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Abstract In order to determine the risk capital for their aggregate portfolio,

property and casualty insurance companies must fit a multivariate model to the loss

triangle data relating to each of their lines of business. As an inadequate choice of

dependence structure may have an undesirable effect on reserve estimation, a two-

stage inference strategy is proposed in this paper to assist with model selection and

validation. Generalized linear models are first fitted to the margins. Standardized

residuals from these models are then linked through a copula selected and validated

using rank-based methods. The approach is illustrated with data from six lines of

business of a large Canadian insurance company for which two hierarchical

dependence models are considered, i.e., a fully nested Archimedean copula structure

and a copula-based risk aggregation model.
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1 Introduction

In Canada, the Own Risk Solvency and Assessment (ORSA) guideline from the

Office of the Superintendent of Financial Institutions (OSFI) requires that insurance

companies set internal targets for risk capital that are tailored to their consolidated

operations. In order to relate risk to capital and consider their operations as a whole,

insurers are encouraged to develop internal models for the aggregation of dependent

risks. Similar regulations exist in many countries worldwide.

To comply with regulatory standards, property and casualty insurance companies

have to hold reserves and risk capital relating to losses that are incurred but not yet

paid. For each line of business, payments relating to past claims are usually

structured in a run-off triangle arranged to rows according to the accident years, and

to columns according to the development periods, i.e., the years since the accident

occurred. In order to determine a reserve, one must forecast the payments that these

ongoing claims will induce in future years, i.e., one must extend each triangle to a

rectangle by predicting the missing entries.

Several nonparametric approaches are available for developing claims in a run-

off triangle, most notably the chain-ladder method. In order to account for the

dependence between triangles, multivariate extensions of this technique have been

proposed, e.g., in [7, 28, 31, 34, 41]. These techniques account for dependence in

the computation of reserves and their prediction errors but they do not provide the

predictive distribution needed to obtain risk measures such as Value-at-Risk (VaR)

or Tail Value-at-Risk (TVaR). Their use in the determination of risk capital is

therefore limited.

Parametric approaches leading to the distribution of unpaid losses have been

considered, e.g., in [1, 8, 12, 29, 36, 37]. Models investigated in these articles

incorporate dependence between lines of business and/or within calendar years of a

line of business through Gaussian, Archimedean or Hierarchical Archimedean

copulas. In these papers, the total reserve estimate in the presence of dependence is

not equal to the sum of the marginal reserves estimated assuming independence.

This is a by-product of the joint estimation of the marginal and dependence

parameters, which relies heavily on the choice of multivariate model for the run-off

triangles. An inadequate choice of dependence structure may then have a large,

undesirable effect on the estimation of the reserves. This is particularly worrying

given that this choice is typically based on very few data points (e.g., 55

observations for 10 accident years and 10 development periods). Tools are thus

needed for assessing the dependence between run-off triangles and selecting an

appropriate model.

In this paper, we address this inferential issue within the context of a multivariate

extension of the pairwise model of [37], where the dependence between

corresponding cells of different run-off triangles is described by a copula. We

propose to use an alternative two-stage inference strategy, in which generalized

linear models (GLMs) are first fitted to the margins, thereby fixing the estimates of

the reserves. In the second step, standardized residuals from those models are linked

through a dependence structure estimated using rank-based methods. This general
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approach has a long history in the copula modeling literature; see, e.g., [14] or [17]

for reviews. When dealing with identically distributed data, rank-based methods are

well-established tools for selecting, estimating and validating copulas. To our

knowledge, however, these techniques have never been applied to run-off triangles.

To illustrate the proposed approach, we consider run-off triangles for six

portfolios from a large Canadian property and casualty insurance company. These

data are described in Sect. 2 and appended. In Sect. 2.1, GLMs with log-normal and

Gamma distributions are fitted to the individual portfolios, and the properties of

these two parametric families are exploited in Sect. 2.2 to define residuals that are

suitable for a dependence analysis through ranks. Two different hierarchical

approaches are then explored for modeling the dependence between the lines of

business.

In Sect. 3, a nested Archimedean copulamodel is fitted, along the same lines as [1].

As this model imposesmany constraints on the dependence structure and the choice of

copulas, amore flexible approach considered in [4, 11] is implemented in Sect. 4. Risk

capital calculations and allocations for the two models are compared in Sect. 5, and

Sect. 6 summarizes the pros and cons of these approaches. Appendix 1 contains

density calculations for the nested Archimedean copula model, and the data (up to a

multiplicative factor for confidentiality purposes) are provided in Appendix 2, along

with parameter estimates of the marginal GLMs.

2 Data

The run-off triangle data considered in this paper are from a large Canadian

property and casualty insurance company. They consist of the cumulative paid

losses and net earned premiums for six lines of automobile and home insurance

business. Tables 13, 14, 15, 16, 17 and 18 in Appendix 2 show the paid losses for

accident years 2003–12 inclusively for each of the six lines of business developed

over at most ten years. To preserve confidentiality, all figures were multiplied by a

constant. However, this is inconsequential because in order to account for the

volume of business, the analysis focuses on the paid loss ratios, i.e., the payments

divided by the net earned premiums.

Table 1 gives a descriptive summary of each line of business (LOB). There are

five run-off triangles of personal and commercial auto lines with accident benefits

and bodily injury coverages from three regions (Atlantic, Ontario and the West).

Atlantic Canada consists of New Brunswick, Nova Scotia, Prince Edward Island and

Newfoundland/Labrador; the West comprises Manitoba, Saskatchewan, Alberta,

British Columbia, Northwest Territories, Yukon, and Nunavut. Given that Québec

has a public plan for this section of auto insurance, business for that province is

included only in the sixth triangle, which comprises the company’s country-wide

Liability personal and commercial home insurance.

Bodily injury (BI) coverage provides compensation to the insured if the latter is

injured or killed through the fault of a motorist who has no insurance, or by an

unidentified vehicle. The accident benefits (AB) coverage provides compensation,

regardless of fault, if a driver, passenger, or pedestrian suffers injury or death in an
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automobile collision. Disability income is an insurance product that provides

supplementary income when the accident results in a disability that prevents the

insured from working at his/her regular employment. For this reason, AB disability

income is considered separately from other AB. Finally, liability insurance covers

an insured for his/her legal liability for injuries or damage to others.

