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Abstract Anticipating infectious disease emergence and
documenting progress in disease elimination are important
applications for the theory of critical transitions. A key
problem is the development of theory relating the dynam-
ical processes of transmission to observable phenomena.
In this paper, we consider compartmental susceptible–
infectious–susceptible (SIS) and susceptible–infectious–
recovered (SIR) models that are slowly forced through a
critical transition. We derive expressions for the behavior of
several candidate indicators, including the autocorrelation
coefficient, variance, coefficient of variation, and power
spectra of SIS and SIR epidemics during the approach to
emergence or elimination. We validated these expressions
using individual-based simulations. We further showed that
moving-window estimates of these quantities may be used
for anticipating critical transitions in infectious disease
systems. Although leading indicators of elimination were
highly predictive, we found the approach to emergence to
be much more difficult to detect. It is hoped that these
results, which show the anticipation of critical transitions in
infectious disease systems to be theoretically possible, may
be used to guide the construction of online algorithms for
processing surveillance data.
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Introduction

Infectious diseases are among the most visible and costly
threats to individual and public health. Antibiotics, vaccines,
and the molecular revolution in biology have not erased
their mark. Millions of persons die every year from treat-
able ancient diseases, such as malaria (Gething et al. 2011;
WHO 2012), tuberculosis (Dye et al. 2008), and measles
(Orenstein and Hinman 2012; Simons et al. 2012). Some-
times, elimination of these diseases through vaccination,
prophylaxis, and/or vector control is possible, but sus-
taining elimination campaigns is difficult as pathogens
approach the point of elimination (Cohen et al. 2012).
Conversely, emerging pathogens such as SARS and swine-
origin influenza A (H1N1) cause excess mortality, disrupt
business, terrorize vulnerable populations, and lead to new,
sometimes ineradicable endemic diseases (e.g., HIV/AIDS).
The benefits of accurately forecasting disease emergence
would be tremendous: in the case of a low-incidence SARS-
like pathogen, the savings could be tens of billions of $US
(Rossi and Walker 2005; Smith et al. 2009); an illness
resembling the 1918 influenza virus might take millions of
lives and impose costs of the same order as a year’s gross
domestic product (Osterholm 2005).

Elimination and emergence of infectious disease both
involve a transmission system that is pushed over a critical
point. In most cases, criticality occurs at the point where the
basic reproduction number, R0, the number of secondary in-
fected cases arising from a single infected case in an entirely
susceptible population, is equal to one (Heffernan et al.
2005). Similar critical points occur in other complex systems
(Strogatz 1994; Sole 2011). Particularly, in noisy (stochas-
tic) systems, these critical points manifest as transitions
between alternative modes of fluctuation (Scheffer 2009;
Scheffer et al. 2009; Lenton 2011; Scheffer et al. 2012).
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We call such a stochastic transition a critical transition if
there exists a bifurcation in a suitably constructed limit
case of the mean field model. A central problem in the
study of critical transitions is the identification of phe-
nomena indicating the proximity to a critical transition in
the absence of a detailed understanding on the system’s
dynamical equations and/or the forcing variables causing
the change (Scheffer et al. 2009; Scheffer et al. 2012;
Boettiger and Hastings 2012). Recent studies have estab-
lished that some noise-induced phenomena may signal the
approach to a critical transition in a slowly forced dynam-
ical system (Ives and Dakos 2012; Dakos et al. 2012a, b;
Dakos et al. 2008; Carpenter and Brock 2006; Donangelo
et al. 2012; Seekell et al. 2011; Carpenter and Brock 2011;
Brock and Carpenter 2010; Dakos et al. 2010; Carpenter et
al. 2008; Guttal and Jayaprakash 2008, 2009). If this prop-
erty would apply to infectious diseases, it would suggest a
model-independent route to forecasting infectious disease
emergence in subcritical systems with R0 < 1 (i.e., cross-
ing the critical point “from below”) and documenting the
approach to elimination in endemic (supercritical) disease
systems where R0 > 1 (crossing the critical point “from
above”).

Many of these characteristic noise-induced phenomena
involve critical slowing down, a decline in the resilience
of the system to perturbations, which generally gives rise
to an increase in the variance and autocorrelation of fluc-
tuations as the system approaches the transition (van Nes
and Scheffer 2007; Dakos et al. 2012a). But, these proper-
ties require that the transition be suitably regular (Hastings
and Wysham 2010). Specifically, to observe critical slowing
down requires that the potential function of the system, if it
exists, be smooth. Also, for systems with multiple attract-
ing sets (e.g., bistable systems), a sufficient level of noise
gives rise to “flickering” which exhibits the characteristic
increase in variance (but for a different reason) and not the
increase in autocorrelation (Scheffer et al. 2009; Dakos et al.
2012b). Other obstacles to anticipating critical transitions in
infectious diseases include that epidemiological systems are
complicated by amplification of transients and oscillatory
dynamics (Rohani et al. 2002; Bauch and Earn 2003), that
infectious diseases are often seasonally forced (Altizer et al.
2006; Fraser and Grassly 2006) and propagate in demo-
graphically open systems subject to imported cases (Keeling
and Rohani 2002), and that diseases that are close to elimi-
nation or close to emerging are, by definition, characterized
by low prevalence and, therefore, both subject to demo-
graphic stochasticity and difficult to observe (Lloyd-Smith
et al. 2009). Therefore, to determine whether diagnostic
noise-induced phenomena accompany the critical transi-
tions that occur in infectious disease dynamics, namely
the transition to endemicity of emerging infectious dis-
eases and the transition to extinction in disease elimination,

it will be useful to have a quantitative theory, both to guide
the selection of statistical quantities to be investigated and
to predict the form that observable quantities should take as
the transition is approached.

This paper is a contribution to this theory. We consider
the compartmental susceptible–infectious–susceptible (SIS)
and susceptible–infectious–recovered (SIR) models, which
are widely used to represent the dynamics of a range of non-
immunizing and immunizing pathogens and may be viewed
as approximations to an even broader class of infectious
diseases. In their deterministic formulations, these models
are characterized by a transcritical bifurcation at R0 = 1,
where the endemic and disease-free steady states meet and
exchange stability. The epidemic models we investigate are
generalizations of the closed population SIS and SIR mod-
els that allow for immigration from external sources, of
which the more familiar models without immigration that
are characterized by a transcritical bifurcation are special
cases. To appropriately model the slowly forced dynamical
system, we first develop mean field theory for the nonsta-
tionary systems gradually approaching a bifurcation. We
develop the mean field theory here because slowly forced
dynamical systems approaching a bifurcation have rarely
been investigated (but see Kuehn (2011)). We then develop
the full stochastic description in terms of a master equa-
tion. Our strategy is to use the van Kampen system size
expansion to separate the mean field dynamics from the
fluctuations induced by demographic stochasticity. These
fluctuations are described by a Fokker–Planck equation,
from which the power spectrum, variance, autocorrelation,
and coefficient of variation may be analytically obtained.
Our main result is contained in Table 4, which provides for-
mulas expressing these theoretical predictions in terms of
the dominant eigenvalue of the mean field solutions, which
goes to zero as the system approaches the critical transi-
tion. Hence, these formulas express how epidemiologically
measurable quantities are expected to change as the system
approaches the critical transition. A number of approxima-
tions are introduced in the derivation of these formulas,
including separation of time scales, second-order descrip-
tion of the fluctuations, and continuum representation of the
state space. We, therefore, performed simulations to study
the possible detrimental effects of these approximations.
Specifically, we examined the agreement between the the-
oretical predictions and “measured” statistics obtained in a
moving window, as one would analyze real-world data, in
both discrete state-space and continuous state-space simu-
lations. We show that the analytical expressions are robust,
provided the conditions of fast–slow systems are met. These
results demonstrate that the critical transitions associated
with disease emergence and elimination may be anticipated
even in the absence of a detailed understanding of their
underlying causes.
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Theory and methods for emergence and elimination

SIS model

Mean field theory of SIS model

We first consider a general SIS model that allows for
immigration. Denoting the proportions of susceptible and
infectious populations by x(t) and y(t), respectively, the
SIS model in a population of size N is given by

ẋ = −βxy − ηx + γy (1)

ẏ = βxy + ηx − γy,

where β is the the transmission rate, γ is the rate of trans-
fer from the infectious class to the susceptible class, and
a dot denotes the time derivative. The model assumes that
infection may also occur through contact with a trickle of
infectious imports at a rate η, either by susceptibles briefly
leaving the population and making contact with infectious
individuals located elsewhere or through infectious visitors
briefly entering the population and making contact with sus-
ceptibles, so that the total force of infection is � = βy + η.
Since the population size N is constant, i.e., x + y = 1, the
SIS model may be described by a single equation,

ẏ = β(1 − y)y + η(1 − y) − γy. (2)

We note that Eq. (2) can encompass a variety of infec-
tious disease systems, including closed population SI mod-
els. Thus, the system can be used to model diseases that
confer no long-lasting immunity, e.g., sexually transmitted
diseases or acute infections such as influenza or diseases
that are fatal. If η = 0, Eq. (2) has two equilibria: the
disease-free equilibrium y0 = 0 and the endemic equilib-
rium y∗ = (1 − 1/R0), where R0 = β/γ denotes the
basic reproduction number. When R0 > 1, the infection can
persist, but if R0 < 1, then the infection dies out. The equi-
libria y0 and y∗ meet and exchange stability when the basic
reproduction number R0 = 1, i.e., a transcritical bifurcation
occurs. We will refer to the SIS model with no immigration
as the limiting case. However, it is usually more realistic to
assume that a low level of immigration occurs, i.e., η is pos-
itive. If η > 0, then Eq. (2) has a single positive equilibrium
that is always locally stable, provided β, γ > 0, since the
slope at the equilibrium λ = β − 2βy∗ − γ − η is nega-
tive. Moreover, whether η = 0 or η > 0, the return time
−1/λ decreases in the limit β → γ . At the critical point in
the limiting case SIS model, λ = 0. Therefore, the trans-
critical bifurcation occurs in a suitably constructed limiting
case (η = 0), which we suggest gives an indication for the
behavior of the fluctuations for the stochastic version of the
model with immigration, provided η is small.

