 6 %), and does not reflect the
wide discrepancy in the values of mode II fracture toughness
K. (up to 43 %). In comparison with the previous study of
single FRC reported by Sherbini (2014), the S/PP hybrid
FRC pattern shows supreme behavior of both mechanical
properties (compressive and tensile strengths) and mode II
fracture toughness Kj;.

Table 6 represents the mean values and standard devia-
tions of mode II fracture toughness Kj. reported in the
current study in comparison to the results of single FRC
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Table 7 Calculated values of dia/NMAS.

(alw) Current study
S/PP S/G G/PP S/G/PP

dinax/NMAS DENP 0.3 0.65 0.65 0.65 0.54
0.4 0.57 0.55 0.56 0.48
0.5 0.55 0.52 0.53 0.42
DNC 0.3 2.36 2.3 1.46 1.24
0.4 1.92 1.95 1.22 1.12
0.5 1.61 1.68 1.2 1.12
BND 0.3 0.24 0.23 0.26 0.17
0.4 0.2 0.2 0.22 0.15
0.5 0.19 0.19 0.22 0.14

4PS 0.3 0.18 0.18 0.1 0.1
0.4 0.14 0.14 0.08 0.08
0.5 0.13 0.13 0.08 0.08

previously found by Sherbini (2014) for the same concrete
matrix. The sensitivity effect of the adopted test is almost the
same in either single or hybrid FRC. Figure 4 shows that, the
mode II fracture toughness K;;. measured from DNC test are
the highest values due to the crack propagation miss align-
ment opposing sliding of crack surfaces. Figure 5a shows
the different crack patterns of DNC specimens. However, the
mode II fracture toughness Kj;. values measured from 4PS
test are the lowest as shown in Fig. 4. It is obvious that the
common drawback of the 4PS mode II testing method is
that, in the direction perpendicular to crack plane a tensile
stress cannot be avoided, especially for crack pattern (c), as
shown in Fig. Sb. Similarly in BND test as shown in Fig. 5c,
the tensile stress component certainly causes a mode I stress
intensity. For the materials with low tensile strength like
concrete a small mode I stress intensity could result in tensile
failure prior to shear failure in those specimen geometries
employed in mode II tests. On the other hand, DENP
specimens suffer from indirect tensile cracks near the main
shear crack, as shown in Fig. 5d.

Maximum size of undamaged defect (d,,ax) is defined as,
the maximum defect size that does not affect the material
prosperities, i.e. the damage size beyond which, the material
properties decreases. The values of d,,,,x should be normal-
ized to an internal structure parameter of concrete such as the
NMAS. The values of d,,x/NMAS should not equal unity,
1.e. dpax must be less than NMAS. On the other hand, d,.x
should not be of trivial value less than air voids in concrete.
In the case of mode I fracture toughness, the value of dj,./
NMAS was reported to be 0.7 by Sallam et al. (2014). On
the present study, to check the reliability of the present
results, dn./NMAS are calculated and tabulated in Table 7.
It is clear that, the values of d,,,,/NMAS in DNC test are
greater than unity which is unacceptable. On the other hand,
the values of d,.,x/NMAS in 4PS test are very low, ranged
from 0.08 to 0.18. This may be attributed to the existence of

tensile stress at the tip of mode II crack as mentioned above.
dmax/NMAS ranged from 0.42 to 0.65, and from 0.14 to 0.26
in DENP and BND test setups respectively, which represent
acceptable values. Although DENP suffered from tensile
cracks near the main shear crack, but still the most reliable
test setup according to the non damage defect concept, i.e.
The closer value to that obtained for Mode I (0.7) reported
by Sallam et al. (2014).

4. Conclusions

The results of the present experimental work support the
following conclusions:

1. Hybridization of fiber relatively increased compressive
strength (2—13 %), and tensile strength (up to 14.8 %) in
comparison with single fiber addition to concrete at the
same fiber volume fraction.

Mode II fracture toughness of concrete Kj;. decreased
with the increment of a/w ratio for all hybridization
patterns and test setups (5-17.5 %).

Hybrid FRC containing steel fibers in combination of
either glass or pp showed higher values of mode II
fracture toughness k. than all other hybrid patterns. The
increment percentages ranges from (11.5-16 %) for
DENP test (20-30 %) for DNC test (17-18 %) for BND
test, and (25-30 %) for 4PS test.

Due to dual synergic mechanism, the (S/PP) mode II
fracture toughness K. results are the highest among all
other hybridization patterns.

Mode II fracture toughness Kj;. of hybrid fiber reinforced
concrete is found to be sensitive to a/w, geometry of test
specimen, and loading condition. i.e., mode II fracture
toughness Kj;. of hybrid fiber reinforced concrete could
not be assumed as a real material property.
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6. According to the non damage defect concept, DENP test
setup is the most reliable test to measure pure mode 11 of
concrete.
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