2.1 Marginal GLMs for incremental loss ratios

For LOB ‘ 2 f1; . . .; 6g, denote by Y
ð‘Þ
ij the incremental payment for the ith accident

year and the jth development period, where i; j 2 f1; . . .; 10g. Given that the earned

premiums p
ð‘Þ
i vary with accident year i and line of business ‘, it is convenient to

model the loss ratios, defined by

X
ð‘Þ
ij ¼ Y

ð‘Þ
ij =p

ð‘Þ
i :

In Fig. 1, loss ratios X
ð‘Þ
ij for i ¼ 1; 2, j ¼ 1; . . .; 11� i and ‘ ¼ 1; . . .; 6 are shown. It

is clear from the graph that the loss ratio depends on the development lag for every

portfolio. By comparing the solid and dashed lines of the same color, one can also

see that the accident year has an impact. In order to capture these patterns, we

consider a regression model with two explanatory variables, i.e., accident year and

development period. This is in line with the classical chain-ladder approach.

For LOB ‘ 2 f1; . . .; 6g, let jð‘Þi be the effect of accident year i 2 f1; . . .; 10g and

kð‘Þj be the effect of development period j 2 f1; . . .; 10g. The systematic component

for the ‘th line of business can then be written as

gð‘Þij ¼ fð‘Þ þ jð‘Þi þ kð‘Þj ;

where fð‘Þ is the intercept, and for parameter identification, we set jð‘Þ1 ¼ kð‘Þ1 ¼ 0.

There is no interaction term in this model, i.e., it is assumed that the effect of a

given development period does not vary by accident year. While this assumption is

hard to check, it is required to ensure that all parameters can be estimated from the

55 observations available.

Table 1 Descriptive summary of six lines of business for a Canadian insurance company

LOB Region Product Coverage

1 Atlantic Auto Bodily injury

2 Ontario Auto Bodily injury

3 West Auto Bodily injury

4 Ontario Auto Accident benefits excluding disability income

5 Ontario Auto Accident benefits: disability income only

6 Country-wide Home Liability
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In their analysis of dependent loss triangles using copulas, Shi and Frees [37] use

the log-normal and Gamma distributions for incremental claims. Their justification

applies here as well. Following these authors, we consider the link

lð‘Þij ¼ gð‘Þij

for a log-normal distribution with mean lð‘Þij and standard deviation rð‘Þ on the log

scale. For the Gamma distribution, however, we use the exponential link instead of

the canonical inverse link in order to enforce positive means. When the Gamma

distribution is selected, therefore, its scale and shape parameters are respectively

denoted by bð‘Þij and að‘Þ, and it is assumed that

bð‘Þij ¼ expðgð‘Þij Þ=að‘Þ:

Log-normal and Gamma distributions were fitted to all lines of business by the

method of maximum likelihood. Table 2 shows the corresponding values of the

Akaike information criterion (AIC) and the Bayesian information criterion (BIC).

These criteria suggest the choice of the log-normal distribution for the first line of

business and the Gamma distribution for all others. These choices of models are

confirmed by the Kolmogorov–Smirnov goodness-of-fit test, whose p-values are

also given in Table 2. No model is rejected at the 1 % level. Q–Q plots (not shown)

of standardized residuals (defined below) provide visual confirmation that the

selected models are adequate, although the fit for LOB 6 is borderline.
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Fig. 1 Loss ratios for years 2003 (solid line) and 2004 (dashed line) in function of the development lag
for the six lines of business
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Parameter estimates of the fitted models are given in Appendix 2 along with their

standard errors. Using these values, one can estimate the total reserve of the

portfolio by

X6

‘¼1

X10

i¼2

X10

j¼10�iþ2

p
ð‘Þ
i EðXð‘Þ

ij Þ;

where EðXð‘Þ
ij Þ is the projected unpaid loss ratio, and p

ð‘Þ
i is the premiums earned in

the corresponding accident year i. For ‘ ¼ 1, we have

EðXð1Þ
ij Þ ¼ expfl̂ð1Þij þ ðr̂ð1ÞÞ2=2g;

while for ‘[ 1, EðXð‘Þ
ij Þ ¼ b̂ð‘Þij â

ð‘Þ. The estimated reserves of the six lines of

business are given at the bottom of Table 19 in Appendix 2, along with those

derived from the chain-ladder method, which is the industry’s benchmark. The two

methods lead to similar results and total reserve estimates of $438,088 and

$453,686, respectively.

2.2 Exploratory dependence analysis

One would expect intuitively that the AB, BI and liability claim payments are

associated, as these coverages all involve compensation for injuries or damage to

the insured or to others. One may also wonder whether there exist interactions

between portfolios across regions. In order to account for such dependencies

between d� 2 triangles, Shi and Frees [37] propose to link the marginal GLMs

through a copula. This approach involves expressing the joint distribution of the loss

ratios in the form

PrðXð1Þ
ij � x

ð1Þ
ij ; . . .;X

ðdÞ
ij � x

ðdÞ
ij Þ ¼ CfPrðXð1Þ

ij � x
ð1Þ
ij Þ; . . .; PrðXðdÞ

ij � x
ðdÞ
ij Þg;

where C is a d-variate cumulative distribution function with uniform margins on

(0, 1).

Table 2 Fit statistics and goodness-of-fit test of marginals

LOB AIC BIC p-value of the Kolmogorov–Smirnov test

Log-normal Gamma Log-normal Gamma

1 -294 -291 -254 -251 0.886

2 -266 -270 -226 -230 0.643

3 -323 -324 -283 -283 0.397

4 -272 -276 -232 -236 0.135

5 -441 -444 -401 -404 0.478

6 -259 -267 -219 -226 0.019
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In order to select a copula C that appropriately reflects the dependence in the

data, it is best to rely on rank-based techniques as they allow to separate the effect of

the marginals from the dependence structure [14, 17].

To illustrate this point, consider first the graph displayed in the left panel of

Fig. 2, which shows a scatter plot of the pairs ðXð3Þ
ij ;X

ð6Þ
ij Þ with i; j 2 f1; . . .; 10g and

j� i. This graph suggests a strong, positive dependence between BI in Western

Canada and country-wide liability; in particular, the Pearson correlation is 0.56.

