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Abstract The ratio of injection–production control area is

an important aspect in evaluating the development effect

and calculating oilfield development index. Conventional

approaches to determine the ratio of injection–production

control area neglect the heterogeneity of the reservoir and

require long time simulating and a lot of complex itera-

tions. This paper establishes a prediction formula to

quickly determine the ratio of injection–production control

area in triangle well pattern. A total of 410 sets of

streamline models are built to acquire the database. Per-

meability, oil saturation, injection–production pressure

drop and injector–producer spacing are selected as inde-

pendent variables to establish the prediction formula by

multivariate parametric regression. Based on error analysis

and application, the accuracy of this prediction formula is

approved. Results indicate that the prediction formula has a

correlation coefficient R2 of 0.96, representing a satisfac-

tory performance. Normality and homoscedasticity tests

and standardized residual diagnostics demonstrate the sta-

tistical significance of the results. The application of this

prediction formula shows an excellent match between the

predicted and actual injection–production area, which fur-

ther confirms the accuracy of this prediction formula. The

established prediction formula can effectively and accu-

rately decide the ratio of injection–production control area

for waterflooding reservoir.

Keywords Prediction formula � Ratio of injection–

production control area � Streamline simulation �
Multivariate parametric regression � Error analysis

List of symbols

a1 The fitting parameter

a2 The fitting parameter

a3 The fitting parameter

b1 The fitting parameter

b2 The fitting parameter

c1 The fitting parameter

c2 The fitting parameter

c3 The fitting parameter

d1 The fitting parameter

d2 The fitting parameter

d3 The fitting parameter

eis Standardized residual

f The constant in prediction formula

i Level i in orthogonal experiment

k Permeability (10-3 lm2)

k1/k2 Ratio of the two regions’ permeability

Ki Influence of level i of each factor on dependent

parameter

L Injector–producer spacing (m)

L1/L2 Ratio of the two regions’ injector–producer

spacing

N The total number of data

R The range of Ki

R2 Correlation coefficient

So The present oil saturation

So1/So2 Ratio of the two regions’ oil saturation

ycal The calculated result

ymea The measured result

Dp Injection–production pressure drop (MPa)
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Dp1/Dp2 Ratio of the two regions’ injection–production

pressure drop

h1/h2 Ratio of injection–production control area

Introduction

Waterflooding is a commonly used method to enhance the

recovery in oil field development (Stenger et al. 2009; Wen

et al. 2014). The ratio of injection–production control area

acts as an important role in waterflooding reservoir, which

is applied to evaluate the development effect (Siavashi

et al. 2016) and calculate oilfield development index (Song

et al. 2000; Feng et al. 2013). The ratio of injection–pro-

duction control area is influenced by permeability, oil

saturation, injection–production pressure drop and injec-

tor–producer spacing (Jiang 2013). There are three typical

approaches to determine the ratio of injection–production

control area: (1) streamline numerical simulation, (2)

empirical method and (3) dynamical split method.

In order to apply streamline numerical simulation to

determine the ratio of injection–production control area,

geology model, fluid property and well schedule are needed

to build the streamline model. The FrontSim Numerical

Simulator, a separate simulator in ECLIPSE (GeoQuest

2010), is usually applied to calculate the distribution of

streamline. Based on the distribution of streamline, the

ratio of injection–production control area can be deter-

mined. Siavashi et al. (2016) used streamline-based simu-

lation to obtain the injection–production control area,

which is also called sweep region, to reflect the develop-

ment performance of waterflooding reservoir. However,

this method calls for a long time to build and calculate the

streamline model, making itself time-consuming work

(Stenerud et al. 2008; Bhambri and Mohanty 2011).