Slow changes in the transmission rate β, through demo-
graphic or evolutionary means, may induce a transcriti-
cal bifurcation of Eq. (2). For example, transmission may
decrease as a result of slow increases in vaccination uptake
among the population, leading to extinction of the pathogen,
or it may increase due to slow decreases in vaccination
uptake, potentially causing a transition to endemicity. To
formally incorporate slow changes in transmission into the
model, we rewrite Eq. (2) as a fast–slow system:

İ = β(1 − y)y + η(1 − y) − γy, (3)

β̇ = εf (y, β),

where 0 < ε � 1 and the function f describes the change
in transmission rate. In this paper, we assume that transmis-
sion is a slowly changing linear function of time, i.e., β =
β(t) = β(1 − p(t)). The proportion of the population that
are vaccinated is modeled by the function p(t) = ps + p0t ,
with p0 an incremental change in β. Hence, β̇ = p0. If p0 >

0, then the rate of transmission is slowly declining over time,
and if p0 < 0, it is slowly increasing. The limit case ε → 0
of Eq. (3) is Eq. (2), and thus, the endemic equilibrium of
the limit case assumes β = β(1−ps), which arises from the
level of vaccination uptake p(t) (the bifurcation parameter).
Figure 1 shows the transcritical bifurcation diagram for the
SIS model. For small η, the plot of the stable endemic equi-
librium y∗ as a function of vaccination uptake is similar to
the bifurcation diagram for η = 0, except in the vicinity of
the critical point p∗ (inset figure of Fig. 1). For p > p∗, the
disease-free equilibrium is stable in the limiting case, but
for the model with immigration, the infectious population
is sustained at a low level due to importation of the disease
from external sources (Fig. 1).
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Fig. 1 Bifurcation diagram of the SIS model (ε → 0 mean field the-
ory). The red dashed line indicates the stable endemic equilibria of the
SIS model without immigration as a function of vaccination uptake p.
The inset plot shows a close-up of the diagram near the transcritical
bifurcation point in the limiting case where η = 0. The dashed line
indicates the location of the critical point, p∗ = 1 − 1/R0 = 0.9. The
bifurcation diagram was plotted using the parameters given in Table 7
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Stochastic description of SIS model

To investigate the effect of noise on this transition, we
assume that fluctuations in the infectious population are
caused by demographic stochasticity (intrinsic noise). To
understand these fluctuations, we require an individual-level
description rather than a population-level description. We
assume that all individuals have identical attributes, and
individuals may move from the susceptible state S(t) to
the infectious state I (t), or from the infectious state to the
susceptible state. We assume that the population size is con-
stant, i.e., S(t) + I (t) = N . Since the population size is
constant, we need only model the transitions into and out
of the infectious state. Furthermore, since the SIS system
moving towards a bifurcation is a fast–slow system, the
transmission rate β is not constant in time but is a slowly
changing function of time. Because the probability of trans-
mission between an infectious and susceptible individual is
slowly changing over time, we treat the transmission rate as
constant for each small time increment dt , β. Table 1 shows
the variables and parameters of the SIS model.

We assume that in a sufficiently small time increment dt ,
the number of infectious individuals I can either (a) increase
by 1, (b) decrease by 1, or (c) not change in number. Infec-
tion and removal are the events in an SIS process that lead
to these changes in state. We denote the number of individ-
uals I at time t or the state of the system by α = I at time
t and the alternative states by α̃, where either α̃ = I + 1
or α̃ = I − 1 in the SIS model. The system of individuals
goes from a state with α = I individuals at time t to a state
with α̃ individuals at time t + dt with transition probability
per unit time Ti(α̃|α). The system can also go from a state
with α̃ individuals at time t to I individuals at time t + dt

Table 1 Variables and parameters of the SIS model

Variable Expression

Proportion of susceptible individuals x

Proportion of infectious individuals y

Recovery rate γ

Per capita birth rate μ

Immigration rate η

Population size N

Transmission rate prior to changes β

Basic reproduction number R0 = β/γ

Rate of change in transmission p0

Start value of vaccination uptake ps

Transmission rate (ε → 0) β(1 − ps)

Transmission function at time t β = β(t)

= β(1 − (ps + p0t))

Critical point p∗ = 1 − 1/R0

with a probability flux T̃i (α|α̃). Table 2 outlines the events,
changes in state, and the transition probability fluxes into
and out of state I that can occur in a stochastic SIS process
with a slowly changing transmission rate.

Since the transitions in Table 2 describe a Markov pro-
cess, we can write down a master equation describing how
the probability of there being I individuals at time t evolves
with time. The master equation represents the continuous
time version of the dynamics of the Markov process. Deriva-
tions of master equations can be found in Van Kampen
(1981) and Renshaw (1991). Letting P(I, t) = Prob
(I (t) = I ) be the probability that the infectious state vari-
able I (t) is equal to some nonnegative integer I , the master
equation for the evolution of the probability of the infectious
population being in state α = I at time t is

dP (α, t)

dt
=

∑

α �=α̃

T̃i (α|α̃)P (α̃, t)−
∑

α �=α̃

Ti(α̃|α)P (α, t), (4)

where α̃ describes all other states (Table 3), and the prob-
ability fluxes into and out of state I are as described in
Table 2. This is a system of N+1 ordinary differential equa-
tions, α = 0, 1, . . . N , which can be solved with an initial
condition of I0 individuals at time t = 0, i.e., P(α, 0) = 1
for α = I0 and P(α, 0) = 0 for all α �= I0. Thus, the prob-
ability distribution at time t = 0 is a delta function. Table 3
summarizes the quantities in Eq. (4).

We will apply the van Kampen system size expansion
to the master equation. The system size expansion takes
advantage of the fact that, for large population size N , the
demographic fluctuations in the population are small, and
so N is the expansion parameter. Thus, the key assumption
for the expansion to be valid is that the system size N is suf-
ficiently large (see Appendix A for details). Here, we pause
to note that that the SIS model is equivalent to a simple
logistic process, and hence, there are analytical expressions

Table 2 Transition probability fluxes for SIS model into and out of
state α = I

Event Change in state Transition probability per unit time dt

Infection

Into α I − 1 → I T̃1(I |I − 1) = β(N−(I−1))(I−1)
N

+η(N − (I − 1))

Out of α I → I + 1 T1(I + 1|I ) = β(N−I )I
N

+ η(N − I )

Removal

Into α I + 1 → I T̃2(I |I + 1) = γ (I + 1)

Out of α I → I − 1 T2(I − 1|I ) = γ I

Note that β is treated as constant in a small time increment dt , but
the transmission depends on a slowly changing linear function of time,
β(t) = β(1 − p(t)) = β(1 − (ps + p0t)). Table 1 summarizes the
parameters in the rates
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Table 3 Master equation terms. The transition probability of infection per unit time is given as an example of a transition into and out of state α

for the SIS and SIR stochastic processes. The other transition probability fluxes can be found in Tables 2 and 6

System State α Alternative states α̃

SIS I I + 1, I − 1

SIR (S, I ) (S + 1, I − 1), (S − 1, I ), (S + 1, I ), (S, I − 1), (S, I + 1)

System Probability flux into α Probability flux out of α

SIS T̃1(α|α̃) = T̃1(I |I − 1) T1(α̃|α) = T1(I + 1|I )

SIR T̃1(α|α̃) = T̃1((S, I )|(S + 1, I − 1)) T1(α̃|α) = T1((S − 1, I + 1)|(S, I ))

for the mean and variance (Allen 2003). The I = 0 state
is absorbing, and the expected time to extinction is finite
(Allen 2003). Nevertheless, if the population size is large,
the probability distribution is approximately stationary for
a very long time. It is the statistics of this quasi-stationary
distribution that we are interested in.

Following expansion of the master equation, the lead-
ing order and next-to-leading order terms are collected,
giving rise to a deterministic system that describes the
evolution of the trend and its stochastic correction, respec-
tively, see Appendix A for details. The deterministic system
turns out to be the fast–slow system (3). The distribution
of the fluctuations about the solution of Eq. (3) is given
by a linear Fokker–Planck equation. Thus the fluctuations
are Gaussian distributed about the mean, and thus, I (t) ∼
Normal(Nϕ(t), Nσ 2), see Appendix A for details and def-
initions. The Fokker–Planck equation is equivalent to a
stochastic differential equation (Gardiner 2004). This is the
key advantage of applying the system size expansion. Using
the stochastic differential equation, we can obtain analytical
expressions for statistical signatures of leading indicators
and early warning signals, including the power spectrum
and autocorrelation function (see Appendix A for details).
Table 4 summarizes the indicator statistics calculated using
the methods described in Appendix A for the stable limiting
case ε → 0 for the SIS model, in terms of the eigenvalue λ.
We will examine how the statistics change over a range of
vaccination uptake values in section “Results”.

Robustness of the van Kampen approximation

Since the system size expansion involves approximating
the discrete random variable I with a normal random vari-
able, its assumptions may break down when I is small.
For small numbers of infectious individuals, e.g., if the
system is subcritical and, thus, incidence of a disease is
low, the assumption that the fluctuations are normally dis-
tributed about the mean is likely to be inappropriate. The
van Kampen expansion is valid when the system is far
from the absorbing boundary at I = 0. However, the
approximation upon which the approach is built (Eq. (10)
in Appendix A) cannot describe chance extinctions, which
can occur if I is small. If η = 0 and p > 1 − 1/R0, the

disease-free equilibrium is stable, and so the approximation
given by Eq. (10) is not valid. Due to the absorbing bound-
ary, the probability distribution about the disease-free state
for a given time t will be one-sided. On the the other hand,
if η > 0, then, close to the system boundary, the normal dis-
tribution approximation about the deterministic mean may
be poor because the distribution is bimodal due to extinc-
tion events. However, the models with immigration do not
have a disease-free state; just a small infectious population
when p is approximately greater than 1/R0. Therefore, pre-
dictions for the quasi-stationary statistics about this state can
be obtained.

SIR model

Mean field theory of SIR model

Denoting the proportions of susceptible, infectious, and
recovered populations by x(t), y(t), and z(t) respectively,
the SIR model with immigration in a closed population of
size N is

ẋ = μ(1 − p) − βxy − ηx − μx (5)

ẏ = βxy + ηx − (γ + μ)y,

ż = μp + γy − μz,

where β is the transmission rate, γ is the recovery rate, η

is the immigration rate, and μ is the per capita birth rate.
To maintain a constant population size, the per capita death
rate is set equal to the birth rate. A proportion p of the
population are chosen at random for vaccination at birth
and are recruited into the recovered class. The remaining
unvaccinated proportion of the population enter the suscep-
tible class at birth. Since the population size N is constant,
x + y + z = 1, system (5) is equivalent to the following
system of ordinary differential equations

ẋ = μ(1 − p) − βxy − ηx − μx (6)

ẏ = βxy + ηx − (γ + μ)y.

The SIR model is particularly appropriate for acute immu-
nizing infections such as measles and pertussis.