However, the pattern of points on this graph is induced by the systematic effects of

the development lags and accident years. For example, the seven points in the lower

left corner of the graph all correspond to development years 7–10. As these effects

are already accounted for by the marginal GLMs, this graph is uninformative (not to

say misleading) for the selection of C.

To get insight into the dependence structure, it is more relevant to consider the

residuals from the GLMs. For LOB 1, (standardized) residuals of the log-normal

regression model can be defined, for all i; j 2 f1; . . .; 10g and j� i, as

eð1Þij ¼ flnðXð1Þ
ij Þ � l̂ð1Þij g=r̂ð1Þ;

while for LOB ‘ 2 f2; . . .; 6g, the fact that Gamma regression models were used

leads to set

eð‘Þij ¼ X
ð‘Þ
ij =b̂ð‘Þij :

In this fashion, the vectors ðeð1Þij ; . . .; eð6Þij Þ with i; j 2 f1; . . .; 10g and j� i form a

pseudo-random sample from a distribution with copula C and margins approxi-

mately Nð0; 1Þ for ‘ ¼ 1 and Gðâð‘Þ; 1Þ, for ‘ 2 f2; . . .; 6g.
As an illustration, the middle panel of Fig. 2 shows a scatter plot of the pairs

ðeð3Þij ; eð6Þij Þ. This graph suggests a form of positive dependence (Pearson’s correlation

is 0.34), but the message is blurred by the effect of the Gamma marginals. As the

goal is to select the copula C, which does not depend on the margins, it is preferable

to plot the pairs of normalized ranks, as in the right panel of Fig. 2. For arbitrary

i; j 2 f1; . . .; 10g and j� i, the standardized rank of residual eð‘Þij is defined by
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Fig. 2 Loss ratios (left), residuals (middle) and standardized ranks of the latter (right) for LOBs 3 and 6
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R
ð‘Þ
ij ¼ 1

55þ 1

X10

i�¼1

X11�i�

j�¼1

1ðeð‘Þi�j� � eð‘Þij Þ;

where, in general, 1ðAÞ is the indicator function of the set A and the division by 56

rather than 55 is to ensure that all standardized ranks are strictly comprised between

0 and 1.

Let Cn be the empirical distribution function of the vectors ðRð1Þ
ij ; . . .;R

ðdÞ
ij Þ, with

i; j 2 f1; . . .; 10g and j� i. It can be shown, under suitable conditions on the

underlying copula C, that Cn is a consistent estimator thereof. Accordingly, the

vectors of standardized ranks, which form the support of Cn, are a reliable tool for

copula selection, fitting and validation. In particular, all rank-based tests of bivariate

or multivariate independence are based on Cn.

For example, the right panel of Fig. 2 shows the pairs of standardized ranks

associated with the residuals from the West BI and the country-wide liability

coverages. One can see from this graph that there is a residual dependence between

these two portfolios. In particular, the correlation between these pairs is 0.40; this

rank-based correlation is a consistent estimate of Spearman’s q. Alternative copula-
based measures of association between two variables are Kendall’s s and van der

Waerden’s coefficient !. Thus one can test the null hypothesis of bivariate

independence by checking whether the empirical values of these coefficients are

significantly different from 0; see, e.g., [23]. Table 3 gives estimates of q, s and !
for the pair ðeð3Þ; eð6ÞÞ, along with the p-values of the corresponding tests; the null

hypothesis of independence is rejected at the 1 % level in all cases.

The null hypothesis of multivariate independence between the six LOBs can also

be assessed globally using rank tests based on d-variate generalizations of q, s or !.
In particular, the d-variate version of Kendall’s s is given, e.g., in [18], by

sd;n ¼
1

2d�1 � 1
�1þ 2d

nðn� 1Þ
X

ði;jÞ6¼ði�;j�Þ
1 eð1Þi�j� � eð1Þij ; . . .; eðdÞi�j� � eðdÞij

� �
8
<

:

9
=

; ¼ 0:035:

Under the hypothesis of multivariate independence, sd;n has mean 0, finite sample

variance

varðsd;nÞ ¼
nð22dþ1 þ 2dþ1 � 4� 3dÞ þ 3dð2d þ 6Þ � 2dþ2ð2d þ 1Þ

3dð2d�1 � 1Þ2nðn� 1Þ
¼ 1:59� 10�4;

and its distribution is asymptotically Gaussian. The approximate p-value of the test

is 0:53%, suggesting that the residuals are dependent. The most dependent pairs of

Table 3 Nonparametric tests of

independence
Kendall’s test Spearman’s test van der Waerden test

ŝ p-value q̂ p-value !̂ p-value

0.29 0.0021 0.40 0.0023 18.27 0.0055
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variables can be identified from Table 4, where all values of s2;n are displayed.

Values shown in bold are those that would be significantly different from 0 at the

5 % level in a single pairwise test. Although this level must be interpreted with care

due to the multiple comparison issue, the two largest values in Table 4 are still

significantly different from 0 at the global 5 % level even when the very conser-

vative Bonferroni correction is applied.

Given the presence of dependence, the challenge is then to select a copula that

best reflects the association between the variables. Many parametric families of

copulas are available; see, e.g., [27] or [30] for the definition and properties of the

Clayton, Frank, Plackett and t copula families used subsequently. Given a class

C ¼ fCh : h 2 Hg of d-dimensional copulas, a rank-based estimate ĥ of the

dependence parameter h can be obtained from loss-triangle data by maximizing the

pseudo log-likelihood

LðhÞ ¼
X10

i¼1

X11�i

j¼1

lnfchðRð1Þ
ij ; . . .;R

ðdÞ
ij Þg;

where ch is the density of Ch. The consistency and asymptotic normality of esti-

mators of this type was established in [15] under broad regularity conditions. The

adequacy of the class C can then be tested using the Cramér–von Mises statistic

defined by

Sn ¼
Z

½0;1�d
Cnðu1; . . .; udÞ � Cĥðu1; . . .; udÞ

� �2
du1 � � � dud:

The p-value of a test of the hypothesis H0 : C 2 C based on the statistic Sn can be

computed via a parametric bootstrap procedure described in [19]. Both the esti-

mation and the goodness-of-fit procedures are available in the R package copula.
For illustration, Table 5 shows the parameter estimates, standard deviation and the

p-value of the goodness-of-fit test for four copula families fitted to the pairs of

residuals ðeð3Þ; eð6ÞÞ from the West BI and country-wide Liability triangles. This

suggests that the Clayton copula would be a poor choice for these data; given the

small sample size, however, it does not seem possible to discriminate between the

other three copula families on the basis of Sn.