Besides, considering the available parameters and expense,

not all waterflooding reservoirs have the ability to conduct

the streamline numerical simulation. For the empirical

method, the angular bisector of two neighboring injector–

producer lines is used to divide the injection–production

control area (Ji et al. 2008; Feng et al. 2013). This method

is fit for the homogeneous reservoir and it is easy to be

applied. Ji et al. (2008) divided the injection–production

control area by the angular bisector of two neighboring

injector–producer lines to calculate oil production for

4-spot, 5-spot and invert 9-spot areal well patterns. How-

ever, this method neglects the influence from geological

parameters and well schedule. Therefore, this method is not

fit for the heterogeneous reservoir. In order to deal with the

ratio of injection–production control area in heterogeneous

reservoir, Feng et al. (2013) developed a dynamical split

method. This method calculates the ratio of injection–

production control area according to percolation resistance

and displacement pressure. However, it needs a lot of

iterations in the process of development index calculation

which is also a time-consuming work.

Having addressed these problems, there is an important

need to establish a comprehensive and reliable prediction

formula for the ratio of injection–production control area

that can simultaneously consider the heterogeneous

parameters and well schedule and quickly determine the

ratio. One approach to get the relationship between the

ratio of injection–production control area and multiple

factors is artificial neural networks (ANNs). ANN is a

powerful tool to model the complex relationship between

inputs and outputs (Ketineni et al. 2015; Kurt and Kayfeci

2009). There are input hidden and output layers included in

the widely used ANN models (Enab and Ertekin, 2014;

Togun and Baysec 2010; Valeh-e-Sheyda et al. 2010). By

training the data, the relationship between inputs and out-

puts can be obtained (Jung and Kwon 2013; Sayyad et al.

2014). However, this method cannot provide explicit

function forms. In order to get the explicit function

between independent and dependent variables, multivariate

parametric regressions are usually applied (Yuan et al.

2007). Origin is a commonly used software for analyzing

data and fitting curve, which is one of the most powerful

and most widely used analysis tools (Bimbo et al. 2016;

Böllmann et al. 2016). In this paper, we apply Origin

software to obtain the prediction formula for ratio of

injection–production control area.

This paper develops a prediction formula for ratio of

injection–production control area. Firstly, 410 sets of

streamline models, which have the different permeability,

oil saturation, injection–production pressure drop and

injector–producer spacing, are built to acquire the database

of ratio of injection–production control area. Then based on

the database, the prediction formula is built by multivariate

parametric regression. The error analysis of this prediction

formula is conducted by normality and homoscedasticity

tests and standardized residual diagnostics to confirm the

statistical significance. Finally, in order to approve the

accuracy of the established formula, this formula is applied

to calculate the ratio of injection–production control area

for a new synthetic reservoir model.

Methodology

In order to get the prediction formula, the database is

acquired from a series of simulation models firstly. Then

based on the database, multivariate parametric regression is

applied to obtain the explicit function form. To validate the

accuracy of this established prediction formula, error

analysis is conducted by normality and homoscedasticity
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tests, standardized residual and prediction formula

application.

Database acquirement

In this study, we apply the FrontSim Numerical Simulator

to calculate the streamline distribution for a series of

reservoir models. Then the injection–production control

area can be measured and a database can be acquired.

There are totally 410 simulation schemes which are

utilized to establish the prediction formula for ratio of

injection–production control area. The basic parameters for

these models are same. The reservoir model is a single-

layer model. The depth of the top face is 2000 m. The

initial reservoir pressure is 20 MPa. The porosity is 0.25.

The density of oil is 890 kg/m3, and the density of for-

mation water is 1000 kg/m3.

The basic assumptions include: (1) the model contains

oil and water two-phase flow; (2) the fluid flow obeys

Darcy’s law; (3) the displacement process is isothermal; (4)

the fluid flow without considering gravity and capillary

pressure. The oil and water relative permeability curve is

plotted in Fig. 1. There is one injector and two producers.

All producers and injectors are controlled by bottom hole

pressure (BHP). There is no flow through the reservoir

boundary. The total production time is 1800 days. All

models have the same area.

According to the relative positions of injectors and

producers, each reservoir model is separated into two

regions (shown in Fig. 2). Because the waterflooding pro-

cess is mainly affected by the parameters on mainstream

line (Zhou et al. 2016; Feng et al. 2013), the parameters of

each part are assumed to be equal to the average parame-

ters of injector–producer line.