In the absence of vaccination and immigration, the basic
reproduction number is given by R0 = β/(γ + μ). If
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Table 4 Analytical expressions for quasi-stationary statistics about the endemic infectious quasi-steady state expressed in terms of the eigenval-
ues. Expressions for the endemic equilibrium ϕ∗ of the SIS and SIR models are found by solving equations (11) and (22) in Appendices A and B

Model Power spectrum SI (ω) Autocorrelation

SIS
2Q

ω2 + λ2
exp(−|λ|τ)

SIR (spiral)
2(αI + D22ω

2)

(ω2 − ((Reλ)2 − (Imλ)2))2 + 4(Reλ)2ω2

1

π

∫ ∞

0
SI (ω) cos(ωτ)dω

SIR (node)
2(αI + D22ω

2)

(ω2 − λ1λ2)2 + (λ1 + λ2)2ω2

1

π

∫ ∞

0
SI (ω) cos(ωτ)dω

Variance σ 2 Coefficient of variation

SIS
Q

2|λ|
Q

1
2√

2|λ|Nϕ∗

SIR (spiral)
αI + ((Reλ)2 − (Imλ)2)D22

4((Reλ)2 − (Imλ)2)(Reλ)

(αI + ((Reλ)2 − (Imλ)2)D22)
1
2

√
4((Reλ)2 − (Imλ)2)(Reλ)Nϕ∗

SIR (node)
αI + λ1λ2D22

2λ1λ2(λ1 + λ2)

(αI + λ1λ2D22)
1
2√

2λ1λ2(λ1 + λ2)Nϕ∗

The eigenvalues of the Jacobian of the SIR model evaluated about ϕ∗ are complex conjugates when the equilibrium is a stable spiral, i.e.,
Reλ1 = Reλ2 = Reλ and |Imλ1| = |Imλ2| = |Imλ|. When ϕ∗ is a stable node, the Jacobian matrix has two real negative eigenvalues, λ1 and λ2.
When there is no immigration, η = 0 and the power spectrum collapses to zero. Variables for each model are described in Tables 8 and 9. The
expressions for the power spectrum are multiplied by 2 because they are evaluated over the frequency domain [0, ∞). No closed-form expression
for the lag-τ autocorrelation is known, and so it must be evaluated numerically

η = 0, the SIR model (6) has two equilibria: the disease
free state (x0, y0) = (1−p, 0) and the endemic equilibrium
(x∗, y∗) = (1/R0, μ(1 − p − 1/R0)/(γ + μ), respec-
tively. The SIR model undergoes a transcritical bifurcation
at R0 = 1. The endemic equilibrium is locally stable if
R0 > 1 and is not biologically feasible if R0 < 1, when
the disease-free equilibrium is locally stable. As the vacci-
nation uptake p increases, the basic reproduction number
reduces by a factor (1 − p), i.e., the effective reproduc-
tion number is R0(1 − p). The vaccination uptake p for the
effective reproduction number is 1 at the critical vaccina-
tion threshold, p∗ = 1 − 1/R0 (Anderson and May 1991),
and it is at this critical threshold that the transcritical bifur-
cation occurs. Again, the SIR model with no immigration is
the relevant limiting case.

Temporary importation of pathogen often occurs in infec-
tious disease systems (Keeling and Rohani 2008). Assuming
that a low level of immigration occurs, i.e., η > 0, only
a single positive equilibrium is biologically feasible. This
equilibrium is a stable spiral when the square of the trace of
the Jacobian matrix evaluated about the equilibrium is less
than four times its determinant and is a stable node if it is
greater than or equal to this quantity. Complex eigenvalues
of the Jacobian matrix of Eq. (6) characterize a stable spiral,
and the eigenvalues are real and negative if the equilibrium
is a stable node. The stable node equilibrium can be thought
of as a “disease-free” equilibrium if η is small, in the sense
that the infectious population is sustained at a low level due
to importation of the disease from external sources. There-
fore, while the transcritical bifurcation occurs in a suitably
constructed limiting case (η = 0), the limit case may give

an indication for the behavior of the fluctuations for the
stochastic version of the model with immigration, provided
that η is small.

Gradual changes in the vaccination uptake rate p may
induce a transition from endemicity or to extinction.
Recruitment of susceptibles may slowly vary over long time
scales as a result of demographic or evolutionary changes.
Vaccination uptake rates are often not constant over time
and may exhibit trends, e.g., percentage uptake of pertussis
vaccine in the USA (Rohani and Drake 2011). Mathe-
matically, we may express the SIR model approaching a
transcritical bifurcation as a fast–slow system:

ẋ = μ(1 − p) − βxy − ηx − μx (7)

ẏ = βxy + ηx − (γ + μ)y,

ṗ = εf (x, y, p),

where 0 < ε � 1 and the function f describes the change in
vaccination uptake p. Again, we model vaccination uptake
as a linear function of time p(t) = ps + p0t , with p0 an
incremental change in p. Consequently, ṗ = p0. If p0 > 0,
recruitment into the susceptible class is slowly declining
over time and if p0 < 0, then recruitment is slowly increas-
ing over time. In the limit ε → 0, the vaccination uptake
is fixed at a constant rate ps , and the system is stable.
Figure 2 shows the transcritical bifurcation diagram for the
SIR model. The infectious equilibrium y∗ is plotted as a
function of vaccination uptake p. The bifurcation diagram
indicates that the endemic infectious equilibrium declines
linearly with p in the models with and without immigra-
tion. However, the inset plot indicates that in the vicinity of
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Fig. 2 Bifurcation diagram of SIR model (ε → 0 mean field the-
ory). The red dashed line indicates the stable endemic equilibria of the
SIR model without immigration as a function of vaccination uptake
p. The inset plot shows a close-up of the diagram near the criti-
cal point. The dashed line indicates the location of the critical point,
p∗ = 1 − 1/R0 = 0.94

the η = 0 critical point, the infectious equilibrium of the
immigration model is elevated relative to the disease-free
equilibrium, since the infectious population is sustained at a
low level due to immigration.

Stochastic description of SIR model

Model (7) is the deterministic description of the SIR sys-
tem approaching a transition, but there will be stochastic
fluctuations in the state of the system as the transition is
approached. As before, we assume that these fluctuations
result from demographic stochasticity. To quantify these
fluctuations, we assume individuals are identical. Individ-
uals may be recruited into the susceptible state and can
transition out of this state through infection or death. Infec-
tious individuals may recover or die. Assuming that the
population size S(t)+I (t)+R(t) = N is constant, we need
only consider the transitions into and out of the suscepti-
ble and infectious states. Furthermore, since the SIR system
moving towards a bifurcation is a fast–slow system, the vac-
cination uptake p is not constant in time but is a slowly
changing function of time. Therefore, the recruitment rate
into the susceptible class is slowly changing, but, for each
small time increment dt , we can treat the vaccination uptake
as constant p. Table 5 presents the variables and parameters
of the SIR model.

Events that occur in an SIR process in a small time
increment dt moving slowly towards a transition include
infection, recovery, recruitment to the susceptible class, and
death due to natural causes. Table 6 outlines the events,
changes in state, and the transition probabilities per unit
time for each change in state. We can construct a master
equation in the same manner as for the SIS model. Letting
P(S, I, t) = Prob((S(t), I (t)) = (S, I )) be the probability

Table 5 Variables and parameters of the SIR model

Variable Expression

Proportion of susceptible individuals x

Proportion of infectious individuals y

Proportion of recovered individuals z

Recovery rate γ

Per capita birth rate μ

Immigration rate η

Population size N

Transmission rate prior to changes β

Basic reproduction number R0 = β/(γ + μ)

Vaccination uptake p

Rate of change in vaccination uptake p0

Start value of vaccination uptake ps

Vaccination uptake at time t p = p(t) = ps + p0t

Critical point p∗ = 1 − 1/R0

that the state vector (S(t), I (t)) is equal to some nonnega-
tive integer (S, I ), the master equation for the evolution of
the probability of the population being in state α = (S, I )

at time t is
dP (α, t)

dt
=

∑

α �=α̃

T̃i (α|α̃)P (α̃, t)−
∑

α �=α̃

Ti(α̃|α)P (α, t), (8)

where α̃ describes all other states (Table 3).
The master Eq. (8) is nonlinear and, therefore, cannot

be solved analytically. To make analytical progress with
Eq. (8), again, we can use the van Kampen system size
expansion (see Appendix B for details). The approach gives
rise to the deterministic SIR fast–slow system (7) and a
linear Fokker–Planck equation that describes the evolution
of the fluctuations, which may be written as a system of
stochastic differential equations. These equations can be
analyzed using Fourier transformation. The solution of the
Fokker–Planck equation is a bivariate normal distribution.
Table 4 summarizes the indicator statistics in the stable sys-
tem limiting case ε → 0 for the SIR model, in terms of its
eigenvalues.

Simulations

The preceding sections present an analytical theory of early
warning signals for emergence and leading indicators of
elimination. To investigate the results of this theory for a
particular parameter set (Table 7), we calculated leading
indicators of elimination and emergence, assuming alter-
natively that (a) the mean proportion of infectious indi-
viduals is given by the deterministic endemic equilibrium
(ε → 0 theory) or (b) assuming it is given by the cur-
rent state of the fast–slow system approaching a transition.
We selected parameters consistent with sexually transmitted
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Table 6 Transition probability fluxes for SIR model. Transitions can occur into and out of state α = (S, I )

Event Change in state Transition probability per unit time dt

Infection

Into α (S + 1, I − 1) → (S, I ) T̃1((S, I )|(S + 1, I − 1)) = β(S+1)(I−1)
N

+ η(S + 1)

Out of α (S, I ) → (S − 1, I + 1) T1((S − 1, I + 1)|(S, I )) = βSI
N

+ ηS

Death of susceptible individual

Into α (S + 1, I ) → (S, I ) T̃2((S, I )|(S + 1, I )) = μ(S + 1)

Out of α (S, I ) → (S − 1, I ) T2((S − 1, I )|(S, I )) = μS

Death of infectious individual

Into α (S, I + 1) → (S, I ) T̃3((S, I )|(S, I + 1)) = μ(I + 1)

Out of α (S, I ) → (S, I − 1) T3((S, I − 1)|(S, I )) = μI

Recovery of infectious individual

Into α (S, I + 1) → (S, I ) T̃4((S, I )|(S, I + 1)) = γ (I + 1)

Out of α (S, I ) → (S, I − 1) T4((S, I − 1)|(S, I )) = γ I

Recruitment of susceptible individual

Into α (S − 1, I ) → (S, I ) T̃5((S, I )|(S − 1, I )) = μN(1 − p)

Out of α (S, I ) → (S + 1, I ) T5((S + 1, I )|(S, I )) = μN(1 − p)

Note that p is treated as constant in a small time increment dt , but the vaccination uptake is a slowly changing linear function of time, p = p(t) =
ps + p0t at time t . Table 5 outlines the parameters used in each transition rate

SIS diseases with long infectious period and large R0 and
parameters typical for childhood infectious diseases with
SIR dynamics. To examine how different changes in vacci-
nation uptake p0 affect the statistics, we varied p0 by 1/500

Table 7 Parameter values for the simulations

Parameter SIS model SIR model

Basic reproduction number R0 10 17

Recovery rate γ 1/10 year−1 365/22 year−1

Per capita birth rate μ - 1/50 year−1

Imports per year δ (elimination) 1 100

Imports per year δ (emergence) 1 14

Immigration rate η (elimination) 0.0002 0.00034

Immigration rate η (emergence) 0.00002 0.0035

Population size N (elimination) 50,000 5,000,000

Population size N (emergence) 50,000 100,000

Change in transmission/recruitment p0 1/500 year−1 1/500 year−1

Starting value (elimination) ps 0 0

Starting value (emergence) ps 0.96 0.96

Sufficiently large population sizes N were chosen to ensure validity
of the van Kampen system size expansion. The per capita immigration
rate η on the approach to elimination was calculated assuming η =
δR0/N , where δ is the number of imports per year (Keeling and Rohani
2008). On the approach to emergence, R0 is approximately one, and
the number of infectious individuals is near zero. Therefore, η = δ/N

(SIS model) and η = δ/(N(1 − ps)) (SIR model). All emergence
simulations begin with the forcing variable ps = 0.96, beyond the
threshold p∗ for emergence, p∗ = 1 − 1/R0. The immigration rate
remains fixed during simulations. The initial rate of transmission is
calculated from R0

and 1/30 year−1 in the model with immigration. We also
compared the elimination indicators with those calculated
assuming that the mean proportion of infectious individuals
was given by the deterministic endemic equilibrium from
the limiting case models with no immigration. The early
warning signals of emergence were not calculated for the
limiting case because the disease-free equilibrium is stable.