This model selection, fitting and validation procedure is standard and straight-

forward to implement in two dimensions. However, the canonical d-variate

Table 4 Empirical values of

Kendall’s s for all pairs in the

portfolio

Bold values indicate

significantly different from 0 at

the 5 % level in a single pairwise

test

e(1) e(2) e(3) e(4) e(5) e(6)

e(1) 1.000 0.115 0.024 20.061 0.014 0.076

e(2) 0.115 1.000 20.331 0.244 0.209 -0.090

e(3) 0.024 20.331 1.000 0.040 -0.079 0.285

e(4) -0.061 0.244 0.040 1.000 0.200 0.030

e(5) 0.014 0.209 -0.079 0.200 1.000 0.046

e(6) 0.076 -0.090 0.285 0.030 0.046 1.000
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generalizations of bivariate copulas typically lack flexibility: either they are

exchangeable and/or their lower-dimensional margins are all of the same type. With

six lines of business, these assumptions may be too restrictive. As one can see in

Fig. 3, different pairs of residuals exhibit different types of association; this is also

confirmed by the values of Kendall’s s reported earlier in Table 4. In particular,

Ontario LOBs exhibit positive dependence, while the BI coverages for Ontario and

the West are negatively associated.

The fact that many variables are positively dependent is due in part to exogenous

common factors such as inflation and interest rates. Furthermore, strategic decisions

can impact several portfolios, e.g., the acceleration of payments on all lines of the

liability insurance sector could induce some dependence between West BI and

country-wide liability. At a more basic level, the positive association between

Ontario AB and BI can be explained by the fact that the same accident will often

arise in both coverages. Finally, jurisprudence can play a role. For example, reforms

were engaged in the Atlantic region to control BI costs; this may explain why

LOB 1 is seemingly independent from all other lines of business.

Table 5 Parameter estimates

and goodness-of-fit test p-value
Copula Parameter Standard deviation p-value

Clayton 0.584 0.194 0.0804

Frank 2.804 0.836 0.7557

Plackett 3.777 1.426 0.7747

t2 0.375 0.155 0.2323
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3 Nested Archimedean copula model

Nesting Archimedean copulas is a popular way of constructing non-exchangeable

multivariate dependence models. This approach, originally proposed in [24], was

further investigated, e.g., in [13, 33, 40]. In the reserving literature, Abdallah et al.

[1] exploited nested Archimedean copulas to model the dependence between two

run-off triangles. In what follows, this approach is extended to higher dimensions

using a specific structure called fully nested Archimedean copulas.

Following [16] or [30], a bivariate copula is said to be Archimedean with

generator u1 : ð0; 1� ! ½0;1Þ if it can be expressed, for all ðu1; u2Þ 2 ð0; 1Þ2, in the

form

C1ðu1; u2Þ ¼ u�1
1 fu1ðu1Þ þ u1ðu2Þg;

where u1 is convex, decreasing and such that u1ð1Þ ¼ 0. More generally, a ðd þ 1Þ-
variate copula Cd is said to be a fully nested Archimedean copula with generators

u1; . . .;ud if it is defined recursively for all ðu1; . . .; udþ1Þ 2 ð0; 1Þdþ1
, by

C2ðu1; u2; u3Þ ¼ u�1
2 ½u2ðu3Þ þ u2fC1ðu1; u2Þg�;

..

.
¼ ..

.

Cdðu1; . . .; udþ1Þ ¼ u�1
d ½udðudþ1Þ þ udfCd�1ðu1; . . .; udÞg�:

As shown in [26], Cd is a copula when the following conditions hold:

(1) u�1
1 ; . . .;u�1

d are completely monotone, i.e., Laplace transforms;

(2) ukþ1 	 u�1
k has completely monotone derivatives for all k 2 f1; . . .; d � 1g.

This model is such that if ðU1; . . .;Udþ1Þ is distributed as Cd, the copula linking

variables Uj and Uk is Archimedean with generator uk�1 for all j\k. Because of

condition (2), one must also have

sðUk;U‘Þ� sðUi;UjÞ; i\j\‘; k\‘: ð1Þ

Algorithms for generating data from Cd were given in [21, 26]. Hofert and Mächler

[22] also wrote the R package nacopula (now merged into copula) that can be

used to simulate from fully nested Archimedean copulas in any dimension.

Figure 4 depicts the fully nested Archimedean structure used to model the

dependence between the residuals of the six lines of business. In this structure,

copula C1 links the two components of the Ontario AB coverage. Their dependence

with Ontario BI coverage is then incorporated at level 2. The West BI and the

country-wide Liability coverages are then included at levels 3 and 4, respectively.

Anti-ranks (i.e., the ranks of the negative residuals) had to be used at levels 3 and 4,

because of the constraints imposed by (1) and the fact that the residuals for LOB 3

are negatively associated with LOB 2 and positively associated with LOB 6. Finally,

the Atlantic BI coverage was included at the last step given its apparent lack of

dependence with the other lines of business. This overall structure is in accordance
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with ratemaking practices, as the rating is typically performed on a territorial basis.

One may thus expect the dependence between lines of business to be larger when

they are from the same region than when they are not.

In what follows, it is assumed that for each k 2 f1; . . .; 5g and all t 2 ð0; 1Þ,

ukðtÞ ¼ � ln
e�thk � 1

e�hk � 1

� �

for some hk 2 R. In other words, the nested copulas are taken to be from the Frank

family, which spans all degrees of dependence between �1 and 1, as measured by

Kendall’s s. A rank-based estimate ĥ of the vector h ¼ ðh1; . . .; h5Þ characterizing
the dependence structure is then obtained by maximizing the pseudo-likelihood

function

LðhÞ ¼
X10

i¼1

X11�i

j¼1

ln c R
ð4Þ
ij ;R

ð5Þ
ij ;R

ð2Þ
ij ; 1� R

ð3Þ
ij ; 1� R

ð6Þ
ij ;R

ð1Þ
ij ; h

� �n o
;

where c is the density of the fully nested Archimedean copula. As shown in

Appendix 1, the evaluation of this density is straightforward but computationally

intensive in high dimensions. Therefore, due to evidence that residuals for LOB 1

are independent from residuals for other LOBs, h5 was set equal to 0.