There are four parameters changed for these 410 simu-

lation schemes. They are (1) permeability k, (2) the present

oil saturation So, (3) injection–production pressure drop

Dp calculated by the bottom hole pressure (BHP) of

injector minus the BHP of producer and (4) injector–pro-

ducer spacing L. The ratios of the two regions’ perme-

ability k1/k2, oil saturation So1/So2, injection–production

pressure drop Dp1/Dp2 and injector–producer spacing L1/L2

can affect the ratio of injection–production control area h1/

h2. These four parameters are changed for each model. The

ranges of k1/k2, So1/So2, Dp1/Dp2 and L1/L2 are from 0.14 to

7.00, from 0.42 to 2.33, from 0.33 to 2.00 and from 0.58 to

1.72, respectively. The permeability and oil saturation for

each region in one model is different while the average

permeability and oil saturation of all models is same. The

simulation models with different injector–producer spacing

and permeability distribution can be seen in Fig. 3. Based

on the streamline distribution, h1/h2 is measured.

Fitting tool

The ratio of injection–production control area h1/h2 is

influenced by the joint action of multiple factors. Their

respective effect may be masked or enforced by another,

which increases the difficulty in discovering the underlying

relationship between them (Feng et al. 2014). In order to

obtain the explicit function form, multivariate parametric

regression is applied. Based on the 410 results, it is easily

to acquire the regression forms relating dependent and

independent variables. The four independent variables are

independent of each other.

In order to conduct the multivariate parametric regres-

sion, the explicit function form of the ratio of injection–

production control area h1/h2 and one independent variable,

which is one of the ratio of the two regions’ permeability

k1/k2, oil saturation So1/So2, injection–production pressure

drop Dp1/Dp2 and injector–producer spacing L1/L2, is

obtained through the 410 results, respectively. By com-

bining the four explicit function forms into one compre-

hensive function, the mathematical correlation between the

dependent and four independent variables can be obtained.
Fig. 1 Oil and water relative permeability curve

Fig. 2 Sketch of reservoir model
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In this work, the parameters are calculated using the

comprehensive function in the nonlinear curve fitting tool

available in Origin Pro 8.5 (OriginLab Corporation,

Northampton, MA, USA).

Error analysis

Normality and homoscedasticity tests

Normality and homoscedasticity tests are important mea-

sures in analyzing the statistical correlation errors. We use

T-test to analyze the normality and F-test to assess the

homoscedasticity. The null hypothesis is evaluated by

T-test where the data are coming from an unspecified

normal distribution (Zhang et al. 2015). If the test result is

zero, the null hypothesis cannot be rejected at the 5%

significance level, in which case the data are normal dis-

tribution. The F-test is to evaluate the null hypothesis by

comparing the variance of two independent samples. If the

variance is equal, the null hypothesis cannot be rejected at

the 5% significant level.

Standardized residual

Standardized residual is used to describe the division of a

residual by an estimate of its standard deviation, which is a

useful method to find the hidden structures in the data

(Huisman et al. 1993; Mohammadi et al. 2012). The

standardized residual can be formulated as:

eis ¼
ycal � ymea
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1
ycal�ymeað Þ2

N�1

r ð1Þ

where eis is the standardized residual; ycal is the calculated

result by the prediction function; ymea represents the mea-

sured result; N is the total number of data used to obtain the

prediction function.

Then the standardized residual distribution can be

plotted, in which x-coordinate is for the calculated ycal and

y-coordinate is for the standardized residual. If there are

more than 95% standardized residuals falling in the range

[-2, 2] randomly and the standardized residuals have zero

mean, it represents the prediction model is correct (Chel-

gani et al. 2010; Rousseeuw and Leroy 1987).

Prediction formula application

The development of the prediction formula aims at quickly

dividing the injection–production control area. In order to

validate the feasibility and accuracy of this prediction for-

mula, we apply this prediction formula to predict the ratio of

injection–production control area for a synthetic reservoir

model. Then the ratio of injection–production control area for

a synthetic reservoir model is also calculated by streamline

numerical simulator. If the results calculated by the two

methods match well, it means that this prediction formula can

be used to predict the ratio of injection–production control

area without running streamline numerical simulator.

