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Abstract We report here the nearly complete 1H, 15N and
13C resonance assignment of the La motif and RNA

recognition motif 1 of human LARP6, an RNA binding

protein involved in regulating collagen synthesis.
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Biological context

LARP6 is a member of the La related proteins (LARP)

superfamily and it has been implicated in several devel-

opmental events including myogenesis, neurogenesis and

possibly metastasis (Bayfield et al. 2010; Bousquet-An-

tonelli and Deragon 2009). In vertebrates, LARP6 regulates

collagen synthesis by binding to a conserved stem-loop in

the 50 untranslated region (UTR) of the mRNAs encoding

the collagen a1(I) and a2(I) subunits, thereby coordinating

their translation into the heterotrimeric collagen type I

(Blackstock et al. 2014; Cai et al. 2010a, b). This

interaction is mediated by a conserved RNA binding unit

present in LARP6, named the La module, which comprises

two domains, a La motif (LaM) and an RNA recognition

motif (RRM1). The La module was first discovered in the

founding member of the LARPs, the La protein, where the

LaM and RRM1 were shown to work in synergy to

recognise 30 UUUOH RNA targets (Alfano et al. 2004;

Bayfield et al. 2010; Kotik-Kogan et al. 2008). Although

the La module is conserved across the LARP superfamily,

the recognised RNA targets are not, and this RNA binding

versatility is thought, at least in part, to account for the

different cellular processes in which LARPs are involved

(Bayfield et al. 2010). Contrary to the archetype La protein,

for which high resolution structures of several domains in

the apo and bound form, as well as biophysical insights into

its RNA binding properties, have been reported (Jacks et al.

2003; Alfano et al. 2004; Teplova et al. 2006; Kotik-Kogan

et al. 2008; Martino et al. 2012), the LARPs are much less

well understood and the mechanism by which La modules

of LARPs can recognise a great variety of RNA molecules,

with different shapes and sequences, is still elusive.

To understand in detail the RNA recognition mechanism

of LARPs we embarked on a structural and biophysical

analysis of the LaM and RRM1 from human LARP6

(HsLARP6). Interestingly, this study revealed that the

relative orientation of the LaM and RRM1, mainly dictated

by the sequence and structure of the interdomain linker,

could play a key role in RNA target discrimination by the

La module (Martino et al. 2015). These investigations il-

lustrate the complexity of protein-RNA recognition by

underscoring the importance of modular types of interac-

tion in achieving binding specificity and affinity.

Since malfunction of collagen production is connected

to a number of fibroproliferative disorders the investigation

of the RNA binding mechanism of human LARP6 may be
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exploited in the future for rational drug design. Here we

report the backbone and the sidechain NMR assignment of

the LaM and RRM1 of human LARP6.

Protein expression and purification

For our NMR studies, two human LARP6 domains, the

LaM, encompassing residues 70–183, and RRM1, residues

180–295, were prepared as follows. Both domains were

cloned into pET-Duet1 vector (Novagen) with an N-ter-

minal histidine tag followed by a TEV-cleavage site. 15N

and 15N/13C labelled recombinant proteins were produced

in Escherichia coli Rosetta II, growing transformed bac-

teria in minimal media enriched with 0.8 g L-1 15N-am-

monium chloride and 2 g L-1 13C glucose, and induced at

18 �C for 14 h. Cell pellets were resuspended in 50 mM

Tris, pH 8.0, 300 mM NaCl, 10 mM imidazole, 5 %

glycerol, 2 mM PMSF (phenylmethanesulfonyl fluoride)

and lysozyme, and lysed by sonication. Following cen-

trifugation, the proteins were purified by nickel affinity

chromatography on a 5 mL HisTrap column (GE

Healthcare) following the manufacturer’s protocol. The

N-terminal histidine tag was removed by overnight incu-

bation with TEV protease (TEVpro) (at TEVpro:HsLARP6

molar ratio of 1:50) at 4 �C in 50 mM Tris, pH 8.0,

100 mM KCl, 0.2 mM EDTA, 1 mM dithiothreitol

(DTT). The reaction mixture was subsequently applied to

a Ni–NTA column (Qiagen) to remove the cleaved tags,

the His6-tagged TEVpro and any undigested product, and

the cleaved LARP6 proteins were dialysed overnight in

50 mM Tris pH 7.25, 100 mM KCl, 0.2 mM EDTA,

1 mM DTT. The proteins were finally purified on a 5 mL

Hi-Trap heparin column (GE Healthcare) and eluted with

a linear 0–2 M KCl gradient in 25 mM Tris pH 7.25,

10 % glycerol, 1 mM DTT. The LaM and RRM1 were

dialysed in 20 mM Tris pH 7.25, 100 mM KCl, 50 mM

arginine glutamate salt (Golovanov et al. 2004), 1 mM

DTT and 20 mM Tris pH 7.25, 100 mM KCl, 1 mM DTT

respectively.

