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Abstract. We derive an explicit expression for the kernel of the evolution group exp(−it H0)

of the discrete Laguerre operator H0 (i.e., the Jacobi operator associated with the Laguerre
polynomials) in terms of Jacobi polynomials. Based on this expression, we show that the
norm of the evolution group acting from �1 to �∞ is given by (1+ t2)−1/2.
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1. Introduction

We are concerned with the one-dimensional discrete Schrödinger equation

iψ̇(t,n)= H0ψ(t,n), (t,n)∈R×N0, (1.1)

associated with the Laguerre operator

H0 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 · · ·
1 3 2 0 · · ·
0 2 5 3 · · ·
0 0 3 7 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠

, (1.2)

in �2(N0). Explicitly, H0 = (hn,m)n,m∈N0 with hn,n = 2n + 1, hn,n+1 = hn+1,n = n + 1
and hn,m = 0 whenever |n −m| > 1. Note that hn,n = hn−1,n + hn,n+1. It is a spe-
cial case of a self-adjoint Jacobi operator whose generalized eigenfunctions are pre-
cisely the Laguerre polynomials explaining our name.
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This operator appeared recently in the study of radial waves in (2 + 1)-
dimensional noncommutative scalar field theory [1,13] and has attracted further
interest in [9,19–21]. More precisely, (1.1) is the linear part in the nonlinear
Schrödinger equation (NLS)

iψ̇(t,n)= H0ψ(t,n)−|ψ(t,n)|2σ ψ(t,n), σ ∈N, (t,n)∈R+ ×N0, (1.3)

investigated in the recent work of Krueger and Soffer [19–21]. Also H0 appeared in
the discrete nonlinear Klein–Gordon equation (NLKG) [9,13]. In turn, the dynam-
ics of noncommutative solitons in the context of noncommutative field theory (see,
e.g., [6,13,23] for reviews) can be reduced to the study of discrete NLKG and
NLS equations. In contrast to asymptotic metastability for the NLKG solitons
conjectured in [9], it is expected that the NLS solitons are asymptotically stable
(see [21, §8]). In this connection, let us emphasize that dispersive estimates for the
linear part (1.1) as well as for its perturbations are an important ingredient in
the standard procedure for the proof of asymptotic stability for nonlinear PDEs
(see [7,8,26,27]). In fact, the case of Jacobi operators with asymptotically constant
coefficients has already attracted a lot of attention and we refer to [10,11] and the
references therein (see also [17] for discrete Dirac-type operators).
To formulate our results, we recall the weighted spaces �

p
σ =�

p
σ (N0), σ ∈R, asso-

ciated with the norm

‖u‖�
p
σ
=

⎧⎨
⎩

(∑
n∈N0

(1+n)pσ |u(n)|p
)1/p

, p∈[1,∞),

supn∈N0
(1+n)σ |u(n)|, p=∞.

Of course, the case σ =0 corresponds to the usual �
p
0 = �p spaces without weight.

Then, in [20, Theorem 2] it was shown that

‖e−it H0‖�1σ →�∞−σ
=O(t−1), t →∞ (1.4)

for σ ≥ 3. This is in contrast to the case of the discrete Laplacian �, where one
has (cf. e.g., [11])

‖e−it�‖�1→�∞ =O(t−1/3), t →∞. (1.5)

The purpose of the present note is to improve (1.4) by showing that the weights
are not necessary, that is, it holds for σ ≥ 0. Even more, we are able to compute
this norm explicitly:

THEOREM 1.1. The following equality

‖e−it H0‖�1→�∞ = 1√
1+ t2

, t ∈R, (1.6)

holds.
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This result in turn is based on the following explicit expression for the kernel of
the evolution group e−it H0 given in terms of Jacobi polynomials (see [4,25] for the
definition and basic properties):

THEOREM 1.2. Let n, m ∈N0 be such that n≤m. Then

e−it H0(n,m)= 1
1+ it

(
i+ t

i− t

)n (
t

i− t

)m−n

P(m−n,0)
n

(
1− t2

1+ t2

)
, (1.7)

where

P(m−n,0)
n (z)=

n∑
k=0

(
m

n− k

)(
n

k

)(
z−1
2

)k (
z+1
2

)n−k

(1.8)

is the Jacobi polynomial.