Results and discussion

Based on 410 sets of measured results, the prediction for-

mula for ratio of injection–production control area in tri-

angle well pattern is established. The results of error

Fig. 3 Simulation models of different injector–producer spacing and

permeability distribution
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analysis validate the accuracy of this prediction formula.

Then analysis of range is applied to determine the influence

degree of each variable on the ratio of injection–production

well control area h1/h2. Finally, the comparison of the

injection–production control area for a new synthetic

reservoir model calculated by this prediction formula and

streamline numerical simulator is conducted.

Prediction formula

There are totally 410 sets of measured results. The typical

curves of the ratio of injection–production control area are

illustrated in Fig. 4. In order to give a comprehensive

prediction formula, the function form of the ratio of

injection–production control area h1/h2 and one

independent variable is obtained according to the trend of

these curves.

For the ratio of the two regions’ injector–producer

spacing and oil saturation, the data can be fitted with a

quadratic polynomial and linear, respectively:

h1

h2

¼ a1

L1

L2

� �2

þa2

L1

L2

� �

þ a3 ð2Þ

h1

h2

¼ b1

So1

So2

� �

þ b2 ð3Þ

where h1/h2 is the ratio of injection–production control

area; L1/L2 is the ratio of two regions’ injector–producer

spacing; So1/So2 is the ratio of two regions’ oil saturation;

a1, a2, a3, b1, b2 are the fitting parameters.

Fig. 4 Division of injection–production control area versus the ratio of two regions’ a permeability; b oil saturation; c injection–production

pressure drop; d injector–producer spacing
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For the ratio of the two regions’ injection–production

pressure drop and permeability, the fitting type can be

written as:

h1

h2

¼ c1e
c2 ln

Dp1
Dp2

� �

þ c3 ð4Þ

h1

h2

¼ d1 ln
k1

k2

� �2

þ d2 ln
k1

k2

� �

þ d3 ð5Þ

where Dp1/Dp2 is the ratio of two regions’ injection–pro-

duction pressure drop; k1/k2 is the ratio of two regions’

permeability; c1, c2 c3, d1, d2, d3 are the fitting parameters.

Therefore, the mathematical model between the depen-

dent and four independent variabilities can be written as:

h1

h2

¼ a1

L1

L2

� �2

þ a2

L1

L2

� �

þ b1

So1

So2

� �

þ c1e
c2 ln

Dp1
Dp2

� �

þ d1 ln
k1

k2

� �2

þ d2 ln
k1

k2

� �

þ f ð6Þ

where f is the constant.

Equation (6) is the prediction formula for ratio of

injection–production control area in triangle well pattern.

The ratios of two regions’ permeability k1/k2, oil saturation

So1/So2, injection–production pressure drop Dp1/Dp2 and

injector–producer spacing L1/L2 are the basic parameters of

the reservoir. There is no need to run the reservoir simu-

lator to obtain them. By inputting these four parameters of

waterflooding reservoir into Eq. (6), the ratio of injection–

production control area for this reservoir can be acquired. It

is a convenient approach to determine the ratio of injec-

tion–production control area, and it can minimize the work

volume and time required in running streamline numerical

simulator and complex iterations. This model can predict

the ratio of injection–production control area h1/h2 under

the same ranges of k1/k2, So1/So2, Dp1/Dp2 and L1/L2 with

these 410 sets of simulation models and the same

assumptions.

These parameters a1, a2, b1, c1, c2, d1, d2 and f are

calculated using Eq. (6) in the nonlinear curve fitting

function in OriginLab (Origin Pro 8.5) based on 410

measured results. The fitting curve of these four variables is

obtained with a R2 of 0.96, which shows a very satisfactory

performance for the prediction formula (Coulibaly and

Baldwin 2005; Ali Ahmadi et al. 2013):

h1

h2

¼ 0:03194
L1

L2

� �2

þ0:00322
L1

L2

� �

� 0:04319
So1

So2

� �

þ 1:89133e
0:41604 ln

Dp1
Dp2

� �

� 0:00013 ln
k1

k2

� �2

þ 0:20045 ln
k1

k2

� �

� 0:88330

ð7Þ

Normality and homoscedasticity

The measured data and calculated data for h1/h2 are shown

in Fig. 5. It can be seen that the data set are generally fall in

a small range around the 45 degree line, indicating a high

correlation for the whole database.