To test the robustness of this theory to the range of
approximations that were introduced (fast–slow approxima-
tion, continuum description, van Kampen expansion), we
simulated the approach to elimination and emergence in
a variety of cases. To simulate the approach to elimina-
tion, we followed the “bottom-up” approach of Allen (2003)
to derive stochastic differential equations that incorporated
demographic stochasticity. This approach uses the rates in
Tables 2 and 6 to build a system of stochastic differential
equations. Stochastic differential equations formulated in
this way are appropriate, provided that the population size
is sufficiently large, because then changes in the state vari-
ables are assumed to be normally distributed. Simulations
were compared with output from Gillespie’s direct method
(Gillespie 1977). The simulations were qualitatively simi-
lar for population sizes greater than 50,000. To simulate the
approach to emergence, we used Gillespie’s direct method
as this is most appropriate for small population sizes.

We simulated the SIS and SIR stochastic models with
immigration approaching elimination and emergence 500
times. To compare the statistics to the theoretical predictions
in Table 4, the infectious time series approaching elimi-
nation were sampled at yearly intervals. The transcritical
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bifurcation in these scenarios was approached over a long
time frame (e.g., 470 years when p0 = 1/500 in the
SIR model). However, the transcritical bifurcation to emer-
gence was approached over a relatively short time frame
for the SIR model (10 years). To obtain a better sampled
time series, the data from the Gillespie simulations were
aggregated over monthly intervals for the SIR model. The
infectious time series were aggregated over yearly intervals
for the SIS model approaching emergence because events
did not always occur at a monthly frequency. Thus, time
series obtained from the SIS system approaching emergence
allowed us to examine the issues that arise from poorly
sampled time series.

Analysis over a moving window

To investigate the robustness of the early warning predic-
tions over a moving window, i.e., as they would be used
in online analysis of surveillance data, the influence of the
slowly varying trend must be removed. The van Kampen
approach (Appendices A and B) leads to a natural expres-
sion for the fluctuations from the quasi-stationary state
Nϕ(t),

ζ(t) = N−1/2(I − Nϕ(t)), (9)

where ϕ(t) is determined by the mean field equations (11)
(SIS) and (22) (SIR) in Appendices A and B respectively.
To obtain the fluctuations, we subtracted the current mean,
which we assumed to be determined by the current state of
the fast–slow system Nϕ(t) , from the state of the system at
the start of each year and divided this quantity by the square
root of the population size. We refer to this as Van Kampen
detrending.

Gaussian filtering is another, more common, method
used to remove the influence of a slowly varying mean
of a data series. To compare the performance of Gaussian
smoothing to van Kampen detrending, for each time series,
we fit a Gaussian kernel smoothing function across the
entire infectious case record up to the time that the trans-
critical bifurcation was predicted using a fixed bandwidth.
Lenton et al. (2012) have shown that the results obtained
from applying the Gaussian filter across the entire time
series do not differ significantly from detrending within
windows. To obtain the residuals, we subtracted the fit from
each time series and divided by the square root of the pop-
ulation size to be consistent with van Kampen detrending.
The choice of bandwidth was informed by the resemblance
of the Gaussian residuals to the fluctuations obtained from
the van Kampen approach. To study the changes in the
statistics up to the critical transition, we calculated the lag-1
autocorrelation and the variance of the fluctuations obtained
using the two detrending methods over a moving window
half the length of the time series. We calculated the lag-1

autocorrelation coefficient of each replicate using the acf
function in R. The coefficient of variation (CV) was calcu-
lated by calculating, over a moving window, the mean and
standard deviation of each infectious replicate. The median
and 95 % prediction intervals for each of the statistics were
calculated over the 500 replicates of each model. The pre-
diction intervals were calculated using the quantile function
in R. To quantify trends in each statistic for each replicate,
we used Kendall’s correlation coefficient τ . To determine
the distribution of Kendall’s τ , we calculated the coefficient
for the trend in the test statistic for each realization.

To assess the performance of the leading indicators, we
followed the approach of Boettiger and Hastings (2012) and
calculated receiver operating characteristic (ROC) curves
from the distribution of Kendall’s τ calculated from real-
izations of the models with and without transitions. The
model without a transition is quasi-stationary, and we refer
to it as the baseline or null model. The null models for
elimination assume vaccination uptake p = 0 and are
simulated beginning from the deterministic equilibrium at
p = 0. The null models for emergence assume vaccina-
tion uptake p = 0.96 and are simulated beginning from the
deterministic equilibrium at p = 0.96. The baseline mod-
els were simulated for the same length of time as it takes
for the transition to be approached in the test models. The
model with a transition is the test model. An ROC curve
enables investigation of the sensitivity of leading indica-
tors to detect differences between quasi-stationary systems
and those approaching a critical transition. We simulated the
baseline models 500 times and obtained fluctuations using
the van Kampen approach and from Gaussian filtering. We
then quantified the trend in each indicator using Kendall’s τ

for each baseline simulation. In our results, indicator statis-
tics typically exhibited increasing trends or no trend, but
for those that decreased, we multiplied Kendall’s τ for each
realization by -1 to calculate the ROC curve. The area under
the ROC curve (AUC) was also calculated. An AUC close
to one indicates near-perfect detection.

Results

Transitions to elimination and emergence in SIS systems

The mean field fast–slow dynamics drive the transitions to
elimination and emergence in stochastic SIS models with
gradual changes in transmission. Figure 3a shows a solu-
tion y(t) of the fast–slow system (3) with η �= 0. The
solution is the current “pool” of infectious individuals (the
proportion infectious y(t)), not the number of new cases per
time interval that comprise the traditional epidemic curve
or recorded case reports of infectious individuals. At time
t = 450, the limiting case model predicts elimination of the
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Fig. 3 a SIS mean field predictions, assuming that immigration is
nonzero. The black line indicates a solution of the fast–slow system
(3) with η > 0, and the blue dashed line indicates the stable equilib-
rium for the vaccination uptake at time t indicated on the top axis (limit
case ε → 0). The gray dashed line indicates the location of the critical
point when η = 0. b Realization of the stochastic fast–slow SIS model

with immigration. The dashed line marks the time of the transcritical
bifurcation. The inset plot indicates the state of the system past the
threshold for elimination. The proportion of the population vaccinated
at time t is indicated by the top axis in all figures. Parameter values for
the figures are given in Table 7

pathogen. The limit case plotted in the figure is that arising
from the ε → 0 mean field theory, not the η = 0 criti-
cal case. Here, we note that the limit case ε → 0 and the
solution of the fast–slow system diverge from one another
close to the proximity of the transcritical bifurcation of the
η = 0 limit case. Figure 3b shows a typical realization
of the stochastic counterpart of the fast–slow SIS system
with η �= 0, assuming a change in vaccination uptake of
p0 = 1/500 per year. The description of the stochastic pro-
cess is outlined in Table 2. The infectious population slowly
declines and closely follows the limiting case ε → 0 up
until time t = 400 before eventually diverging. The inset
figure indicates that the infectious population remains ele-
vated 50 years after the transcritical bifurcation has occurred
in the model with η = 0. Therefore, the transition to elimi-
nation in this system is characterized by a slow change in the
mean, followed by rapid fall off in incidence that precedes
a very slow fadeout to extinction.

On the other hand, if a disease is emerging due to small
increases in transmission, or the level of vaccination uptake
in the population is declining, solutions of the fast–slow
system may exhibit a “delay” in emergence relative to the
occurrence of the transcritical bifurcation. Figure 4a shows
the delay in emergence in a solution of Eq. (3) with p0 =
1/500. At time t = 30, the limiting case model predicts
emergence. Again, the limit case indicated in the figure is
the limit ε → 0 of Eq. (3), not the η = 0 critical case.
Figure 4b shows a typical realization of the stochastic coun-
terpart of the solution shown in Fig. 4a. The delay in the
take-off of the epidemic is apparent. The rapid increase in

the number of cases, is preceded by a low level of inci-
dence long after the transition to endemicity has occurred.
Of course, the question is, does the low level of infection in
the time series give any clue, through early warning signals,
of the eventual rapid increase of infectious cohorts?

Transitions to elimination and emergence in SIR systems

The transitions to disease elimination and endemicity in the
stochastic SIR models with gradually changing vaccination
uptake are also driven by the mean field fast–slow dynam-
ics. To eradicate a disease, the effective reproduction num-
ber must be reduced by increasing the vaccination uptake p.
Figure 5a shows a solution of the fast–slow system (7) with
η �= 0. The mean field ε → 0 theory and the solution of Eq.
(7) agree closely. The timing of the transcritical bifurcation
in the η = 0 model occurs at t = 470, and the number of
infectious individuals has reached a low level by this time.
Figure 5b shows a stochastic realization of the SIR model
with immigration approaching elimination (the details of the
stochastic process are described in Table 6). The infectious
population exhibits amplified oscillations, unlike the deter-
ministic trajectory in Fig. 5a. Demographic stochasticity is
expected to excite the transient oscillations of the SIR model
(Bauch and Earn 2003), and we will see this in detail later
when we examine the power spectrum of the fluctuations.

On the other hand, if a disease is emerging through an
increase in recruitment into the susceptible class, the effec-
tive reproduction number is increasing. Figure 6a shows a
solution of the fast–slow system (7) with η > 0 on the verge
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Fig. 4 a SIS mean field predictions, assuming that immigration is
nonzero. The black line indicates a solution of the fast–slow system (3)
with η > 0, and the blue dashed line indicates the limiting case ε → 0
of the fast–slow system. The limit case here refers to the endemic
equilibrium of Eq. (2) corresponding to the transmission rate at time t

β(1 − p(t)) indicated on the top axis (β = 1). The gray dashed line

indicates the location of the critical point when η = 0. b Realization
of the stochastic fast–slow SIS model with immigration. The black
dashed line indicates the timing of the transcritical bifurcation when
η = 0. The unvaccinated proportion of the population at time t is indi-
cated by the top axis in all figures. Parameter values for the figures are
given in Table 7

of emergence. After the transcritical bifurcation, the solu-
tion of the system does not agree with the stable endemic
equilibrium at time t until approximately t = 55 years. The
solution grows more slowly than the stable equilibrium. The
delay in the dynamics is also exhibited by stochastic real-
izations, e.g., Fig. 6b. Outbreaks remain small and sporadic
for at least 10 years after the bifurcation has occurred. The
delay before emergence arises because the mean predicted
by system (7) remains small following the bifurcation. How-
ever, the bifurcation delay is not as marked as that in the SIS
model (compare Fig. 4 with Fig. 6).