As it was already mentioned, the understanding of the dynamics of (1.1), which
is the linear part of (1.3), is of crucial importance in the study of (1.3) and the
NLKG equations. Furthermore, the understanding of the free evolution (1.1) is a
necessary prerequisite for a successful development of scattering theory.
The proof of Theorems 1.1 and 1.2 is given in the next section and it is based

on the fact that every element of the kernel of e−it H0 is a Laplace transform of a
product of two Laguerre polynomials (Lemma 2.3). Now notice that the required
decay estimate will follow once we have a uniform estimate for the Jacobi polyno-
mials P(m−n,0)

n (·) on the segment of orthogonality [−1,1]. Unfortunately, the stan-
dard estimate (see, e.g., [25, Theorem 7.32.1]) only gives

max
x∈[−1,1]

∣∣P(m−n,0)
n (x)

∣∣=
(
m

n

)
, n≤m, n,m ∈N, (1.9)

which is clearly insufficient for our purposes. It is somewhat surprising that the
required estimate follows from the unitarity of the so-called Wigner d-matrix
(Jacobi polynomials appear as matrix elements for the irreducible representations
of SU(2), see [4,30]). Even more, to the best of our knowledge, the analytic proof
of this estimate was obtained only recently by Haagerup and Schlichtkrull in [16].
Let us also mention one more dispersive estimate which follows from the

Haagerup–Schlichtkrull inequality for Jacobi polynomials [16, Theorem 1.1] (see
(2.16) below).

THEOREM 1.3. There is a constant C ≤2 4√42 such that the following inequality

∣∣e−it H0(n,m)
∣∣≤ C

t1/2(n+m+1)1/4
, n,m ∈N0, (1.10)

holds for all t >0.
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Note that the estimate (1.10) does not provide an optimal decay rate in t ;
however, it gives an additional decay of the coefficients of the kernel in n and
m. Let us mention that the Haagerup–Schlichtkrull inequality (2.16) was derived
in order to obtain uniform bounds on a complete set of matrix coefficients for
the irreducible representations of SU(2) with a decay rate d−1/4 in the dimen-
sion d of the representation. Furthermore, the Bernstein (see (2.17)) and the
Haagerup–Schlichtkrull estimates were used in [15,22], respectively, for establish-
ing the absence of the approximation property of Haagerup and Kraus [14] for
SL(3,R) and Sp(2,R).

On the other hand, in the follow-up paper [18], we investigate the decay estimate
for generalized Laguerre operators Hα (tri-diagonal matrices associated with gen-
eralized Laguerre polynomials L(α)

n , see [25]), where the coefficient α can be seen
as a measure of the delocalization of the field configuration and it is related to
the planar angular momentum [2] (α = 0 corresponds to radial waves in (2+ 1)-
dimensional noncommutative scalar field theory). It turned out that the optimal
dispersive decay estimate leads to new Bernstein-type inequalities for Jacobi poly-
nomials. All these connections are mathematically very appealing and we hope that
the present note will stipulate further research in this direction.
To end this section, let us briefly outline the content of the paper. Before prov-

ing the main result, we collect the basic spectral properties of the operator H0 in
Theorem 2.1 and also present its proof based on spectral theory of Jacobi opera-
tors. Next, in Lemma 2.3 we represent the kernel of the evolution group e−it H0 by
means of the Laguerre polynomials and then prove our main results Theorems 1.1,
1.2, 1.3. Finally, in Lemma 2.6 we present another representation of the kernel of
e−it H0 , which might be of independent interest. In particular, it allows to obtain a
simple proof of (1.4) for σ ≥1/2.