Figure 6 illustrates the difference between measured h1/

h2 and predicted h1/h2. As illustrated in Fig. 6, the differ-

ence follows a normal distribution with a mean of -0.001.

T-test and F-test return a decision value of zero. These

results indicate that the null hypothesis cannot be rejected

at the 5% significance level which confirms the accuracy of

the prediction formula.

Residual plots

The distribution of standardized residuals is plotted in

Fig. 7. As observed from this figure, there are only 16 out

Fig. 5 Correlation of predicted h1/h2 versus measured h1/h2

Fig. 6 Difference of predicted h1/h2 versus measured h1/h2
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of 410 data points fall out of the domain of -2 B eis B?2.

This result indicates that more than 95% points fall in [-2,

?2] and distribute randomly. It also can approve that the

prediction formula satisfies the equal variance.

Analysis of range

In order to analyze the influence degree of each variable on

the ratio of injection–production well control area h1/h2,

analysis of range is applied. There are two steps to conduct

analysis of range.

Firstly, the orthogonal experiment is designed to acquire

the basic values for analysis of range. The ratio of the two

regions’ permeability k1/k2, oil saturation So1/So2, injec-

tion–production pressure drop Dp1/Dp2 and injector–pro-

ducer spacing L1/L2 are determined as four factors of the

orthogonal experiment. The level for each parameter is

three. Therefore, according to the orthogonal design

table L9(34) (Liu et al. 2010), the orthogonal experiment is

designed and listed in Table 1.

Secondly, the analysis of range for this designed

orthogonal experiment is conducted as shown in Table 2.

Each factor in the same level i (i = 1, 2, 3) corresponds to

three h1/h2 values which are listed in Table 1. These three

h1/h2 values of level i are summed by.

h1

h2

� �

i

¼
X

3

j¼1

h1

h2

� �

i;j

ð8Þ

where (h1/h2)i is the sum of three h1/h2 values of each

factor in level i; (h1/h2)i,j is the jth h1/h2 value of each

factor in level i.

The influence of level i of each factor on the ratio of

injection–production control area h1/h2 is represented by Ki

and it can be calculated by:

Ki ¼
X

3

i¼1

h1

h2

� �

i

.

3 ð9Þ

R is used to denote the range of Ki. It reflects the

influence degree of each factor on the ratio of injection–

production control area h1/h2. The factor with higher R

means a strong effect on h1/h2 (Cui et al. 2007). R is

calculated as:

R ¼ Kmax � Kmin ð10Þ

From Table 2 we can see that the ratio of two regions’

injector–producer pressure drop has the most influence on

the ratio of injection–production control area h1/h2. The

second and the third are the ratio of two regions’

permeability and injector–producer spacing, respectively.

The ratio of two regions’ oil saturation has the minimal

effect on the ratio of injection–production control area h1/

h2.

Application

The prediction formula Eq. (7) is applied to predict the

control area of a new synthetic reservoir model. There are

four five-spot well patterns. Nine injectors and four pro-

ducers are placed in this reservoir. Injectors and producers

are all controlled by bottom hole pressure. There are total

16 injector–producer lines, and the whole reservoir model

is divided into 32 parts.