Leading indicators of elimination

Power spectrum predictions

Figure 7 compares the power spectra of the fluctuations
in the stable models with and without immigration. The
patterns in the power spectra with immigration (Fig. 7c, d)
and without (Fig. 7a, b) are similar. For SIS systems with
low transmission rates, and SIR models with low recruit-
ment rate into the susceptible class, the power in the peak
of the spectrum is low. The power spectrum for SIS and
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Fig. 5 a SIR mean field predictions, assuming that immigration is
nonzero. The black line indicates a solution of the fast–slow system (7)
with η > 0, and the blue dashed line indicates the equilibrium arising
from the limiting case ε → 0 of the fast–slow system, corresponding
to the level of vaccination uptake indicated on the top axis. The gray
dashed line indicates the location of the critical point when η = 0. b

Realization of the stochastic fast–slow SIR model with immigration.
The dashed line marks the time of the transcritical bifurcation. The
proportion of the population vaccinated at time t is indicated by the top
axis in all figures. Parameter values for the figures are given in Table 7
(elimination parameters)
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Fig. 6 a SIR mean field predictions, assuming that immigration is
nonzero. The black line indicates a solution of the fast–slow system (7)
with η > 0, and the blue dashed line indicates the equilibrium arising
from the limiting case ε → 0 of the fast–slow system, correspond-
ing to the recruitment rate at time t μ(1 − p(t)) indicated on the top
axis (μ = 1/50 year−1). The gray dashed line indicates the location

of the critical point when η = 0. b Realization of the stochastic fast–
slow SIR model with immigration. The black dashed line indicates the
timing of the transcritical bifurcation. The per capita recruitment rate
of the population at time t is indicated by the top axis in all fig-
ures. Parameter values for the figures are given in Table 7 (emergence
parameters)

SIR systems is expected to shift to lower frequencies as the
pathogen approaches extinction. In the SIS systems, the
power at smallest frequencies increases as the critical point
is approached, but this effect is subtle. In contrast, in the SIR
case, there is a dramatic reduction in the frequency at which

the highest power is observed. The approach to endemicity
is expected to be indicated by a shift to higher frequencies
in the power spectrum. In the SIS model, the spectrum
encompasses a broader range of frequencies as emer-
gence is approached. On the other hand, in subcritical SIR
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Fig. 7 Limiting case ε → 0 prediction for the power spectrum for
the models with and without immigration. The predictions for η > 0
agree closely with those generated from the η = 0 models. In the SIS
case, the power at smallest frequencies increases as the critical point
is approached, but this effect is subtle, whereas in the SIR case, there
is a dramatic reduction in the frequency at which the highest power

is observed . Each power spectrum is evaluated about the mean field
infectious equilibrium ϕ∗, given in Tables 8 and 9. The parameters
used to calculate the power spectrum are given in Table 7. Importation,
vaccination uptake, and population sizes were chosen according to the
elimination scenario. The power spectrum has been log-transformed
for clarity
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systems approaching endemicity, fluctuations should
become less noisy as the threshold is approached. The
power spectrum transforms from a flat “white-noise”
spectrum in the subcritical scenario to a spectrum exhibit-
ing resonant peaks for sufficiently decreased vaccination
uptake. Oscillations are expected to be amplified at these
resonant frequencies. It has been shown that complex eigen-
values of the Jacobian matrix of system (6) guarantee the
existence of the power spectrum peak (Alonso et al. 2007).

SIS leading indicator predictions

Systems approaching a critical transition are expected to
exhibit rising variance and rising autocorrelation (Scheffer
2009). In general, the predictions for the leading indica-
tors of SIS disease elimination follow these expectations
for one-dimensional stochastic systems. Figure 8a–c shows
the leading indicators of elimination for the SIS model.
As the threshold to pathogen extinction is approached by

gradually increasing the vaccination uptake, all of the statis-
tics evaluated about the endemic equilibrium of the stable
system increase as the bifurcation parameter is increased,
as expected from the analytical formulas for the limiting
case (Table 4). The lag-1 autocorrelation rises, indicating
an increase in system memory, and the fluctuation variance
increases, as suggested by the plot of the power spectrum
for increasing vaccination uptake values. The coefficient
of variation also increases, indicating that infectious time
series should become noisier as the transition is approached.
The signal predictions for the SIS systems with and with-
out immigration in the limit case ε → 0 (in green) are
in close agreement, which makes sense from the analyti-
cal formulae, provided η is small. To examine how different
changes in vaccination uptake p0 in the fast–slow model
with immigration affect the statistics, we varied p0 by
1/500 and 1/30 year−1. Predictions are in close agreement
far from the η = 0 critical point but they differ close
to it.
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Fig. 8 Leading indicators of elimination. The statistics evaluated
about the endemic equilibrium for the limiting case ε → 0 with
η = 0 are shown in dashed green line. The indicators evaluated
about the endemic equilibrium assuming η > 0 are indicated in
red line. The statistics evaluated about the endemic equilibrium the
current state of the mean field fast–slow system are shown in blue
(dotted) and black lines. The gray dashed line indicates the loca-
tion of the critical point when η = 0. The theoretical predictions
in the η > 0 SIS case are not as dramatic as one expects from
the limit case but are qualitatively consistent with standard expecta-
tions, unlike the SIR limit case predictions, which do not conform
with standard expectations. The variance in the SIR case is predicted

to decline, which is not unexpected here, but does not conform to
standard expectations. The coefficient of variation increases as the
critical point is approached, but the increase is not as dramatic as
one may expect from the limiting case. In contrast to expectations,
the lag-1 autocorrelation is predicted to decline close to the critical
point if η > 0. The predictions for the statistics evaluated about
the current state of the fast–slow system differ from those evaluated
about the endemic equilibrium. Even if p0 = 1/500 year−1, there
are discrepancies in the predictions near the transcritical bifurcation
point. The autocorrelation of the fluctuations with a lag of 1 year is
shown, and the variance shown is the fluctuation variance. All calcula-
tions used the parameter values in Table 7
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SIR leading indicator predictions

Leading indicators for SIR systems approaching elimina-
tion (Fig. 8d–f) are not always consistent with the standard
expectations of increasing variance, increasing autocorre-
lation, and increasing coefficient of variation. In addition,
the predictions for the leading indicators of SIR disease
elimination evaluated about the endemic equilibrium of the
stable system behave differently to SIS leading indicators,
due to the presence of resonant frequencies. As the thresh-
old to elimination is approached, the lag-1 autocorrelation
increases with vaccination uptake, indicating an increase
in system memory, but in contrast to the SIS model, the
fluctuation variance declines. We observe in Fig. 7b, d that
the area under the power spectrum declines as vaccination
uptake increases, particularly in the model with η > 0,
where the height of the peak of the power spectrum, which
reflects amplification of fluctuations, declines close to the
transition. The coefficient of variation also increases, indi-
cating that infectious time series should become noisier as
the transition is approached but does so more dramatically
in the model without immigration, because the power spec-
trum peak height increases as the transcritical bifurcation is
approached. To examine how different changes in vaccina-
tion uptake p0 affect the statistics, we varied p0 by 1/500
and 1/30 year−1 in the fast–slow model with immigration.
Predictions generated from the p0 = 1/500 model are in
close agreement with predictions arising from the η > 0 sta-
ble model. However, when vaccination uptake is increasing
an order of magnitude faster (i.e., p0 = 1/30), there can be
temporary fluctuations, including increases, in the variance
(Fig. 8e). Such a pattern is not predicted when we evaluate
the statistics about the endemic equilibrium.

SIS predictions over a moving window

Generally, the analytical predictions for leading indicators
for SIS disease systems approaching elimination are robust
over a moving window, and they perform well in compar-
ison to statistics generated from the null stable models, as
indicated by the ROC curves in Fig. 10. The ROC curves
lie above the black line, showing that the indicators behave
better than chance in distinguishing between realizations
that have been generated by the null and test models and
the reported AUC values are close to 1. Furthermore, the
trends in the statistics agree with the theoretically predicted
trends (compare Fig. 10a, c, e with Fig. 8a–c). However, the
Gaussian smoother may not be appropriate when the trend
declines rapidly, as occurs for the SIS system approach-
ing elimination. Various bandwidths were used, but while
smaller bandwidths removed the slowly varying trend suc-
cessfully, they did not capture the fluctuations relevant for
critical slowing down. Larger bandwidths captured these

fluctuations but did not successfully remove the slowly
varying trend from the last 10 years of the time series, as can
be seen in the plots. This problem with Gaussian filtering
has been noted before by Dakos et al. (2008).

SIR predictions over a moving window

The theoretical predictions for leading indicators for SIR
disease systems approaching elimination are robust over
a moving window. The trends in the statistics shown in
Figs. 11a, c, e, and 12a, c, e agree with the theoretical
predictions (Fig. 8d–f). Notably, the median fluctuation
variance for the system with p0 = 1/30 also exhibits more
variability, as predicted theoretically. The ROC analysis for
the SIR models indicates that the statistics from the test
models perform well in comparison to statistics generated
from the null stable models, but the fluctuation variance for
the system with p0 = 1/30 is an exception. The perfor-
mance is poor because the trend in the variance exhibits
wider variation (Fig. 12c). Finally, the Gaussian filtering
performs well in comparison to the van Kampen detrending,
because the mean of the SIR model declines linearly and
does not exhibit any rapid changes.