The maximization of the pseudo-likelihood for the model with four levels leads

to the parameter estimate ĥ ¼ ð2:693; 2:354; 1:782; 0:867Þ. However, a 95 %

confidence interval for h4 based on 1000 bootstrap replicates includes 0, which

corresponds to independence in the Frank copula family. Accordingly, the

dependence is significant only in the first three levels of the hierarchy. The

parameters of the reduced model with h4 ¼ h5 ¼ 0 were estimated once again by the

maximum pseudo-likelihood method. This led to ĥ ¼ ð2:577; 2:233; 1:776Þ, whose
components are all significantly different from 0.

Figure 5 shows the approximate distribution of ĥ3 (left), ĥ2 (middle), and ĥ1
(right) based on 10,000 bootstrap replicates. In that figure, the dashed blue lines

represent 95 % confidence intervals for the parameters, none of which includes 0.

Fig. 4 Tree structure for the
fully nested Archimedean
copula model
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There are hints in the figure that the distribution of the estimators (especially ĥ1)
may not be Normal. This is likely due to the constraint h3 � h2 � h1. In the bottom

row of Fig. 5, one can observe that parameters on the boundary of their domain are

relatively frequent: ĥ1 ¼ ĥ2 in 14.3 % of the replicates, ĥ3 ¼ ĥ2 in 9.9 % of the

replicates, and ĥ1 ¼ ĥ2 ¼ ĥ3 in 4.8 % of the replicates.

To check for model adequacy, a random sample of size 500 from the fitted model

was generated. A test of the hypothesis that the underlying copula of this sample is

the same as that of the original data was then carried out using the rank-based

procedure in [32]. The test statistic was computed with the R package TwoCop and

led to an approximate p-value of 31 %, suggesting that the fit is not inadequate.

As an additional informal check, random samples of size 55 were drawn from the

fitted 6-dimensional copula and compared visually to the empirical copula by

looking at rank plots of selected pairs. Figure 6 shows one result from such a

comparison of pairs (LOB 2, LOB ‘) with ‘ 2 f3; 4; 5g and (LOB 3, LOB 4). The

rank plots derived from the residuals are in the top row, and those corresponding to

the random sample are in the bottom row. The positive dependence between Ontario

risks seems to be accurately captured by the model. Although the negative

association between LOBs 2 and 3 is taken into account, one can see in the second

column of Fig. 6 that negative dependence is induced between LOBs 3 and 4. This

is an artifact of the dependence structure, which assumes from the start that the pairs

ð�3; ‘Þ, with ‘ 2 f2; 4; 5g have the same degree of association. Table 4 suggests

that this is not the case. This issue could have been avoided by grouping LOB 2 and
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Fig. 5 Fully nested Archimedean copula model: histograms of bootstrap parameters with 95 %
confidence interval (top row) and scatter plots of bootstrap replications (bottom row)
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LOB 3 earlier in the structure, but at the expense of the overall fit of the model. A

more flexible modeling approach is presented below.

4 Copula-based risk aggregation model

In this section, a hierarchical approach to loss triangle modeling is considered. It

appears to have been originally proposed by Swiss reinsurance practitioners [9, 35]

but was formalized in [4]. Estimation and validation procedures for this class of

models are described in [10, 11], where rank-based clustering techniques are also

proposed for selecting an appropriate structure.

The model is defined using a tree comprising d � 1 nodes, each of which has two

branches. An example of such a structure is shown in the left panel of Fig. 7. At
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Fig. 6 Adequacy check for the fully nested Archimedean copula model: ranks of pairs of residuals (top
row) and pairs of simulations from the model (bottom row)

Fig. 7 Illustration of the tree structure and dendrogram for the copula-based aggregation model
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each node, a copula describes the dependence between the two components which

are then summed and viewed as a single risk in higher levels of the hierarchy. For

example, C4;5 denotes the copula linking eð4Þ and eð5Þ and S4;5 ¼ eð4Þ þ eð5Þ, while
C2;...;6 is the copula linking aggregated risks S2;3;6 and S4;5.

A joint distribution for the d variables is then defined in terms of d � 1 bivariate

copulas and d marginal distributions under a conditional independence assumption.

This assumption, which is reasonable in the present context, states that conditional

on a sum at a given node, the descendents of that node are independent of the non-

descendents. For additional details, see [4, 11].

This strategy is simple to implement, as it builds on tools already available for

bivariate copula selection, inference, and validation. Furthermore, the d � 1 copulas

in the model can be chosen freely, thereby providing great flexibility in the

dependence structure. Moreover, hierarchical clustering techniques can be adapted

to obtain an appropriate tree structure.

As explained in [11], it is appealing to model first the risks that are the most

dependent in some sense. In this paper, the distance based on Kendall’s s,

Dðeð‘Þ; eðkÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2ðeð‘Þ; eðkÞÞ

q
;

is maximized at each step to obtain the dendrogram displayed in the right panel of

Fig. 7. Risks 2 and 3 are grouped in the first step. Given that they are negatively

associated, it was deemed preferable to work with �eð3Þ as was done in the previous

section.

Before selecting appropriate copulas for each aggregation step, Kendall and van

der Waerden tests of independence were performed to see if the dependence is

significant. The resulting p-values are shown in Table 6, where one can see that

independence is rejected for the first four aggregation steps, but not at the last one.

This is not surprising as the preliminary analysis of the data already suggested that

the Atlantic BI line of business is not related to the others. Unlike the nested

Archimedean copula model, the risk aggregation model captures the existing

dependence between West BI and country-wide Liability lines, and includes the

latter in the dependence analysis.

Given that the independence hypothesis cannot be rejected at the last node, there

are only four copulas to be fitted, namely C2;3, C2;3;6, C4;5 and C2;...;6. Based on rank

plots, tests of extremeness from [6] and goodness-of-fit tests based on the Cramér–

Table 6 Results of tests of

independence at each

aggregation step

Variables s p-value

Van der Waerden test Kendall test

eð2Þ �eð3Þ 0.331 0.0004 0.0004

S2;3 eð6Þ 0.300 0.0020 0.0012

eð4Þ eð5Þ 0.200 0.0541 0.0311

S2;3;6 S4;5 0.098 0.0406 0.2925

S2;...;6 eð1Þ 0.075 0.3401 0.4204
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von Mises distance Sn, parametric families of bivariate copulas were selected and

fitted by maximum pseudo-likelihood. The final choices are summarized in Table 7.