Equation (7) is applied to calculate the ratio of injec-

tion–production control area. Then based on the total angle

Fig. 7 Calculated standardized residual of predicted h1/h2 versus

measured h1/h2. Dots represent the outliers

Table 1 Orthogonal experiment design

Experiments h1/h2

Number L1/L2 Dp1/Dp2 k1/k2 So1/So2

1 0.58 0.5 0.33 0.67 0.2143

2 0.58 1 1 1 0.9318

3 0.58 2 3 1.5 1.7419

4 1 0.5 1 1.5 0.5517

5 1 1 3 0.67 1.1429

6 1 2 0.33 1 1.4324

7 1.73 0.5 3 1 0.7000

8 1.73 1 0.33 1.5 0.8889

9 1.73 2 1 0.67 2.0357

Table 2 Analysis of range table

Level L1/L2 Dp1/Dp2 k1/k2 So1/So2

K1 0.963 0.489 0.854 1.131

K2 1.042 0.988 1.173 1.021

K3 1.208 1.737 1.195 1.061

R 0.245 1.248 0.350 0.110
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between two adjacent injector–producer lines, the control

area can be calculated. Streamline numerical simulator is

also applied to calculate the control area according to the

distribution of streamline. The streamline distribution of

this model reflects the actual control area. In order to

compare the actual and predicted control areas, the division

of control area of this model is shown in Fig. 8. The black

lines are calculated by Eq. (7). From Fig. 8 we can see that

the predicted and actual results match well. A comparison

between predicted and actual control angles is presented in

Fig. 9. As shown in Fig. 9, the predicted results by Eq. (7)

show a good agreement with the actual control angles.

Therefore, the prediction formula established in this paper

gives a precise prediction formula for ratio of injection–

production control area in triangle well pattern.

Conclusions

1. A prediction formula for ratio of injection–production

control area has been established based on 410 sets of

simulation results. The ratio of injection–production

control area is influenced by the ratio of the two

regions’ permeability, oil saturation, injection–pro-

duction pressure drop and injector–producer spacing.

Based on this prediction formula, the ratio of injec-

tion–production control area can be quickly decided.

2. The error analysis of this prediction formula has been

conducted. Both normality and homoscedasticity tests

and standardized residual diagnostics have confirmed

the statistical significance of the results. The applica-

tion of this prediction formula has also approved the

accuracy of this formula.

3. Based on the analysis of range, the ratio of injection–

production control area is most affected by the ratio of

two regions’ injector–producer pressure. The ratio of

two regions’ oil saturation has the minimal effect on

the ratio of injection–production control area. The

influences of the ratio of two regions’ permeability and

injector–producer spacing are moderate.
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Böllmann J, Rathsack K, Martienssen M (2016) The precision of

bacterial quantification techniques on different kinds of envi-

ronmental samples and the effect of ultrasonic treatment.

J Microbiol Methods 126:42–47

Chelgani SC, Mesroghli S, Hower JC (2010) Simultaneous prediction

of coal rank parameters based on ultimate analysis using

regression and artificial neural network. Int J Coal Geol

83(1):31–34

Fig. 8 Comparison between actual and predicted divisions of control

area

Fig. 9 Comparison between actual and predicted control angle

202 J Petrol Explor Prod Technol (2018) 8:195–203

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Coulibaly P, Baldwin CK (2005) Nonstationary hydrological time

series forecasting using nonlinear dynamic methods. J Hydrol

307(1):164–174

Cui W, Li X, Zhou S, Weng J (2007) Investigation on process

parameters of electrospinning system through orthogonal exper-

imental design. J Appl Polym Sci 103(5):3105–3112

Enab K, Ertekin T (2014) Artificial neural network based design for

dual lateral well applications. J Petrol Sci Eng 123:84–95

Feng Q, Wang X, Wang B, Guo L, Wang D, Huang Y (2013) A

dynamic spilt method to predict development index in hetero-

geneous waterflooding oil field. In: SPE 165868

Feng Q, Zhang J, Zhang X, Shu C, Wen S (2014) The use of

alternating conditional expectation to predict methane sorption

capacity on coal. Int J Coal Geol 121:137–147

GeoQuest S (2010) ECLIPSE reference manual 2010.1. Schlum-

berger Inf. Solutions, Houston, Tex

Huisman J, Olff H, Fresco LFM (1993) A hierarchical set of models

for species response analysis. J Veg Sci 4(1):37–46

Ji BY, Li L, Wang CY (2008) Oil production calculation for areal

well pattern of low-permeability reservoir with non-Darcy

seepage flow. Acta Pet Sin 29(2):256–261

Jiang H (2013) Early-warning and differentiated adjustment methods

for channeling in oil reservoirs at ultra-high water cut stage.