Early warning signals for emergence

SIS early warning signal predictions

As noted, the standard expectations for early warning sig-
nals of systems approaching a critical transition include
increasing autocorrelation, increasing variance, and increas-
ing coefficient of variation. Prior to emergence, the theo-
retical predictions for the SIS model generally agree with
these standard expectations (Figs. 9a–c). For emerging SIS
diseases with immigration, the lag-1 autocorrelation is pre-
dicted to increase, indicating an increase in memory in the
system. The variance is also predicted to increase, as sug-
gested by the increasing area under the power spectrum in
Fig. 7c. However, the coefficient of variation is predicted to
decline as p(t) decreases, indicating that the mean of the
stable SIS system rises more rapidly than the variance. The
rapid rise in the mean can be seen in Fig. 4a. However, the
coefficient of variation is predicted to increase as the tran-
sition is approached if the statistic is evaluated about the
solution of the fast–slow system. This is because the mean
remains small long after the predicted critical transition
(Fig. 4a). However, the limiting case theoretical predictions
for the trends in the statistics for systems on the threshold of
emergence do not always agree with the predictions for the
corresponding fast–slow systems beyond the critical thresh-
old for emergence. This finding results from the predicted
mean given by fast–slow system being lower than that of the
stable system in the ε → 0 theory (c.f., Fig. 4a). Due to the
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Fig. 9 Early warning signals of emergence. Increasing transmission in
the SIS model and increasing recruitment in the SIR model result from
decreasing vaccination uptake p(t). Here, the limit in the legend refers
to the ε → 0 limit, and only predictions for the models with immi-
gration (η > 0) are shown. The statistics evaluated about the endemic
equilibrium (limiting case ε → 0) are shown in red line (η > 0). The
statistics evaluated about the current state of the mean field fast–slow
system are shown in blue (dashed) and black lines. The gray dashed
line indicates the location of the critical point when η = 0. In agree-
ment with standard theory, the variance and autocorrelation increase
in the SIR and SIS systems as the bifurcation is approached (the peaks
in the variance and CV predictions have been cut off for clarity). To
aid comparison with Fig. 14c, the inset plot of (e) shows a close-up

of increasing variance prior to the transition in the SIR case. However,
the ε → 0 theory predicts the CV declines on the approach to emer-
gence. The effect of the bifurcation delay is also seen in the statistics
predicted by the fast–slow theory. An order of magnitude difference in
the change in vaccination uptake p0 affects the predictions; e.g., the
CV in the SIS model is predicted to rise before the transcritical bifur-
cation by the fast–slow theory. Increases in autocorrelation (a) and in
variance (b) can occur in this model after the transcritical bifurcation.
The autocorrelation of the fluctuations with a lag of 1 year (SIS) and
1 month (SIR) is shown, and the variance shown is the fluctuation vari-
ance. All calculations used the parameter values in Table 7; the SIR
model calculations used the parameters in Table 7 scaled to rates per
month

rapid rise in the mean following the bifurcation delay, each
statistic exhibits another increase following the transcritical
bifurcation.

SIR early warning signal predictions

In subcritical SIR systems approaching endemicity, the
theoretical predictions for the SIR model agree with stan-
dard expectations, except for the coefficient of variation,
which is predicted to decline (Figs. 9d–f). The limiting
case theoretical predictions for the trends in the statistics
for SIR systems on the threshold of emergence agree more
closely with the predictions for the fluctuations about the
solution of the corresponding SIR fast–slow system, in
contrast to the SIS model, because the bifurcation delay,
although present, is not as marked as that in the SIS model.
Figure 9d, e shows that the monthly lag-1 autocorrelation
and the variance increase as the bifurcation is approached.
It is not surprising that the variance increases because the
power spectrum increases in power as the critical threshold

for emergence is approached (Fig. 7d). However, the coef-
ficient of variation is predicted to decline, i.e., the sig-
nal should become less noisy with decreasing vaccination
uptake. In the context of the power spectrum result, this
again makes sense because when the system transitions
from subcritical to endemic, the power spectrum changes
from a relatively flat shape to one with a peak about a
resonant frequency. To examine how differences in vac-
cination uptake p0 affect the statistics, we varied p0 by
1/500 and 1/30 year−1 in the fast–slow model. The statis-
tics predicted by the fast–slow theory do not change as
rapidly as predicted in the ε → 0 theory. Finally, we did
not calculate the early warning signals for the disease sys-
tems without immigration because the disease-free state is
stable.

Predictions over a moving window

In contrast to disease systems approaching elimination, the
early warning signals for diseases on the verge of emergence
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do not perform well. No marked trends are present in the
median statistics calculated from either of the van Kampen
or Gaussian detrending approaches, with the exception that
the variance of the SIS and SIR systems approaching emer-
gence (Figs. 13c, d and 14c, d) increases slightly. The 95 %
prediction intervals for each statistic further show that all
the statistics are highly variable. Moreover, the ROC curves
indicate that it may, in general, be difficult to distinguish
between subcritical systems with R0 < 1 and endemic dis-
ease systems with R0 > 1 (Figs. 13b, d, f and 14b, d, f). The
ROC curves show that the distributions of Kendall’s correla-
tion coefficient generated from stable systems and systems
approaching a critical transition overlap significantly. How-
ever, we are conservative in our approach because we take
only the years up to the critical transition in the absence
of immigration, and not the years after, when a bifurca-
tion delay may occur, during which time prevalence remains
low and so the mean prevalence may not increase for a
long time after the transition. Therefore, it is not surprising
that it is difficult to distinguish between the subcritical and
supercritical systems.

Discussion

Summary

The transmission of infectious diseases is a paradigm
example of a low-dimensional, noisy, nonlinear dynamical
process. Critical transitions in infectious disease systems,
which correspond to such socially important events as the
emergence of novel pathogens and the elimination of dis-
ease, are of special interest. The development of early
warning signals of emerging infectious diseases and lead-
ing indicators for disease elimination, particularly, would be
of tremendous value to the advance of public health. The
goal of our study was to develop the theory of such early
warning signals and leading indicators for infectious dis-
ease transmission systems that meet the assumptions of the
familiar SIS and SIR models and which are forced through
a critical transition by changes in transmission. Our main
result—analytical expressions for the change in observable
statistics as the transmission system approaches the critical
transition—are reported in Table 4.
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Fig. 10 Performance of the statistics over a moving window for
the SIS system approaching elimination, assuming that immigration
occurs (η > 0). Panels a, c, and e show the median statistics (thick
lines) and 95 % prediction intervals (shaded regions). The lag-1 auto-
correlation and variance have been calculated from the fluctuations
obtained from van Kampen and Gaussian detrending. The coefficient
of variation (CV) is marked in dashed green line to indicate that it was
calculated from the raw time series, not the deviations from the mean.
The dashed vertical line marks the time of the transcritical bifurcation
in the ε → 0 limiting case with η = 0. Panels b, d, and f show the

corresponding ROC curves. The AUC value indicates the area under
the corresponding ROC curve. All curves are above the black line,
showing that the indicators behave better than chance in distinguishing
between realizations that have been generated by the null and test mod-
els. However, the Gaussian filtering may not be an appropriate method
to obtain the fluctuations, because it does not remove the slowly vary-
ing trend close to the transition, as exhibited by the rapid rise in the
indicators. All calculations used the parameter values in Table 7. A
bandwidth of 20 years was chosen for the Gaussian filtering
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Because this theory depends on a sequence of approx-
imations, we investigated the robustness of our results in
a sequence of simulations. For the SIS model, we found
that the approach to elimination (Fig. 10) was indicated by
an increase in the autocorrelation, variance, and the coeffi-
cient of variation, as predicted by the theory. For the SIR
model, the approach to elimination (Figs. 11 and 12) was
indicated by an increase in the autocorrelation, a decrease
in the variance, and an increase in the coefficient of varia-
tion, as predicted by the theory. For the SIS and SIR models,
the approach to emergence was indicated by an increase in
variance, but the effects on the autocorrelation and the coef-
ficient of variation were imperceptible (Figs. 13 and 14).
Further, since the theoretical patterns may be difficult to dis-
tinguish from random noise or fail to provide a sufficiently
reliable signal under realistic conditions for data collection,
we also examined the suitability of these statistics as an
online algorithm for early warning. Following Boettiger and
Hastings (2012), we summarized the results of online anal-
ysis using the receiver operator characteristic. These results
showed that the approach to elimination in both the SIS
model (Fig. 10) and the SIR model (Figs. 11 and 12) could
be detected with a high level of reliability (large AUC),
although variance was a much poorer indicator in the SIR

model than autocorrelation and the coefficient of variation.
However, the approach to emergence was very difficult to
detect in both the SIS model and the SIR model, with esti-
mated AUC values hovering just above the null value of 0.5
(Figs. 13 and 14). In summary, our simulation studies show
the approximations required to obtain the theoretical predic-
tions to be acceptable but indicate that reliable prediction is
likely only in the case of leading indicators for elimination,
not early warning signals of emergence.

Bifurcation delays

Besides the practical goal of indicating patterns that func-
tion as early warning signals and leading indicators, our
study also provides some basic insights into the dynamics of
infectious diseases. Particularly, our simulations illustrated
the ubiquity of bifurcation delays—changes in system state
that lag behind the bifurcation of the limiting case—during
disease emergence and elimination. Delays are of funda-
mental interest because they provide a mechanism for the
frequent realization of far-from-equilibrium situations and
because they are a dramatic example of tipping point phe-
nomena in infectious diseases. Indeed, delays can cause a
system to appear to undergo a catastrophic shift (e.g., the
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Fig. 11 Performance of the statistics over a moving window for
the SIR system approaching elimination, assuming that immigration
occurs (η > 0). Panels a, c, and e show the median statistics (thick
lines) and 95 % prediction intervals (shaded regions). The lag-1 auto-
correlation and variance have been calculated from the fluctuations
obtained from van Kampen and Gaussian detrending. The coefficient
of variation is marked in green line to indicate that it was calculated
from the raw time series, not deviations from the mean. The dashed

vertical line marks the time of the transcritical bifurcation in the ε → 0
limiting case with η = 0. Panels b, d, and f show the ROC curves. The
AUC value indicates the area under the corresponding ROC curve. All
curves are above the black line, showing that the indicators behave bet-
ter than chance in distinguishing between realizations that have been
generated by the null and test models. A bandwidth of 5 years was
chosen for the Gaussian filtering. All calculations used the parameter
values in Table 7
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Fig. 12 Performance of the statistics over a moving window for the
SIR system rapidly approaching elimination, assuming that immigra-
tion occurs (η > 0). Panels a, c, and e show the median statistics (thick
lines) and 95 % prediction intervals (shaded regions). The lag-1 auto-
correlation and variance have been calculated from the fluctuations
obtained from the van Kampen and Gaussian detrending. The coeffi-
cient of variation (CV) is marked in dashed green line to indicate that it
was calculated from the raw time series, not deviations from the mean.
The dashed vertical line marks the time of the transcritical bifurcation

in the ε → 0 limiting case with η = 0. Panels b, d, and f show the
ROC curves. The AUC value indicates the area under the correspond-
ing ROC curve. All curves are above the black line, showing that the
indicators behave better than chance in distinguishing between realiza-
tions that have been generated by the null and test models. However,
the variance performs poorly compared with the lag-1 autocorrelation
and CV. A bandwidth of 5 years was chosen for the Gaussian filter-
ing. All calculations used the parameter values in Table 7 except for
p0 = 1/30 year−1

dramatic upturn of infectious cases associated with emer-
gence) when, in fact, only a noncatastrophic transcritical
bifurcation has occurred. Our results show that two kinds
of delays occur in disease emergence and elimination. The
first delay is a deterministic phenomenon referred to as a
canard (Diener 1984). Canards occur in fast–slow systems
where the solution follows an attracting slow manifold of
the fast–slow system, passing close to a bifurcation point,
and then follows a repelling slow manifold for a consider-
able period of time. Thus, for instance, in Fig. 3a, which
depicts the emergence of an SIS infection, the ε → 0 limit
case branch rapidly increases close to the η = 0 critical
point, but the solution of the fast–slow system (ε > 0) tracks
the disease-free equilibrium for a noticeable amount of time
even after it has become unstable. The influence that the
canard has on the stochastic dynamics can be observed in
Fig. 3b, where the number of infectious individuals remains
in the vicinity of the precritical level for a noticeable period
of time. A related phenomenon, but not so dramatic, is
observed in the elimination case (Fig. 2a). Following the
bifurcation, the infectious population remains elevated, but

unlike the emergence case, no dramatic shift to extinc-
tion occurs. Analogous phenomena are observed in the SIR
model (Figs. 5 and 6).