The model validation technique described in [11] was used. It relies on a

simulation algorithm proposed in [4] and validated in [25]. Based on a random

sample of size 500 from the model, the test in [32] led to an approximate p-value of

52 %. Therefore, the null hypothesis that both samples are coming from the same

copula cannot be rejected. This suggests that the selected hierarchical model is

appropriate, and that the conditional independence assumption is reasonable. A

visual check of the latter assumption confirms this finding.

Looking at Fig. 8, one can see that the pitfalls of the nested Archimedean copula

model have been addressed: there is no negative dependence between LOBs 3 and

4, and the model induces positive dependence between LOBs 3 and 6. However, the

extent of the association between Ontario AB and BI risks is not portrayed as

vividly in the aggregation model as it was in the nested Archimedean copula model.

Over all, the risk aggregation model provides a faithful description of the data.

Note that if desired, a modification of the tree structure would make it possible to

account for the dependence between LOB 2 and the pair (LOB 4, LOB 5). In that

case, however, the negative dependence between LOBs 2 and 3 would be masked.

5 Predictive distribution and risk capital

The goal of loss triangle modeling is to forecast the unpaid loss by completing the

triangle into a rectangle. Insurance companies are interested in the expected unpaid

loss—the reserve—but also in its standard deviation, and other risk measures

defined in terms of a risk tolerance j 2 ð0; 1Þ such as the Value-at-Risk (VaR) and

the Tail Value-at-Risk (TVaR). In principle, these various measures could all be

computed for the nested Archimedean copula model (Model I) and the risk

aggregation model (Model II), given that they both specify a distribution for the

total unpaid claims. As these distributions cannot be obtained explicitly through a

convolution, however, all risk measures must be estimated by simulation. To obtain

one realization of the total unpaid loss, one can proceed as follows.

Simulation procedure

1. Simulate 45 observations from the dependence model.

Table 7 Copula family and parameter estimates

Step Copula Parameter SD Kendall’s s p-value GoF test

C2;3 Plackett 5.349 2.021 0.36 0.523

C2;3;6 Frank 2.864 0.986 0.29 0.714

C4;5 Clayton 0.548 0.215 0.22 0.147

C2;...;6 t2 0.162 0.180 0.10 0.358
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2. Transform these observations into loss ratios X
ð‘Þ
ij for each LOB ‘ 2 f1; . . .; 6g,

development year j 2 f2; . . .; 10g and accident year i 2 f12� j; . . .; 10g by

using appropriate inverse probability transforms.

3. For each LOB ‘ 2 f1; . . .; 6g, compute the simulated unpaid loss

Xð‘Þ ¼
X10

i¼2

X10

j¼12�i

p
ð‘Þ
i X

ð‘Þ
ij

as well as the total unpaid loss S ¼ Xð1Þ þ � � � þ Xð6Þ.

Consistent estimates of the risk measures can be derived easily from n independent

copies of the unpaid loss S1; . . .; Sn. Let Fn be the corresponding empirical

distribution function. Then

dVaRjðSÞ ¼ inffs 2 RjFnðsÞ� jg ¼ sj

and

dTVaRjðSÞ ¼
1

1� j
1

n

Xn

j¼1

Sj1ðSj [ sjÞ þ sjfFnðsjÞ � jg
" #

:

Table 8 shows risk measures for the total unpaid loss based on 500,000

simulations for Models I and II. Given the GLMs fitted to the marginal distributions,

one would expect an average total unpaid loss of $438,088; the small discrepancy

between this value and the approximations is due to simulation. The risk measures

are all smaller for Model I than for Model II. This is slightly surprising because

Model II takes into account the negative dependence between LOBs 2 and 3;
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Fig. 8 Adequacy check for the copula-based risk aggregation model: ranks of pairs of residuals (top row)
and pairs of simulations from the model (bottom row)
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intuitively, one would thus expect more risk diversification under Model II than

under Model I. Nevertheless, Model II is more conservative than Model I in the

sense that it does not assume that LOB 6 is independent from the other lines of

business. In addition, Model II is based in part on Plackett and t2 copulas, which

exhibit tail dependence, whereas members of Frank’s copula family in Model I do

not.

Insurance companies also have to determine capital allocations, i.e., the share of

the risk capital to be allocated to each LOB. This exercise helps to identity the most

and least profitable sectors of activities in a company. Capital allocation principles

have first been introduced in [38]; see [5] for a review. Here, TVaR-based capital

allocations are used. If

Xð‘Þ ¼
X10

i¼2

X10

j¼12�i

p
ð‘Þ
i X

ð‘Þ
ij

is the unpaid loss for LOB ‘, the capital allocated to that LOB is

TVaRjðXð‘Þ; SÞ ¼ E½Xð‘Þ1fS[VaRjðSÞg� þ bj E½Xð‘Þ1fS ¼ VaRjðSÞg�
1� j

;

where bj ¼ ½FSfVaRjðSÞg � j�= PrfS ¼ VaRjðSÞg if the denominator is strictly

positive and 0 otherwise. This quantity can be estimated by

dTVaRjðXð‘Þ; SÞ ¼ 1

nð1� jÞ
Xn

j¼1

X
ð‘Þ
j 1ðSj [ sjÞ þ

FnðsjÞ � j
1

n

Xn

k¼1
1ðSk ¼ sjÞ

Xn

j¼1

X
ð‘Þ
j 1ðSj ¼ sjÞ

8
><

>:

9
>=

>;
;

where X
ð‘Þ
1 ; . . .;X

ð‘Þ
n are the n realizations of Xð‘Þ corresponding to the realizations

S1; . . .; Sn.
In Table 9, TVaR-based capital allocations are shown for both models as well as

for the ‘‘Silo’’ method, which is widespread in industry [2]. It is clear that the Silo

method overestimates the total capital required as it implicitly assumes that risks are

comonotonic, thereby preventing any form of diversification. The results for Models

I and II are similar. While the capital allocations for LOBs 4 and 5 are higher in

Model II than in Model I, they are lower for LOBs 2 and 3, outlining the additional

risk diversification that is possible in the presence of negative dependence.