J China Univ Pet 37(5):114–119

Jung S, Kwon SD (2013) Weighted error functions in artificial neural

networks for improved wind energy potential estimation. Appl

Energy 111(4):778–790

Ketineni SP, Ertekin T, Anbarci K, Sneed T (2015) Structuring an

integrative approach for field development planning using

artificial intelligence and its application to an offshore oilfield.

In: SPE 174871

Kurt H, Kayfeci M (2009) Prediction of thermal conductivity of

ethylene glycol-water solutions by using artificial neural net-

works. Appl Energy 86(10):2244–2248

Liu R, Zhang Y, Wen C, Tang J (2010) Study on the design and

analysis methods of orthogonal experiment. Exp Technol Manag

27(9):52–55

Mohammadi AH, Eslamimanesh A, Gharagheizi F, Richon D (2012)

A novel method for evaluation of asphaltene precipitation

titration data. Chem Eng Sci 78:181–185

Rousseeuw PJ, Leroy AM (1987) Robust regression and outlier

detection. Wiley, New York

Sayyad H, Manshad AK, Rostami H (2014) Application of hybrid

neural particle swarm optimization algorithm for prediction of

MMP. Fuel 116(116):625–633

Siavashi M, Tehrani MR, Nakhaee A (2016) Efficient particle swarm

optimization of well placement to enhance oil recovery using a

novel streamline-based objective function. J Energy Resour

ASME 138(5):77–78

Song KP, Wang LJ, He X, Wang Y, Liu S (2000) A dynamic spilt

method to predict remaining oil distribution and development

index in a single-layer. Acta Pet Sin 21(6):122–126

Stenerud VR, Kippe V, Lie KA, Datta-Gupta A (2008) Adaptive

multiscale streamline simulation and inversion for high-resolu-

tion geomodels. SPE J 13(01):99–111

Stenger B, Katheeri AA, Hafez H, Al-Kendi SA (2009) Short-term

and long-term aspects of water injection strategy. SPE Reserv

Eval Eng 12(12):841–852

Togun NK, Baysec S (2010) Prediction of torque and specific fuel

consumption of a gasoline engine by using artificial neural

networks. Appl Energy 87(1):349–355

Valeh-e-Sheyda P, Yaripour F, Moradi G, Saber M (2010) Applica-

tion of artificial neural networks for estimation of the reaction

rate in methanol dehydration. Ind Eng Chem Res

49(10):4620–4626

Wen T, Thiele MR, Ciaurri DE, Ye Y (2014) Waterflood management

using two-stage optimization with streamline simulation. Com-

put Geosci 18(3–4):483–504

Yuan M, Ekici A, Lu Z, Monteiro R (2007) Dimension reduction and

coefficient estimation in multivariate linear regression. J R Stat

Soc B 69(3):329–346

Zhang J, Feng Q, Zhang X, Zhang X, Yuan N, Wen S, Zhang A

(2015) The use of an artificial neural network to estimate natural

gas/water interfacial tension. Fuel 157:28–36

Zhou Z, Wang J, Zhou J (2016) Research on the overall optimization

method of well pattern in water drive reservoirs. J Petrol Explor

Prod Technol. doi:10.1007/s13202-016-0265-3

J Petrol Explor Prod Technol (2018) 8:195–203 203

123

http://dx.doi.org/10.1007/s13202-016-0265-3

	A prediction formula for ratio of injection--production control area in triangle well pattern
	Abstract
	Introduction
	Methodology
	Database acquirement
	Fitting tool
	Error analysis
	Normality and homoscedasticity tests
	Standardized residual
	Prediction formula application


	Results and discussion
	Prediction formula
	Normality and homoscedasticity
	Residual plots
	Analysis of range
	Application

	Conclusions
	Acknowledgments
	References