The second class of delays is a stochastic phenomenon,
caused by the nonzero time interval that occurs between
the time at which the critical point is reached and the time
of the event that initiates the transition (i.e., the index case
of a major outbreak). This phenomenon is most obvious in
the emergence of an immunizing pathogen (the emergence
scenario for the SIR model). In this case, the number of
infectious individuals in the population prior to the critical
transition is most commonly zero. Assuming that there are
no infectious individuals in the population at the time of
the bifurcation event, then the number of infections in the
population will remain zero until the time that an imported
case arises. In view of the assumption of demographic
stochasticity, importation is a Poisson process with nonzero
rate parameter, which similarly ensures that a nonzero
period of time must elapse before the first case appears.
Indeed, even after the first case appears, there is no guar-
antee that the system will undergo transition, since even
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Fig. 13 Performance of the statistics over a moving window for the
SIS system approaching endemicity, assuming that immigration occurs
(η > 0). Panels a, c, and e show the median statistics (thick lines)
and 95 % prediction intervals (shaded regions). The lag-1 autocorrela-
tion and variance have been calculated from the fluctuations obtained
from the van Kampen detrending and Gaussian filtering. The coeffi-
cient of variation is marked in green (dashed) line to indicate that it
was calculated from the raw time series, not deviations from the mean.
The dashed vertical line marks the time of the transcritical bifurcation.
Panels b, d, and f shows the ROC curves. The AUC value indicates the

area under the corresponding ROC curve. There are no marked trends
in the median statistics, although the variance exhibits a slight increas-
ing trend. The ROC curves show that the distributions of Kendall’s τ

overlap greatly, suggesting that it is difficult to distinguish between a
quasi-stationary system and one approaching an emergence threshold.
Due to the bifurcation delay, it is not surprising that it is difficult to dis-
tinguish between null and test replicates. A bandwidth of 10 years was
selected for the Gaussian filtering. All calculations used the parameter
values in Table 7

in a supercritical population, there is some chance of rapid
extinction (Allen 2003). When the system is only slightly
supercritical, this chance may not be small. For measure-
ment purposes, we might define this stochastic bifurcation
delay as the time elapsed between the occurrence of the
bifurcation and the final occurrence of zero infectious indi-
viduals in the population. Clearly, this quantity is a random
variable. The distributional properties of this stochastic
bifurcation delay are an important problem for further
research.

Delays are also important for the immediate practical
reason that their existence implies that the state of the sys-
tem, i.e., the presence or absence of disease, cannot be
taken as reliable evidence concerning whether the system
is subcritical or supercritical. In the case of disease emer-
gence, a system may have developed to the supercritical
state—a significant concern for public health—although
no cases have occurred. In such a scenario, any introduc-
tion of infectious individuals may spark a major outbreak.
In the case of disease elimination, a system may already
exist in the subcritical state, with only lingering infec-
tions and short transmission chains enabling the pathogen

to transiently persist. In such cases, the battle has already
been won, but it is crucial that vaccination campaigns and
other elimination activities be continued until the remain-
ing lines of transmission are snuffed out. Otherwise, gains
that may have come at great cost will fail to be maintained,
and the pathogen may resurge in the population, sparked
by its own embers still smoldering in the face of relaxed
intervention. The development of statistical methods to
identify such situations is an urgent problem for further
research.

Limiting case predictions can sometimes be misleading

Predictions for the statistics derived from the limiting case
(η = 0) version of the SIR model can sometimes be
misleading. As the extinction threshold is approached, the
predicted SIR (η > 0) lag-1 autocorrelation increases as
expected, but this phenomenon gives way to a decrease
close to the η = 0 critical point (Fig. 8d). This finding is
not so surprising when one recalls that the single biologi-
cally feasible equilibrium in the η > 0 model changes from
a stable spiral to a stable node near the critical point as
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Fig. 14 Performance of the statistics over a moving window for the
SIR system approaching emergence, assuming that immigration occurs
(η > 0). Panels a, c, and e show the median statistics (thick lines) and
95 % prediction intervals (shaded regions). The lag-1 autocorrelation
and variance have been calculated from the fluctuations obtained from
van Kampen and Gaussian detrending. The coefficient of variation is
marked in green (dashed) line to indicate that it was calculated from
the raw time series, not deviations from the mean. The dashed verti-
cal line marks the time of the transcritical bifurcation. Panels b, d, and
f shows the ROC curves. The AUC value indicates the area under the

corresponding ROC curve. None of median statistics exhibit a marked
trend. In addition, the ROC curves indicate that the distributions of
Kendall’s τ overlap greatly, suggesting that it is difficult to reliably
distinguish between a stable system and one undergoing a critical
transition using the lag-1 autocorrelation coefficient. The coefficient
of variation also performs poorly, as predicted theoretically. Due to
the bifurcation delay, it is not surprising that it is difficult to distin-
guish between null and test replicates. A bandwidth of 20 months was
selected for the Gaussian filtering. All calculations used the parameter
values in Table 7

vaccination is increased. The magnitude of the real part of
the eigenvalue, which approximates the rate of decay of the
amplitude of the oscillations to the equilibrium, decreases
as elimination is approached, but, near the threshold, the
magnitude of the real part begins to increase once more,
indicating a shorter return time to equilibrium and increased
resistance of the system to perturbations, as the spiral begins
to resemble a node. This subsequent decline in system
memory is reflected in the decrease in the autocorrelation
function near the critical point. The more rapid decay of
the oscillations is also reflected in the power spectrum, in
that the the spectrum peak declines as vaccination uptake
increases, meaning that the resonant frequencies become
less amplified. On the other hand, the recovery rate of the
stable spiral in the limiting case decreases much more dra-
matically on the transition to elimination, and oscillations
at the resonant frequencies become more amplified. Thus,
while the limiting case is an important guide in under-
standing more general disease models, it is also necessary
to thoroughly investigate these models to understand the
behavior of systems approaching a critical transition.

Limitations

This study has followed Kuehn (2011) and Boettiger and
Hastings (2012) in the use of stochastic differential equa-
tions to understand noise-induced phenomena that occur
during a critical transition. It is understood, of course, that
for discrete systems (such as infectious disease transmis-
sion), this continuum representation is only an approxima-
tion, and, moreover, that the approximation breaks down as
the system size—or even if the size of just one important
compartment—becomes small. The case of disease emer-
gence, where the number of infectious individuals in a
population prior to the critical transition is typically zero
and only occasionally one or more, is precisely this sit-
uation. It would not be surprising, therefore, to discover
the approach taken in this paper to perform poorly in this
situation. But, this is not the case. As Figs. 13 and 14 show,
in both the SIS and SIR systems, the “measured” statis-
tics obtained in simulation are qualitatively similar to the
analytic expressions reported in Table 4, with the excep-
tion of the coefficient of variation in the SIR model. We
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note, further, that although emergence was difficult to pre-
dict (AUC values were not much greater than 0.5), the
van Kampen detrending, which we think of as the theory-
dependent approach, typically performed better than generic
Gaussian detrending, which may be computed without any
theoretical assumptions. It is, nevertheless, a concern that
the approach taken here will be misleading under some sce-
narios: for instance, a very slow approach to the critical
transition, when the time between immigration events may
be large and the van Kampen approximation is likely to
break down. Moreover, the stochastic features of bifurcation
delay, particularly important in the emergence scenarios,
depend heavily on (a) the sequence of immigration events
by infectious individuals, and (b) the probability of nonex-
tinction for a transmission chain initiated by an infectious
individual after the critical point has been passed. These are
both intrinsically discrete aspects of the emergence process.
For this reason, we suggest that the study of (nonstation-
ary) discrete transmission models may be a fruitful direction
for further study. There is, of course, a large body of work
on (stationary) discrete contagion models on which such a
theory could build (Bailey 1964; Renshaw 1991; Daley and
Gani 1999; Allen 2003).

Conclusion

In conclusion, early warning systems for emerging infec-
tious diseases and leading indicators of elimination, which
would be of tremendous benefit to society, now appear
to be potentially achievable. Their realization depends on
two key developments: (1) better understanding of noise-
induced phenomena exhibited by nonlinear contagion pro-
cesses in the vicinity of their critical points, and (2) surveil-
lance methods that acquire data of sufficiently high accu-
racy, resolution, and timeliness. Toward the first of these
goals, our studies have indicated that anticipation of critical
transitions is theoretically possible. It is hoped that these
results, which include expressions for the key observable
phenomena (Table 4), may help to guide achievement of
the second, which is now the most important outstanding
problem, i.e., empirical demonstration in experimental or
surveillance data.
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Appendix A

To make the description of the probability distribution given
by Eq. (4) in the main text more amenable to analytical anal-
ysis, we approximate the discrete infectious state random
variable by a continuous random variable ζ ,

I = Nϕ(t) + N1/2ζ. (10)

We are anticipating that the probability distribution will
depend on the population size N . We do not assume what
equation ϕ(t) satisfies, but we will see later that it is equal to
the proportion of infectious individuals at time t , in the limit
of infinitely large population size N ; the system size expan-
sion will give rise to the mean field theory discussed in the
“Mean field theory of SIR model” section. Equation (10)
says that fluctuations (denoted by ζ ) about the deterministic
state I/N are expected to be of the order of N−1/2, which
is expected from the central limit theorem, and so the fluc-
tuations in I are of the order N1/2 (Van Kampen 1981). If
the population size N is large, we intuitively expect fluctua-
tions to be small. Consequently, the probability distribution
for the system being in a certain state at time t is expected
to have a peak located at the deterministic value Nϕ(t) and
a standard deviation of the order N1/2. The approximation
(10) turns out to be a normal random variable.

The system size expansion is described in detail by the
van Kampen (Van Kampen 1981) and has been applied
to one-dimensional population biology models (McKane
and Newman 2004). Therefore, we do not include the full
details of the expansion of Eq. (4) in this paper. In sum-
mary, there are five essential steps: (1) write down transition
rates (e.g., Table 2); (2) derive the master equation for the
Markov process; (3) rewrite the master equation in terms
of jump functions; (4) substitute the ansatz (10) into the
master equation and perform the expansion; and (5) collect
deterministic (leading order) and stochastic (next-to-leading
order) terms to obtain the deterministic system and its
stochastic correction.