2. Proof of the Main Results

We start with a precise definition of the operator H0. Let D : �2(N0)→ �2(N0) be
the multiplication operator given by

(Du)n = (n+1)un, u ∈dom(D)=�21(N0). (2.1)

For a sequence u={un}n≥0 we define the difference expression τ :u 
→τu by setting

(τu)n :=
{
u0 +u1, n=0,

nun−1 + (2n+1)un + (n+1)un+1, n≥1.
(2.2)

Then the operator H0 associated with the Jacobi matrix (1.2) is defined by

H0 : Dmax → �2(N0)

u 
→ τu,
(2.3)

where Dmax ={u ∈ �2(N0) : τu ∈ �2(N0)}. Note that �21(N0)⊂Dmax; however, simple
examples (take u={(−1)n/(n+1)}n≥0) show that the inclusion is strict.
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The spectral properties of H0 were derived in [9,20], however, without using the
well-developed spectral theory for Jacobi operators [28]. We collected them in the
following theorem and give a short proof using this connection.

THEOREM 2.1. (i) The operator H0 is a positive self-adjoint operator.
(ii) The Weyl function and the corresponding spectral measure are given by

m0(z)= e−z E1(−z)=
∫ +∞

0

e−λ

λ− z
dλ, dρ(λ)=1R+(λ)e−λdλ, (2.4)

where E1 denotes the principal value of the exponential integral [24, (6.2.1)] .

(iii) The spectrum of H0 is purely absolutely continuous and coincides with R+ =
[0,∞).

Proof. (i) Self-adjointness clearly follows from the Carleman test (see, e.g., [3],
[28, (2.165)]) since

∑
n≥0(n+1)−1 =∞. Nonnegativity follows from the fol-

lowing representation of the matrix (1.2)

H0 = (I +U )D(I +U∗), (2.5)

where U : (u0,u1,u2, . . . ) 
→ (0,u0,u1,u2, . . . ) is the forward shift on �2(N0)

and U∗ : (u0,u1,u2, . . . ) 
→ (u1,u2,u3, . . . ) is its adjoint, the backward shift
operator. Moreover, using this factorization, it is not difficult to check that
the kernel of H0 is trivial, ker(H0)={0}.

(ii) Notice that the polynomials of the first kind for H0 are given by

Pn(z)= (−1)nLn(z), n∈N0, (2.6)

where

Ln(z)= 1
n!

(
d
dz

−1
)n

zn =
n∑

k=0

(
n

k

)
(−z)k

k! , n∈N0, (2.7)

are the Laguerre polynomials. Indeed (see, e.g., [25, Chapter V]), they sat-
isfy the following recursion relations

L0(z)− L1(z) = zL0(z),
−nLn−1(z)+ (2n+1)Ln(z)− (n+1)Ln+1(z) = zLn(z), n≥1,

(2.8)

and the orthogonality relations
∫

[0,∞)

Ln(λ)Lk(λ)e−λ dλ= δnk, n, k ∈N0. (2.9)

Therefore, (2.9) and (i) imply that dρ(λ)=1R+(λ)e−λdλ is the spectral mea-
sure of H0, that is, H0 is unitarily equivalent to a multiplication operator in

http://dlmf.nist.gov/6.2.1
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L2(R+,dρ) (cf. e.g., [28, Theorem 2.12]). It remains to note that the cor-
responding Weyl function is the Stieltjes transform of the measure dρ (cf.
e.g., [28, Chapter 2]).

(iiii) The claim immediately follows from (ii). Indeed, as it was already men-
tioned, H0 is unitarily equivalent to a multiplication operator H̃ acting in
L2(R+,dρ),

H̃ : dom(H̃) → L2(R+,dρ)

f (λ) 
→ λ f (λ),

where dom(H̃) = L2(R+;λ2dρ) Hence the spectra as well as the spectral
types of both operators coincide [28, Eq. (2.106)]). It remains to note that
the spectrum of H̃ is purely absolutely continuous and coincides with R+ =
[0,∞).

Remark 2.2. Note that

m0(−x)↑+∞ as x ↓0.