The risk measures in Tables 8 and 9 could be used to set internal capital targets,

but they do not incorporate parameter uncertainty, as the model is assumed to be

correct. However, a parametric bootstrap can be used in order to quantify estimation

Table 8 Risk measures for 500,000 simulations

Model Average SD VaR95% VaR99% TVaR99%

I $438,115 $13,706 $460,938 $470,750 $475,697

II $438,101 $13,808 $461,179 $471,486 $476,763
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error and to tackle potential model over-fitting; see, e.g., [37] or [39]. For the

present purpose, it was assumed that the tree structure, the copula families, and the

marginal distributions are given, except for their parameter values. The following

procedure was then repeated a large number of times (10,000 times here) in order to

obtain the approximate distribution of the unpaid loss, including parameter

uncertainty.

Parametric bootstrap procedure

1. Simulate 55 observations from the dependence model, and transform them into

observations of the loss ratios for the top triangle, i.e., all accident years i 2
f1; . . .; 10g and development years j 2 f1; . . .; 11� ig, using the inverse

marginal distributions.

2. Fit the marginal GLMs (log-normal for LOB 1 and Gamma for LOBs 2–6).

3. Compute the residuals from the GLMs.

4. Fit the copula model to the ranks of the residuals obtained.

5. From this new model, simulate the total unpaid loss using the steps described

under ‘‘Simulation procedure’’. The aggregate value is the simulated total

unpaid loss.

The results for the nested Archimedean copula model should be interpreted with

caution, however, because the constraints on the dependence parameters in this

model, and notably the fact that ĥ2 is close to ĥ1, may invalidate the parametric

bootstrap [3].

Tables 10 and 11 show risk measures and capital allocations obtained with

10,000 bootstrap simulations, while Fig. 9 shows the predictive distribution

obtained for Model I (left) and Model II (right). The risk measures in Table 10

are similar for both models and are much higher than those reported in Table 8; this

highlights the importance of incorporating parameter uncertainty. Unsurprisingly,

most of the increase in risk measures when including parameter uncertainty is due to

the 6� 20 ¼ 120 marginal GLM parameters. Table 12 shows the risk measures

obtained with the parametric bootstrap procedure without Step 4, i.e., the

dependence parameters are fixed to their initial value estimated with the original

Table 9 Risk capital allocation for 500,000 simulations

Model TVaR99%-based capital allocations Total

LOB 1 LOB 2 LOB 3 LOB 4 LOB 5 LOB 6

Silo $42,510 $157,764 $87,141 $90,237 $22,027 $118,807 $518,485

I $37,006 $151,247 $82,578 $74,320 $18,639 $111,907 $475,697

II $36,891 $147,418 $79,719 $81,928 $19,285 $111,521 $476,763
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data. The resulting risk measures are close to those found in Table 10, even though

the uncertainty in the copula parameters is not accounted for when Step 4 is omitted.

Finally, the figures in Table 11 are in line with those of Table 9. In particular,

observe that Model II allocates less capital to LOB 6 than Model I, reflecting the

fact that LOB 6 is related to LOBs 2 and 3 in Model II. In view of these results, the

Table 10 Risk measures for 10,000 bootstrap simulations

Model Average SD VaR95% VaR99% TVaR99%

I $443,041 $31,291 $496,780 $521,293 $539,205

II $442,957 $31,038 $496,470 $522,417 $535,536

Table 11 Risk capital allocation for 10,000 bootstrap simulations

Model TVaR99%-based capital allocations Total

LOB 1 LOB 2 LOB 3 LOB 4 LOB 5 LOB 6

Silo $60,740 $189,466 $103,465 $111,946 $26,637 $157,345 $649,599

I $40,519 $167,492 $90,228 $75,015 $18,565 $147,386 $539,205

II $41,919 $158,306 $83,978 $88,665 $20,858 $141,810 $535,536
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Fig. 9 Predictive distributions based on 10,000 bootstrap replicates

Table 12 Risk measures for 10,000 bootstrap simulations including uncertainty for marginal parameters

only

Model Average SD VaR95% VaR99% TVaR99%

I $443,554 $31,390 $496,781 $522,696 $535,069

II $442,937 $30,928 $495,620 $520,986 $534,703
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insurer might consider increasing the volume of LOB 3 to take better advantage of

risk diversification.

6 Summary and discussion

In this paper, rank-based procedures were introduced for the selection, estimation

and validation of dependence structures for run-off triangles of property and

casualty insurance claim data. The approach was illustrated using data from six lines

of business of a large Canadian insurance company. Two hierarchical approaches

were considered for modeling the pairwise dependence between different lines of

business, i.e., fully nested Archimedean copulas and a copula-based risk aggrega-

tion model.

As simple and convenient as the nested Archimedean copula model may seem, its

implementation raises more issues than one might anticipate initially. The success

of this approach hinges on the choice of hierarchy and Archimedean generators at

each of its levels. In principle, different Archimedean generators could be used

throughout the structure, but the conditions required to ensure that the construction

is valid are not always easy to verify. As there is no selection technique for

generators, practitioners typically assume that they are all from the same parametric

family uh. In the latter case, conditions for the validity of the nested copula typically

boil down to the constraint h1 � � � � � hd; see, e.g., [20].
As illustrated in the present paper, the use of the same generator throughout a

fully nested Archimedean copula model has strong implications on the dependence

structure. In particular, each variable is linked by the same bivariate copula to any

variable appearing in a lower level of the hierarchy and, therefore, shares the same

dependence characteristics with all of them in terms of symmetry, tail dependence,

etc. In addition, the conditions stated in Eq. (1) are not only restrictive, but are also

problematic for the parametric bootstrap. Indeed, when a bootstrap sample leads to

unconstrained estimates ĥ1; . . .; ĥd such that ĥ1 � � � � � ĥd fails, one or more of the

constrained parameter estimates end up being equal to 0. When this happens

repeatedly, the dependence between the LOBs is underestimated. Thus, it is still

unclear that this model can be used in a parametric bootstrap procedure to obtain the

predictive distribution of unpaid losses, due to the optimization problem that is not

standard.