NMR spectroscopy

NMR samples contained *0.5 mM protein in 95 % H2O/

5 % D2O or 99 % D2O at pH 7.25 in 100 mM KCl, 50 mM

arginine glutamate salt, 1 mM DTT for the LaM and in

20 mM Tris pH 7.25, 100 mM KCl, 1 mM DTT for

RRM1. All NMR spectra for backbone and sidechain

resonance assignment were collected at 298 K on a Varian

Inova spectrometer operating 18.8 T and on Bruker

Avance spectrometers at 14.1 and 16.4 T equipped with

triple resonance cryoprobes. Backbone resonances were

assigned in a sequential manner using [1H,15N]-HSQC,

HNCA, HN(CO)CA, HNCACB, HN(CO)CACB and

HNCO experiments (Grzesiek and Bax 1993). Sidechain

resonances were obtained using [1H,15N]-HSQC, [1H,13C]-

HSQC HCCH-TOCSY15N-edited NOESY-HSQC and 13C-

edited NOESY-HSQC spectra (Fesik et al. 1988). NMR

data were processed using NMRPipe/NMRDraw (Delaglio

et al. 1995) and visualised/assigned using CcpNMR Ana-

lysis 2.2 (Vranken et al. 2005) software and/or CARA/

Neasy software (Bartels et al. 1995). Chemical shifts were

referenced to internal 4,4-dimethyl-4-silapentane-1-sul-

fonic acid (DSS).

Extent of the assignment and data deposition

Figure 1 shows the assigned [1H, 15N]-HSQC spectra for

the LaM (a) and RRM1 (b) acquired at 298 K. The dis-

persion of the resonances in both cases suggests that both

domains are well folded. The LaM is made of 114 residues

of which 6 are prolines and 3 are glycines. For the back-

bone, 97/107 NH, 102/114 Ha, 84/114 CO, 106/114 Ca
and 100/111 Cb resonances were successfully assigned.

This corresponds to 90, 89, 74, 92 and 90 % of the NH, Ha,
CO, Ca and Cb resonances respectively and implies an

87 % complete backbone assignment. Around 78 % of

aliphatic sidechain (position c onwards) and 65 % of the

aromatic side chains 1H and 13C assignments have also

been made. The RRM1 has 116 residues with 7 prolines

and 7 glycines. Here the backbone assignment was 88 %

complete: assignments have been obtained for 104/108 NH

(95 %), 97/116 Ha (84 %), 93/116 CO (80 %), 111/116 Ca
(96 %) and 93/109 Cb (85 %) resonances. In addition,

around 82 % and 72 % of aliphatic and aromatic 13C and
1H sidechain resonances have been assigned respectively.

Most of the missing assignments in the two domains

correspond to residues T70, A71, S72, Q83, R120, R121,

N122, K123, Y126, K130, K136 for the LaM and Q204,

K205, N206, G207, S251 for the RRM1, for which peaks in

the [1H,15N]-HSQC spectra could not be observed. None of

the exchangeable sidechain protons of Arg and Lys resi-

dues was identified, nor the sidechain amide groups of most

Asn and Gln.

Secondary structures were derived from backbone che-

mical shifts and estimates for w/u dihedral angles were

obtained using TALOS? (Shen et al. 2009). As expected,

the secondary structure elements predicted for HsLARP6

LaM closely resemble what was previously found for hu-

man La LaM (Alfano et al. 2003). Interestingly, the

topology for the HsLARP6 RRM1 was found to be

b1a00a1b2a10b3a2b4; this domain therefore contains two

non-canonical secondary structure elements located in the

loop between b1 and a1 (a00) and the loop between b2 and
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b3 (a10) in addition to the expected four b-strands (b1–b4)
and two a-helices (a1 and a2) typical of the RRM fold.

These findings were confirmed in the high resolution

structure recently obtained (Martino et al. 2015).

The chemical shift data were deposited in the BioMa-

gResBank (http://www.bmrb.wisc.edu/) under the acces-

sion numbers 25159 and 25160 for the LaM and RRM1

respectively.
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