Next, let us define the polynomials of the second kind (see [3,28])

Qn(z)= (−1)n
∫ ∞

0

Ln(z)− Ln(λ)

z−λ
e−λdλ,

which satisfy (τu)n = zun for all n ≥ 1 with Q0 ≡ 0, Q1 ≡ 1. It follows from (2.8)
that

Ln(z)Qn+1(z)+ Ln+1(z)Qn(z)= (−1)n

n+1
, n∈N0.

Moreover, for all z∈C\R+ the linear combination

�n(z) := Qn(z)+m0(z)Pn(z), n∈N0, (2.10)

also known as Weyl solution in the Jacobi operator context, satisfies {�n(z)}n≥0 ∈
�2(N0). Therefore, the resolvent of H0 is given by

G(z;n,m)=〈(H0 − z)−1δn, δm〉=
{

(−1)nLn(z)�m(z), n≤m,

(−1)mLm(z)�n(z), n≥m.
(2.11)

Notice that G(z;0,0)=〈(H0 − z)−1δ0, δ0〉=m0(z).
The next result provides an integral representation of the operator e−it H0 in

terms of the Laguerre polynomials.

LEMMA 2.3. The kernel of the operator e−it H0 is given by

e−it H0(n,m)= (−1)n+m
∫ ∞

0
e−itλLn(λ)Lm(λ)e−λdλ, n,m ∈N0. (2.12)
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Proof. ¿From Stone’s formula [29] we know

e−it H0(n,m)= 1
2π i

∫ ∞

0
e−itλ [G(λ+ i0;n,m)−G(λ− i0;n,m)] dλ.

Since

G(λ± i0;n,m)= (−1)nLn(λ)
(
Qm(λ)±m0(λ+ i0)(−1)mLm(λ)

)
, λ>0,

if n≤m, it remains to note that Ln(λ)∗ = Ln(λ), Qm(λ)∗ = Qm(λ), and, moreover,
Imm0(λ+ i0)=πe−λ for all λ>0.

It follows from (2.12) that every element of the kernel of the operator e−it H0

is the Laplace transform of a product of the corresponding Laguerre polynomials
and hence one can compute them explicitly:

Proof of Theorem 1.2. Recall that (see [12, (4.11.35)])
∫ ∞

0
e−pλLn(λ)Lm(λ)dλ=

(
n+m

n

)
(p−1)n+m

pn+m+1 2F1

(
−n,−m;−n−m; p(p−2)

(p−1)2

)
,

whenever Re(p)>0 with 2F1 is the hypergeometric function (see [24, Chapter 15])

2F1(a,b; c; z)=
∞∑
k=0

(a)k(b)k
(c)k

zk

k! , (2.13)

where (x)k =∏k−1
j=0(x + j). Setting p=1+ it , we get

e−it H0(n,m)= 1
1+ it

( −it
1+ it

)n+m (
n+m

n

)
2F1

(
−n,−m;−n−m;1+ 1

t2

)
.

Finally, we recall the connection with the Jacobi polynomials [25, (4.22.1)]

P(α,β)
k (z)=

(
2k+α+β

n

)(
z−1
2

)k

2F1

(
−k,−k−α;−2k−α−β; 2

1− z

)
,

which establishes (1.7). ��
We note some special cases:

COROLLARY 2.4. (i) In the case n=0 we have

e−it H0(0,m)= e−it H0(m,0)= 1
1+ it

(
t

i− t

)m

, m ∈N0.

(ii) In the case m=1 we have

e−it H0(1,m)= e−it H0(m,1)= 1
1+ it

(
t

i− t

)m+1 t2 −m

t2
, m ∈N0.
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(iii) In the case n=m we have

e−it H0(n,n)= 1
1+ it

(
i+ t

i− t

)n

Pn

(
1− t2

1+ t2

)
, n∈N0,

where

Pn(z)= 1
2n(n+1)

dn

dzn
(z2 −1)n

are the Legendre polynomials [25].

Proof. Just observe

P(m,0)
0 =1, P(m−1,0)

1 = m−1+ (m+1)x
2

, P(0,0)
n (z)= Pn(z).