Rewriting the master equation as described in detail
in (Van Kampen 1981) and performing the system size
expansion using Eq. (10), at leading order, give rise to the
differential equation that ϕ(t) satisfies

dϕ

dt
= βϕ(1 − ϕ) + η(1 − ϕ) − γ ϕ. (11)

This is simply the fast–slow system (3). At the next-to-
leading order, the method leads to a linear Fokker–Planck
equation for the distribution of the fluctuations about the
solution ϕ(t),

∂�

∂t
= −∂(�ζ)

∂ζ
(β − 2βϕ(t) − η − γ )

+1

2

∂2�

∂t2
(βϕ(t)(1−ϕ(t))+η(1−ϕ(t))+γ ϕ(t)). (12)



354 Theor Ecol (2013) 6:333–357

The deterministic system describes the evolution of the
trend or the location of the peak of the probability dis-
tribution of the infectious state I at a given time t . The
variable ϕ(t) is defined as the proportion I (t)/N in the
limit N → ∞. The Fokker–Planck equation describes the
evolution of the fluctuations, i.e., the standard deviation of
the probability distribution about Nϕ(t). Since the Fokker–
Planck equation is linear, the solution for the probability
distribution of the fluctuations �(ζ, t) in the deterministic
state is a normal distribution. We note that this is a result of
our second-order truncation, not a derivative property of the
original model, per se.

Our aim is to quantify the fluctuations in the quasi-
stationary state given by the solution of the SIS fast–slow
system at time t . We can do this by using the fact that Eq.
(12) is equivalent to the following stochastic differential
equation:

dζ = ζ(β − 2βϕ(t) − η − γ )dt

+
√

βϕ(t)(1 − ϕ(t)) + η(1 − ϕ(t)) + γ ϕ(t)dW,(13)

where dW is a Wiener process with mean zero and variance
dt (Gardiner 2004). Analytical analysis of Eq. (13) enables
us to establish the quasi-stationary statistics that potentially
could be used as leading indicators of a critical transition in
SIS infectious disease systems.

As a special case, we consider the limit ε → 0, whereby
the quasi-stationary state is given by the deterministic
endemic equilibrium of Eq. (11), ϕ∗ (defined in Table 8).
Since Eq. (11) dictates the evolution of the deterministic
state and Eq. (12) determines fluctuations in it, we may let
ϕ(t) = ϕ∗ in Eq. (12), and therefore, Eq. (13) becomes

dζ = ζ(β − 2βϕ∗ − η − γ )dt

+
√

βϕ∗(1 − ϕ∗) + η(1 − ϕ∗) + γ ϕ∗dW. (14)

Analysis of Eq. (13) leads to expressions for the fluc-
tuation statistics, whereby the influence of the mean has

Table 8 Variable substitutions for the SIS model. To calculate the
statistics of the fluctuations about the deterministic endemic equilib-
rium ϕ∗, replace ϕ(t) with ϕ∗ in each variable

Variable Expression

β β(1 − (ps + p0t))

ϕ∗ (β − γ − η +
√

(β − (γ + η)2 + 4βη))/2β

λ β − 2βϕ(t) − γ − η

Q βϕ(t)(1 − ϕ(t)) + η(1 − ϕ(t)) + γ ϕ(t)

Note that β is constant in a small time increment and is evaluated at
the current time t

already been removed. To analyze Eq. (13), it is easier to
rewrite it as follows:
dζ

dt
= λζ + Q�(t), (15)

where λ and Q are defined in Table 8 in the main text and
�(t) denotes Gaussian white noise. Fourier transformation
of Eq. (15) yields

iζ̃ (ω) = λζ̃ (ω) + Qγ̃ (ω), (16)

where ζ̃ (ω) is the Fourier transform of ζ . The definition of
the Fourier transform of a continuous function is provided
in Nisbet and Gurney (1982), and those authors extensively
discuss the meaning of the Fourier transform of white noise.
Rearranging Eq. (15), we obtain

ζ̃ (ω) = Q

iω − λ
. (17)

The quasi-stationary power spectrum of the fluctuations is
given by the long-term average of the square of the mag-
nitude of ζ̃ (ω). The power spectrum is (Nisbet and Gurney
1982)

SI (ω) = 〈|ζ̃ (ω)2|〉 = Q

ω2 + λ2
, (18)

where 〈.〉 is the expectation. We can integrate this expression
over the frequency domain to obtain the quasi-stationary
variance,

σ 2 = 1

π

∫ ∞

0
SI (ω)dω = Q

2|λ| . (19)

The quasi-stationary autocorrelation is given by the integral

1

π

∫ ∞

0
SI (ω) cos(ωτ)dω = exp(λτ). (20)

Finally, we can use Eq. (10) to obtain an expression for the
coefficient of variation of I (t). Since ζ ∼ Normal(0, σ 2),
where the variance σ 2 is given by Eq. (19), then I (t) =
Nϕ(t) + ζN

1
2 ∼ Normal(Nϕ(t), Nσ 2). Therefore, the

theoretical coefficient of variation is (N− 1
2 σ)/ϕ(t).

Appendix B

To make analytical progress with Eq. (8) in the main
text, we use the van Kampen system size expansion. We
approximate the number of susceptibles and the number of
infectives by

S = Nψ(t) + N
1
2 σ

I = Nϕ(t) + N
1
2 ζ, (21)

respectively. Thus, we have transformed the discrete vari-
ables in terms of continuous stochastic variables σ and ζ ,
and, as in Appendix A, we anticipate that the probability
distribution will depend on the system size N .
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The van Kampen system size expansion has been applied
to SIR models previously (Alonso et al. 2007), and so, we
do not include the full details of the expansion here. Using
the approximations (21) to leading order, the system size
expansion gives rise to the system

ψ̇ = μ(1 − p) − βψϕ − ηψ − μψ (22)

ϕ̇ = βψϕ + ηψ − (γ + μ)ϕ.

which is simply the SIR system approaching a transition (7).
At next-to-leading order, the Fokker–Planck equation for the
fluctuations in the solution of the system (22) at time t is

∂�

∂t
= −

2∑

i=1

∂

∂xi

(μi(x)�(x, t))

+
2∑

i=1

2∑

j=1

∂

∂xixj

(Dij (x)�(x, t)), (23)

where x = (σ (t), ζ(t)) denotes the vector of fluctuations
from the susceptible and infectious states, respectively. The
mean vector is given by μi(x) = ai1σ(t)+ai2ζ(t), i = 1, 2.
The matrices A and D are obtained from the system size
expansion. The coefficients aij of the mean vector are the
entries of the Jacobian matrix obtained from linear stability
analysis. The Dij coefficients are the entries of the noise-
covariance matrix and can only be obtained from the system
size expansion (Van Kampen 1981). Equation (22) describes
the evolution of the trend, and the Fokker–Planck equation
models the evolution of the fluctuations. The solution of
Eq. (23) is a bivariate normal distribution since the Fokker–
Planck equation is linear (Van Kampen 1981). We note that
when incidence of a disease is low, as occurs when the
system is subcritical, the assumption that the fluctuations
are normally distributed about the mean is likely to not be
appropriate because the approximation (21) cannot describe
chance extinctions, which can occur if I is small. Finally,
it is possible to numerically obtain the variance–covariance
matrix for the fluctuations in S and I around the values of
the solution of Eq. (22), but, in this paper, we are interested
only in fluctuations in I since S is unobservable.

To quantify the fluctuations, we use the fact that the
following system of stochastic differential equations is
equivalent to Eq. (23):

dσ

dt
= a11σ(t) + a12ζ(t) + �1(t)

dζ

dt
= a21σ(t) + a22ζ(t) + �2(t), (24)

where �1(t), �2(t) are white-noise processes with covari-
ance matrix D. The entries of the matrices A and D are
included in Table 9 in the main text. If the mean field ε → 0
theory applies, the coefficients aij are approximately the
entries in the Jacobian matrix of Eq. (6) evaluated at the

Table 9 Variable substitutions for the SIR model. To calculate the
statistics of the fluctuations about the deterministic endemic equilib-
rium ϕ∗, replace ϕ(t) with ϕ∗ in each variable

Variable Expression

p ps + p0t

ψ∗ (μ(β(1 − p) + γ̃ ) + ηγ̃ − √
b)/2βμ

ϕ∗ (β(1 − p)μ − γ̃ (μ + η) + √
b)/2βγ̃

a11 −βϕ(t) − η − μ

a12 −βψ(t)

a21 βϕ(t) + η

a22 βψ(t) − (γ + μ)

D11 βψ(t)ϕ(t) + ηψ(t) + μψ(t) + μ(1 − p)

D12 −βψ(t)ϕ(t) − ηψ(t)

D21 −βψ(t)ϕ(t) − ηψ(t)

D22 βψ(t)ϕ(t) + ηψ(t) + γ̃ ϕ(t)

d a11a22 − a12a21

T −a11 − a22

αI a2
21D11 + a2

11D22 − 2a12a11D12

Note that p is assumed to be constant in a small time increment
and is evaluated at the current time t . Other symbols in the table:
b = −4β(1 − p)μ2γ̃ + (−μ(β(1 − p) + γ̃ ) − ηγ̃ )2, γ̃ = γ + μ

endemic equilibrium. To analyze the system (24), we take
its Fourier transform, leading to

iσ̃ (ω) = a11σ̃ (ω) + a12ζ̃ (ω) + �̃1(ω)

iζ̃ (ω) = a21σ̃ (ω) + a22ζ̃ (ω) + �̃2(ω), (25)

where σ̃ (ω), ζ̃ (ω), �̃1(ω) and �̃2(ω) are the Fourier trans-
forms of σ , ζ , �1, and �2, respectively. Since we are
interested in the fluctuations about the infectious state, we
solve Eq. (25) for the Fourier transform ζ̃ (ω), obtaining

ζ̃ (ω) = a11 − iω�2(ω)

d − ω2 + iT ω
− a21�1(ω)

d − ω2 + iT ω
, (26)

where T and d are the trace and determinant of the Jaco-
bian matrix, respectively, given in Tables 9. Using Eq. (26),
we can establish the power spectrum of the fluctuations
〈|ζ̃ (ω)2|〉,

SI (ω) = (αI + D22ω
2)

(ω2 − d)2 + T 2ω2
, (27)

where αI is given in Table 9. The variance and autocorrela-
tion of the fluctuations in I (t) around the solution of system
(22) may be obtained using Eq. (27) through integration.
The variance of the fluctuations is

σ 2 = 1

π

∫ ∞

0
SI (ω)dω = αI + dD22

2dT
. (28)

The lag-τ autocorrelation is given by the integral

1

π

∫ ∞

0
SI (ω) cos(ωτ)dω. (29)
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Since we could not obtain an analytical expression for
the solution of Eq. (29), we had to obtain this integral
numerically. Finally, an expression for the coefficient of
variation of I may also be obtained, using Eq. (21). Since
ζ ∼ Normal(0, σ 2), where the variance σ 2 is given by
Eq. (28), then I (t) ∼ Normal(Nϕ(t), Nσ 2). Therefore, the

theoretical coefficient of variation is (N− 1
2 σ)/ϕ(t).
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