Working with the risk aggregation model allows one to avoid most of these

issues. The tree structure can be determined using hierarchical clustering and the

copulas can be chosen freely at each aggregation step. In addition, standard tools for

bivariate copula selection, estimation, and validation are available. Moreover, the

application of the parametric bootstrap to this context is standard, as there are no

constraints on the parameters. Overall, the model provides greater flexibility and the

dependence structure can be considerably more complex than what can be achieved

with the nested Archimedean approach. However, the conditional independence

assumption must be satisfied (at least approximately) and formal tools for checking

this assumption remain to be developed. Another minor irritant is the fact that
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simulation from this model relies on the Iman–Conover reordering algorithm, which

is efficient but not yet included in standard software; in contrast, sampling from the

fully nested Archimedean copula is easily done with the R package copula.
Perhaps the most significant limitation of the rank-based approach to risk

aggregation modeling described here is that it can only be applied to data or

residuals that are (at least approximately) identically distributed. Another require-

ment for this approach to make sense is that the sums that are linked by the copulas

have the same number of components. This means that the risk aggregation model

cannot be extended easily to include calendar year dependence, as Abdallah et al.

[1] did using nested Archimedean copulas. Unfortunately, this approach is not

amenable to estimation and validation procedures based on ranks, as there is then

only one observation for each copula in the model.
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Appendix 1: Nested Archimedean copula density

The 3-dimensional fully nested Archimedean copula is defined, for all

u; v;w 2 ð0; 1Þ, by

Cðu; v;wÞ ¼ Ch2fw;Ch1ðu; vÞg;

where h1 � h2 � 0. To ease notation, let C
ði;jÞ
h ðu; vÞ ¼ oiþjChðu; vÞ=ouiovj for

i; j 2 f0; 1; 2g. The density of the nested Archimedean copula can be derived easily

using the chain rule, viz.

cðu; v;wÞ ¼ o3

ouovow
Ch2fw;Ch1ðu; vÞg ¼ o2

ouov
C
ð1;0Þ
h2

fw;Ch1ðu; vÞg

¼ o

ou
C

ð1;1Þ
h2

fw;Ch1ðu; vÞgC
ð0;1Þ
h1

ðu; vÞ
h i

¼ C
ð1;2Þ
h2

fw;Ch1ðu; vÞgC
ð1;0Þ
h1

ðu; vÞCð0;1Þ
h1

ðu; vÞ þ C
ð1;1Þ
h2

fw;Ch1ðu; vÞgC
ð1;1Þ
h1

ðu; vÞ:

This expression is explicit, though it involves partial derivatives. In the case of the

Frank family, the expressions required are the copula
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Chðu; vÞ ¼ � 1

h
ln 1þ ðe�hu � 1Þðe�hv � 1Þ

ðe�h � 1Þ

	 

;

its density

C
ð1;1Þ
h ðu; vÞ ¼ chðu; vÞ ¼

�he�hðuþvÞðe�h � 1Þ
fðe�h � 1Þ þ ðe�hu � 1Þðe�hv � 1Þg2

;

and the following partial derivatives:

C
ð1;0Þ
h ðu; vÞ ¼ oChðu; vÞ

ou
¼ e�huðe�hv � 1Þ

ðe�h � 1Þ þ ðe�hu � 1Þðe�hv � 1Þ ¼ C
ð0;1Þ
h ðv; uÞ;

C
ð1;2Þ
h ðu; vÞ ¼ ochðu; vÞ

ov
¼ �h2ðe�h � 1Þe�hðuþvÞfðe�hv þ 1Þðe�hu � 1Þ � ðe�h � 1Þg

fðe�h � 1Þ þ ðe�hu � 1Þðe�hv � 1Þg3
:

A similar procedure can be used to obtain the copula density in dimensions 4 and 5.

The formulas are available from the authors upon request or can be derived through

long but routine calculations facilitated by resorting to a symbolic calculator such as

Maple or Mathematica.

Appendix 2: Data and marginals

Tables 13, 14, 15, 16, 17 and 18 provide the net earned premiums and the

cumulative paid losses for accident years 2003–12 inclusively for each of LOBs 1–6

developed over at most 10 years. To preserve confidentiality, all figures were

multiplied by a constant.
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11. Côté MP, Genest C (2015) A copula-based risk aggregation model. Can J Stat 43:60–81

12. De Jong P (2012) Modeling dependence between loss triangles. N Am Actuar J 16:74–86

13. Embrechts P, Lindskog F, McNeil AJ (2003) Modelling dependence with copulas and applications to

risk management. In: Rachev S (ed) Handbook of heavy tailed distributions in Finance. Elsevier,

Amsterdam

14. Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were

afraid to ask. J Hydrol Eng 12:347–368

15. Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence

parameters in multivariate families of distributions. Biometrika 82:543–552

16. Genest C, MacKay RJ (1986) Copules archimédiennes et familles de lois bidimensionnelles dont les

marges sont données. Can J Stat 14:145–159
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Switzerland

32. Rémillard B, Scaillet O (2009) Testing for equality between two copulas. J Multivar Anal

100:377–386

33. Savu C, Trede M (2010) Hierarchies of Archimedean copulas. Quant Finance 10:295–304

34. Schmidt K (2006) Optimal and additive loss reserving for dependent lines of business. Casualty

Actuarial Society Forum (fall):319–351

35. SCOR (2008) From principle-based risk management to solvency requirements. Technical report,

SCOR, Switzerland. https://www.scor.com/images/stories/pdf/scorpapers/sstbook_second_edition_

final.pdf. Accessed 22 June 2016

36. Shi P, Basu S, Meyers G (2012) A Bayesian log-normal model for multivariate loss reserving. N Am

Actuar J 16:29–51

37. Shi P, Frees E (2011) Dependent loss reserving using copulas. ASTIN Bull 41:449–486

38. Tasche D (1999) Risk contributions and performance measurement. Working paper, Technische

Universität München, Germany

39. Taylor G, McGuire G (2007) A synchronous bootstrap to account for dependencies between lines of

business in the estimation of loss reserve prediction error. N Am Actuar J 11:70–88

40. Whelan N (2004) Sampling from Archimedean copulas. Quant Finance 4:339–352

41. Zhang Y (2010) A general multivariate chain ladder model. Insur Math Econ 46:588–599

408 M.-P. Côté et al.
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