In all the above cases we have |e−it H0(·, ·)| ≤ t−1 for all t > 0 and |e−it H0(·, ·)|∼
t−1 as |t | → ∞ (recall the well-known estimate maxx∈[−1,1] |Pn(x)| = 1; see also
(1.9)) and our final aim is to establish this estimate for all cases. In this respect
we also remark that using P(m−n,0)

n (−1)= (−1)n we get

e−it H0(n,m)= 1
it

+O(t−2), t →∞,

but the error is not uniform since d
dz P

(m−n,0)
n (−1)= (−1)n n(m−1)

2 .

Proof of Theorem 1.1 Using Corollary 2.4 (i), we get

‖e−it H0‖�1→�∞ ≥ ∣∣e−it H0(0,0)
∣∣= 1√

1+ t2
, t ∈R.

The converse inequality follows from the estimate [16, formula (20)]

|g(α,β)
n (x)|≤

(
(n+1)(n+α+β+1)
(n+α+1)(n+β+1)

)1/4

, (2.14)

where

g(α,β)
n (x)=

(
(n+1)(n+α+β+1)
(n+α+1)(n+β+1)

)1/2 (
1− x

2

)α/2 (
1+ x

2

)β/2

P(α,β)
n (x).

The inequality (2.14) holds true for all x ∈[−1,1] and α, β∈N0. In our case this
reduces to

∣∣g(m−n,0)
n (x)

∣∣≤
(

(n+1)(m+1)
(m+1)(n+1)

)1/4

=1
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and the claim follows upon observing

e−it H0(n,m)= 1
1+ it

(
t + i
t − i

)m+n
2

g(m−n,0)
n

(
1− t2

1+ t2

)
. (2.15)

��
Proof of Theorem 1.3 The proof is based on the following inequality (see [16, The-
orem 1.1])

|(1− x2)1/4g(α,β)
n (x)|≤ C

(2n+α+β+1)1/4
, n∈N0, (2.16)

which holds with C =2 4√168 for all x ∈[−1,1] and α, β∈N0 (see p.235 in [16] and
also Lemma 4.3 there). Now it suffices to note that

(1− x2)1/4 =
√

2t
1+ t2

, x = 1− t2

1+ t2
,

and then using (2.15), we arrive at (1.10). ��

Remark 2.5. The decay rate 1/4 in (2.16) is optimal as α and β tend to infinity
(see [16, Remark 4.4]). However, when α and β are fixed, for example, if α=0 and
β=0, then the classical Bernstein inequality [25, Theorem 7.3.3] (see also [5])

(1− x2)1/4|Pn(x)|≤ 2√
π(2n+1)

, n∈N0, x ∈[−1,1], (2.17)

together with Corollary 2.4 (iii) implies

|e−it H0(n,n)|≤ 1√
π t (n+1/2)

, n∈N0.

Finally, we mention another representation of the kernel of eit H0 which might be
of independent interest.

LEMMA 2.6. Let

Fn(t)= 2
1+2it

(
1−2it
1+2it

)n

, n∈N0. (2.18)

Then

e−it H0(n,m)= (−1)n+m(
Fn ∗ Fm)(t)

= (−1)n+m

2π

∫
R

Fn(s)Fm(t − s)ds, t >0. (2.19)
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Proof. Using [12, (4.11.31)] we compute
∫ ∞

0
e−itλLn(λ)e−λ/2dλ= 2

1+2it

(
1−2it
1+2it

)n

= Fn(t), n∈N0.

Noting that the Fourier transform of a product of two functions is equal to the
convolution of their Fourier transforms and using (2.12), we end up with (2.19).

Remark 2.7. Noting that

Fn+1(t)= 2
1+2it

Fn(t)− Fn(t), (F0 ∗ Fn)(t)= 1
1+ it

(
it

1+ it

)n

, n∈N0,

and then estimating the convolution, one can show by using induction that

|e−it H0(n,m)|≤ 1+|m−n|√
1+ t2

, t ∈R.
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